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Abstract. We study the problem of lifting a principal bundle from a closed subscheme
to an ambient scheme. The general framework in [SGA2] and [H] is used to tackle
this problem along with Tannaka duality. As an application, we prove an analogue of
a splitting criterion of Kempf to principal bundles on projective hypersurfaces and an
analogue of the Noether-Lefschetz theorem for G-bundles.

1. Introduction

Let X be a scheme of finite type over a field k and let Y be a closed subscheme of X.
Suppose that G is a group scheme over k and let P be a principal G-bundle on Y . In this
paper we study the problem of lifting P to X. In the case where G = GLn, the problem
was studied in [SGA2] (see also [H]). The procedure is to first lift the vector bundle to a
formal vector bundle on X, the formal completion of X along Y and then to consider the
problem of algebraization of this formal vector bundle.

In the case of a principal G-bundle for G an affine group scheme, the problem of lifting
a principal G-bundle π : P → Y to any infinitesimal thickening Z of Y in the ambient
subscheme X is well understood (see [I]). The obstruction for such a lift to exist is
an element of the cohomology group H2(Y, ad(P ) ⊗ IY/Z). Here IY/Z is the ideal sheaf
defining Y in Z and ad(P ) is the adjoint bundle of P . It follows from results in [EGA1]
that the vanishing of these obstructions is necessary and sufficient for P to lift to geometric
principal bundle P→ X (see §2 for details).

However the algebraization problem, i.e., that of finding a principal bundle P̃ → X such

that P̃ ⊗ OX
∼= P turns out to be more subtle. To achieve this, we use the Tannakian

formalism of Nori [N] which allows us to view a principal bundle on any (formal) scheme
as a functor from the cateogory of G-representations to the category of vector bundles
on that (formal) scheme. By Grothendieck’s algebraization theorem, each of these vector
bundles on X admits a lift to an open set. However these open sets are not necessarily
the same for each of these vector bundles, and hence lifting the functor associated to P

to a functor associated to P̃ is not guaranteed.

When G is reductive linear algebraic group with a faithful representation V we solve
the algebraization problem (Theorem 4.4) by first extending the principal G-bundle P
to a principal GL(V )-bundle Frame(P (V )) on Y . The associated vector bundle, by
Grothendieck’s algebraization theorem, lifts to a vector bundle on an open set U ⊂ X
containing Y . This then yields a principal GL(V )-bundle on U . We then show that this

admits a reduction of structure group to G to yield us a principal G-bundle P̃ which
we then verify is indeed a lift of the G-bundle P → Y . This last part is achieved by
working out a Tannakian interpretation of the reduction of structure group inspired by
the results of [BG]. The reductive hypothesis is used here in identifying GL(V )/G with
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Spec(k[GL(V )]G). The Tannakian description of the reduction of structure group, along
with its formal scheme analog (3.11), when combined with results in [EGA1, H]) produces
a Lefschetz type theorem, see (4.4).

As an application of our algebraization theorem, Theorem 4.4 we prove an analogue of
Kempf’s splitting criterion for principal bundles, Theorem 5.8. Our theorem strengthens
the result in [B] which was provided a criterion for splitting of principal bundles over a
projective space. As a final application, we prove a G-bundle analogue of the Noether-
Lefschetz theorem, Theorem 6.1.

One of the main applications of the Lefschetz formalism of Grothendieck in op. cit. is
an algebraic proof of the following statement, now known as the Grothendieck-Lefschetz
therorem: if X is a smooth, projective variety of dimension at least 4 over an algebraically
closed field of characteristic 0, and Y ⊂ X is a smooth ample divisor, then the restriction
of the Picard groups is isomorphic.

In the context of local commutative algebra, the Grothendieck-Lefschetz theorem says
that if R is a Noetherian local complete intersection ring of dimension ≥ 4, then any
line bundle on the punctured spectrum UR := SpecR \ {m} is trivial. Here m is the
irrelevant maximal ideal in R. In [Dao], H. Dao proposed the following generalisation of
this theorem to higher rank bundles:

Let M be a reflexive module on R which is locally free on the punctured
spectrum UR and such that depthR(EndR(M)) ≥ 4. Then M is free.

