Problem Set 2 February 7, 2019.

- 1. Verify properties (7) and (8) of Remark 4.11.
- **2.** Prove Lemmas 5.1 and 5.4.
- **3.** Let A be a UFD, and let B be an integral domain, integral over A. Prove that, for every $b \in B$, there is a unique monic polynomial $P \in A[w]$ of minimal degree, such that P(b) = 0.
- **4.** Let X be an analytic subset of a manifold M, and let $\xi \in X$. We define the *local ring of* X at ξ as

$$\mathcal{O}_{X,\xi} := \mathcal{O}_{M,\xi} / \mathfrak{I}(X_{\xi}) \, ,$$

where $\mathfrak{I}(X_{\xi})$ denotes the full ideal of the analytic germ X_{ξ} . Prove the following:

- (a) The ring $\mathcal{O}_{X,\xi}$ is an integral domain if and only if X_{ξ} is an irreducible germ.
- (b) The ring $\mathcal{O}_{X,\xi}$ need not be a UFD, even if X is locally principal and locally irreducible (give an example and justify).
- 5. Recall that the *Krull dimension* of a Noetherian local ring (R, \mathfrak{m}) is the maximal length d of a chain of prime ideals $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_d = \mathfrak{m}$ in R. Let X be an analytic subset of a manifold M, and let $\xi \in X$.
 - (a) Prove that the zero ideal (0) is prime in $\mathcal{O}_{X,\xi}$ if and only if X_{ξ} is an irreducible germ.
 - (b) Suppose that X_{ξ} is irreducible. Prove that the Krull dimension of $\mathcal{O}_{X,\xi}$ equals $\dim_{\xi} X$.
- 6. Recall that a Noetherian local ring (R, \mathfrak{m}) is called *regular* when the maximal ideal \mathfrak{m} can be generated by *n* elements, where *n* is the Krull dimension of *R*. Show that, if X_{ξ} is smooth, then the local ring $\mathcal{O}_{X,\xi}$ is regular.