Notice that when M is a rank 1 module, then EndR(M) ∼= R. Since R is Cohen-Macaulay,
we have depth(R) = dimR and thus we recover the Grothendieck-Lefschetz theorem.
Dao’s conjecture was proved in [C]. As an application, a splitting criterion for vector
bundles on complete intersections of dimension at least 3 is proved (see op. cit. Theorem
4.1).

The depth condition in Dao’s conjecture implies the vanishing of the local cohomol-
ogy modules Hi

m(R,End(M)) for i = 2, 3. There are isomorphisms Hi
m(R,End(M)) ∼=

Hi−1
∗ (X,End(E)) for all i ≥ 2. Thus the vanishing of these cohomology groups imply that

the vector bundle E is a sum of line bundles. We refer the reader to [C] for more details.

A slightly stronger version of this result (see Theorem 5, [RT]) was proved when X
is a smooth complete intersection of dimension at least 3; the corresponding result for
hypersurfaces can be strengthened even more (see Theorem 3, in op. cit.). In addition,
analogues of the Noether-Lefschetz theorem, which do not follow from Dao’s conjecture,
were also established (Theorems 7 and 8, op. cit.). A crucial ingredient (apart from
Grothendieck’s Lefschetz formalism which plays a key role in both [C] and [RT]) is a
strengthened version of a theorem of Kempf [K] due to Mohan Kumar [M] which states
that any bundle on projective space with vanishing

⊕
ν<0H

1(Pn, End(E)(ν)) is a sum of
line bundles.

1.1. Organization of the paper. We briefly describe the organization of this paper.

§2 of the paper recalls the deformation theory of principal bundles and applies these
results to lifting to formal schemes. §3 starts with Nori’s Tannakian interpretation of
principal bundles in ([N]). The result is extended to reduction of structure group. In §4,
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we start by recalling the Lefschetz conditions. The main results are stated and proved
here. In §5, we prove analogues of Kempf’s splitting criterion for principal bundles.

Notations and conventions

All principal bundles will be right bundles.

k Our ground field
G An affine group scheme over k
H A closed subgroup of G, often assumed reductive

Vect(X) The category of finite rank vector bundles on a scheme
or formal scheme or algebraic stack

Vect(BG) The category of finite dimensional representations of G.
Qcoh(X) The category of quasi-coherent sheaves on X
Qcoh(BG) The category of representations of G

1.2. Acknowledgements: This project was conceived during the conference “K-theory,
Algebraic Cycles and Mathematical Physics” held at the Ohio State University during
August 7–11 2023. The authors would like to thank the organizers of the conference for
the invitation to participate. The second author would also like to thank Amit Tripathi
for useful discussions.

2. Deformation theory of principal bundles and lifting from a closed
subscheme.

Let X be a scheme of finite type over k and let Y be a closed subscheme defined by a
sheaf of ideals I. We will denote by X the formal completion of X along Y . We let Yn

be the nth infinitesmal thickening of Y in X, that is the scheme defined by In+1. In this
section we are interested in the problem of lifting a principal G-bundle on Y to X.

2.1. Principal bundles on formal schemes.

Definition 2.1. Let X/k be a scheme and G/k an algebraic group. A principal G-
bundle on X is a scheme P/X with a G-action such that the structure map P → X is
G-equivariant for the trivial action on X and the induced map

G×k X → X ×k X

is an isomorphism.

Definition 2.2. A geometric principal G-bundle on X is a Noetherian formal scheme P
together with an adic morphism

f : P→ X

and a G action on P such that the morphism f is G-equivariant when G acts on X
trivially. We further require that

G×k P
∼−→ P×X P

where the morphism is induced by the projection and the action.
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Recall [EGA1, 10.12], that a morphism f : P→ X of formal schemes is said to be adic
if I is an ideal of definition of X then f ∗I is an ideal of definition of P.

In this situation, we set Xn = X/In. An inductive system of Xn-schemes consists of
Noetherian schemes Yn → Xn such that Ym

∼= Yn ×Xn Xm whenever n ≥ m. There are
categories of inductive systems of Noetherian Xn-schemes and adic X-schemes defined in
the obvious way.

Theorem 2.3. There is an equivalence of categories between the category of adic Noether-
ian formal X-schemes and the category of inductive systems of Noetherian Xn-schemes
given by the obvious functor.

Proof. This is essentially [EGA1, 10.12.3], one just needs to check the Noetherian hypoth-
esis is preserved in the equivalence. In this direction, we remark that the topology on X
and Xn is the same. □

2.2. Deformation theory. Consider a principal G-bundle P → Y , where Y is smooth
over k. As we have seen (or defined) in the previous subsection, the problem of extending
P to X consists of a sequence of deformation theory problems. More precisely, given
Pn → Yn, lifting P , can we find an extension Pn+1 → Yn+1 of Pn to Yn+1 so that the
following diagram is Cartesian

Pn Pn+1

Yn Yn+1

and Pn+1 is a principal G-bundle.

Recall that the adjoint bundle of P is the vector bundle

adP := P ×G Lie(G)

The following theorem is well-known:

Theorem 2.4. Let Y/k be smooth and suppose that we have a lift Pn−1 of P1 to Yn. Then
there is an obstruction in

H2(Y, ad(P0)⊗ In/In+1)

whose vanishing is sufficient for the existence of a lift Pn to Yn+1.

Proof. This is [I, pg 209, theorem 2.4.4] combined with [I, 2.4.2.13]. □

Corollary 2.5. In the above situation, if

H2(Y, ad(P0)⊗ In/In+1) = 0

for all n then we can lift P to principal bundle over X.

Example 2.6. The obstructions sometimes do vanish. For example for the trivial G-bundle
on Pr ⊆ Pr+1 when r ≥ 3.
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3. Tannaka Duality

3.1. The Tannakian interpretation of principal bundles. In this section we recall
one of the results of [N].

Let X/k be a scheme. We denote by Vect(X) the ⊗-category of finite rank vector
bundles on X.

We consider functors F : Vect(BG)→ Vect(X) that satisfy the following axioms:

F1 The functor is a k-additive exact monoidal functor.
F2 The functor preserves rank and is faithful.

Example 3.1. If P → X is a principal G-bundle then the functor

Vect(BG) −→ Vect(X)

V 7−→ P ×G V

satifies these conditions. Recall that Vect(BG) is the category of G-representations. This
functor will play an important role in what is to come and we will denote it by FP . It is
useful to reinterpret FP in terms of locally free sheaves on X. As G is affine, the principal
bundle G corresponds to a sheaf of algebras A on X with an action of G. Then (A⊗kV )G

is a locally free sheaf corresponding to FP (V ).

If T is a scheme or more generally an algebraic stack, we denote by Qcoh(T ) the cate-
gory of quasi-coherent sheaves on T . For G/k an algebraic group, the categoryQcoh(BG)
just amounts to the category of co-modules over the Hopf algebra k[G].

Let F be a functor satisfying the conditions above. Then F admits a unique extension
to a direct limit preserving functor Qcoh(BG)→ Qcoh(X) such that F (V ) is faithfully
flat for all non-zero V ∈ Qcoh(BG), see [N, 2.1].

If G = SpecA then A has a G-action. Then F (A) is a sheaf of algebras on X and one
can show that P (F ) := Spec(F (A)) is a principal G-bundle, see [N, §2].

Theorem 3.2. There is a bijection between isomorphism classes of functors satisfying
the conditions F1-2 and isomorphism classes of principal G-bundles.

Proof. See [N]. In the cited paper an extra condition that F preserves the ⊗ identity is
needed. However, this is part of being monoidal. □

3.2. Reductions of structure group. Let G be an algebraic group and H a closed
subgroup. We begin with a couple of well-known results whose proofs are included here
for the sake of completeness.

Lemma 3.3. If P → X is a principal G-bundle then to give a reduction of structure
group of P to H is equivalent to giving a section σ of P/H := P ×G G/H.

Proof. Given a section σ : X → P/H, the reduction Q is given by forming the Cartesian
square:
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Q := σ∗(P ) P

X P/H.σ

Conversely, suppose we have a principal H-bundle Q which is a reduction of P . This
is the same as giving an H-equivariant isomorphism P ∼= Q ×H G. Now consider the
H-equivariant inclusion ι : Q ↪→ P , given by q 7→ (q, 1G). Going modulo the action of H,
ι descends to an inclusion

σ : Q/H = X ↪→ P/H.

□

We can further unwind the data of a section X → P/H.

Lemma 3.4. There is a one-to-one correspondence between morphisms f : P → G/H
satisfying f(p · g) = g−1f(p) and sections σ : X → P/H.

Proof. Given a morphism f : P → G/H satisfying f(p · g) = g−1f(p), we define a section

σ : X → P/H, σ(x) := (p, f(p),

where π(p) = x for the morphism π : P → X.

For any g ∈ G, π(p · g) = π(p), and also

(p · g, f(p · g)) = (p · g, g−1f(p)) = (p, f(p)) · g = (p, f(p)).

This shows that σ(x) is well-defined.

To see the converse, suppose that we are given a section σ : X → P/H. The data

of a section is the same as giving a G-bundle P̃ → X and an equivariant morphism

σ̃ : P̃ → P ×G/H so that the following diagram commutes:

P̃ P ×G/H

X (P ×G/H)/G.

The first component of σ̃ identifies P̃ with P and the second produces the desired mor-
phism. □

3.3. Tannakian interpretation of sections. In the case where H is reductive, we can
give a Tannakian interpretation of the section. To do this, we introduce the functor of
H-invariants

(−)HX : Vect(BG) −→ Vect(X),

defined by
V 7−→ (V )H ⊗k OX
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This functor is lax monoidal, that is there are morphisms

(V )HX ⊗ (W )HX → (V ⊗W )HX

that form a natural transformation.

Recall that given a principal G-bundle P we have a functor

FP : Vect(BG)→ Vect(X).

defined by
FP (V ) := P ×G V.

Theorem (3.2) says that this functor determines P . Combining these constructions we
are able to give a Tanakian description of reductions of structure group of G-bundles to
a reductive subgroup.

Theorem 3.5. In the above setting, assume further that H is reductive.

To give a section of P/H is the same as giving a monoidal natural transformation

η : (−)HX −→ FP .

Remark 3.6. Being monoidal means that the following diagrams commute:

(V )HX ⊗ (W )HX FP (V )⊗ FP (W )

(V ⊗W )HX FP (V ⊗W ).

ηV ⊗ηW

ηV ⊗W

Proof. To prove this we need to recall a few elements of the proof in [N]. To recover P
from FP one extends FP to a colimit preserving functor

FP : Qcoh(BG)→ Qcoh(X).

The extension is constructed as follows. Given V ∈ Qcoh(BG) we write it as

V = lim−→Vi

where the colimit is over all finite dimensional subrepresentations of V . Then set

FP (V ) = lim−→FP (Vi).

Nori observes that FP (k[G]) is a sheaf of algebras on X and P = Spec(FP (k[G])).

To prove the theorem, one observes that (−)H also extends to

(−)HX : Qcoh(BG)→ Qcoh(X)

in the obvious way.

Now suppose that we are given a monoidal natural transformation

η : (−)HX −→ FP .

We can extend it to a natural transformation of extended functors. Evaluating at k[G]
gives a morphism

k[G]H → FP (k[G]).

Taking Spec yields the section by the previous remark.
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Now suppose that we have a section. As we observed in (3.3), the data of a section is
the same as giving an H-principal bundle Q → X that is a reduction of structure group
of P to H. Then if V is a representation of G, we have

Q×H V H → Q×H V ∼= P ×G V

and it is easy to see that this yields a natural transformation. □

3.4. Principal bundles on formal schemes. In this section we let X be a Noetherian
formal scheme over k. We let G be an affine group scheme of finite type over k.

Definition 3.7. A Tannakian principal G-bundle on X is a functor

F : Vect(BG)→ Vect(X)

satisfying the conditions F1-2.

We have previously defined the notion of a geometric principal G-bundle on X, see
(2.2).

Theorem 3.8. There is a bijection between Tannakian principal G-bundles on X and
geometric principal G-bundles on X.

Proof. Recall that by reduction mod In a vector bundle on X is equivalent to an inductive
system of vector bundles on Xn. As Theorem 3.2 applies to the schemes Xn we see that,
using Theorem 2.3, Tannakian principal G-bundles are in bijection with inductive systems
of principal G-bundles on Xn. So to prove the theorem, it suffices to show that there is
a bijection between isomorphism classes of inductive systems of principal G-bundles and
geometric principal G-bundles on X.

Each geometric principal G-bundle produces an inductive system of principal Xn-
bundles by reduction mod In. Conversely, suppose that we are given an inductive system
Pn → Xn of G-bundles. We set P = lim←−Pn, c.f [EGA1, 10.12.3.1]. Then by the universal
property, we see that P has a G-action for which the morphism P→ X is eqivariant. We
need to show that there is an isomorphism

G×P
∼−→ P×X P.

It suffices to show that morphism above is an isomorphism mod In for each n. But it is,
as Pn is a G-bundle. □

Definition 3.9. Let P be a principal G-bundle on X. If H ⊆ G is a closed subgroup we
define

P/H := limPn ×G G/H.

An adic section of P/H → X is a morphism σ : X→ P/H of the form

σ = limσn

where σn : Xn → Pn/H are sections so that for n ≥ m the diagram

Xn Pn/H

Xm Pm/H

σn

σm
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is Cartesian.

Example 3.10. Suppose that H is a closed subgroup of G. Let P → X be a principal
H-bundle. We can form a principal G-bundle P×H G by extending the structure group.
It corresponds to the Xn-inductive system Pn ×H G. Then P×H G×G G/H has an adic
section.

Let H be a subgroup of G. We have a lax monoidal functor

(−)HX : Vect(BG) −→ Vect(X)

given by (W )H := WH ⊗OX.

Theorem 3.11. Let H be a reductive subgroup of G. There is a bijection between the set
of adic sections and monoidal natural transformations

(−)HX −→ FP.

Proof. Combine (3.5) and (2.3). □

4. The Lefschetz formalism for principal bundles

We start by recalling a few facts from [SGA2] and [H].

Let X be a scheme and let Y ⊆ X be a closed subscheme. Denote by X the formal
completion of X along Y . Given an open subscheme U ⊆ X, containing Y , there is a
restriction functor ̂ : Vect(U)→ Vect(X).

We say that the Lefschetz condition holds for (X, Y ), if for every open set U ⊇ Y and
every locally free sheaf F on U , we can find an open V with Y ⊆ V ⊆ U so that

H0(V, F |V )
∼→ H0(X, F̂ ).

We say that the effective Lefschetz condition holds for (X, Y ), if the Lefschetz condition

holds and every locally free sheaf F̂ on X lifts to some open neighbourhood of Y , that is
there exists U ⊇ Y and a locally free sheaf F on U so that F |X ∼= F̂ .

Remark 4.1. Note that if X is projective and Y is an ample divisor in X then any
neighbourhood of Y in X is the complement of a finite set of points. Further, the effective
Lefschetz condition for (X, Y ) will often hold, see Theorem 4.3 below.

We denote by VectL(Y ) the category of germs of locally free sheaves near Y . The objects
of this category are equivalence classes of pairs (U, F ) where U is an open neighbourhood
of Y inside X and F is a locally free sheaf on U . Two pairs are equivalent, if they are
isomorphic after refining to a common open neighbourhood. Morphisms are defined in
the obvious way. There is a functor̂ : VectL(Y )→ Vect(X).

Proposition 4.2. Suppose that the effective Lefschetz condition holds for (Y,X) then̂ : VectL(Y )→ Vect(X)

is a ⊗-equivalence of categories.
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Proof. It is clear that the given functor is a ⊗-functor. The Lefschetz condition ensures
that it is fully faithfaul and the effective Lefschetz condition ensures that it is essentially
surjective. □

The main source of examples come from the following theorem.

Theorem 4.3. Suppose that X is a non-singular projective variety. Let Y ⊆ X be a
complete intersection subscheme. If dimY ≥ 2, then the effective Lefschetz condition
holds for (X, Y ).

Proof. This is [H, Ch IV, Theorem 1.5]. □

Theorem 4.4. Let G be a reductive linear algebraic group and suppose that the effective
Lefschetz condition holds for the pair (X, Y ). If

FP : Vect(BG)→ Vect(X)

is a principal G-bundle on X, then P lifts to a neighbourhood U of Y .

Proof. As G is linear algebraic, it has a faithful represention V . We write Frame(P (V ))
for the functor associated to the principal GL(V )-bundle FP (V ), i.e.,

Frame(P (V )) : Vect(BGL(V ))→ Vect(X).

To simplify notation, we refer to Frame(P (V )) as both the GL(V )-principal bundle
associated to P (V ) as well as the functor it defines in the sense of [N].

By Lemma 3.3, there is an adic section

σ : X→ Frame(P (V ))/G

corresponding to the reduction of structure group to G. We view Frame(P (V )) as a
monoidal functor and the section as a natural transformation as in Theorem 3.5. Denote
the natural transformation corresponding to σ by

η̂ : (−)G → Frame(P (V )).

To prove the theorem we will lift the pair (Frame(P (V )), η̂) to a neighbourhood of U of
Y in X. The result follows then from Lemma (refr:reduction and Theorem 3.5.

By the effective Lefschetz condition, the formal vector bundle FP (V ), and hence the
principal GL(V )-bundle Frame(P (V )) on X lifts to a vector bundle on a neighbourhood

U of Y in X. We denote the lift of Frame(P (V )) by ˜Frame(P (V )). We need to now lift
η̂. The data of η̂ is a collection of morphisms

η̂W : WG ⊗OX → Frame(P (V ))(W )

for each representation W of GL(V ). By the Lefschetz condition, these morphisms lift
uniquely to morphisms

ηW : WG ⊗OU → ˜Frame(P (V )).

In view of the uniqueness of the lifts, we obtain a natural transformation

η : (−)G → ˜Frame(P (V )).

Once again, by uniqueness it is a monoidal natural transformation and so we are done by
Theorem 3.5. □
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Remark 4.5. The proof shows that if G has a faithful representation V and P ×G GL(V )
lifts to an open set U then so does P .

5. A splitting criterion

We assume throughout this section that G is a reductive algebraic group.

In this section we prove an analogue of Kempf’s splitting criterion for principal G-
bundles on hypersurfaces in projective space. The version that we prove here (see Theorem
5.8) may be viewed as a Grothendieck-Lefschetz theorem for higher rank bundles. As
mentioned in §1, the statement for this theorem was conjectured by Dao (see [Dao]),

and was first established by C̆esnavic̆ius in [C]. Our version here is a slightly stronger
statement; however unlike the theorem in [C], we require an additional hypothesis that
the hypersurface be smooth.

Theorem 5.1 (Kempf). A vector bundle E on Pn for n ≥ 2 splits into a sum of line
bundles if and only if

(1) H1(Pn,End(E)(ν)) = 0 for all ν < 0, and
(2) E extends to a vector bundle on Pn+1.

In [M], it was shown that (1) =⇒ (2) in the above theorem. This was independently
proved in [B] as well where Kempf’s criterion was generalized to prove a splitting theorem
for any principal G-bundle, with G reductive. One of the crucial points in this context is
that a bundle E on Pn admits, for any point x ∈ Pn+1 \ Pn, via the projection map

π : Pn+1 \ {x} → Pn,

an extension π∗(E) to the open set U := Pn+1 \ {x} containing Pn. The implication
(1) =⇒ (2) is then established in [M, B] by showing that the vanishing in condition
(1) implies that for any two distinct points x, y ∈ Pn+1 \ Pn, the pull back bundles
patch together to give an extension of E as a bundle to all of Pn+1. Unfortunately, when
working with hypersurfaces of degree at least 2, one does not have such an extension
(of the bundle E on the hypersurface X) to an open set (U containing X) for free; the
vanishing of the cohomology groups H2(X,End(E)(ν)) for ν < 0 ensures that we do have
such an extension.

We will make use of the following results.

Lemma 5.2. Let F and G be vector bundles on Pn. Let U ⊆ Pn be an open subset with
codimension Pn \ U at least 2. Then the restriction map

Hom(F,G)→ Hom(F |U , G|U)
is an isomorphism.

Proof. Note that F is the reflexive hull of i∗i
∗F where i : U ↪→ Pn is the inclusion. As a

similar description holds for E, the result follows. □

Lemma 5.3. Let n ≥ 3 and let F be a coherent sheaf on Pn. Suppose that we have a
short exact sequence

0→ F (−1)→ F →
r⊕

i=1

OW (ai)→ 0
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where W ∼= Pn−1 ↪→ Pn is a hyperplane and ai are integers. Then Ext1(F,L) = 0 for
L ∈ Pic(Pn).

Proof. By Serre duality we need to show Hn−1(Pn, F (m)) = 0 for all integers m. We know
that this holds for m≫ 0 so we use descending induction on m. The result follows from
the fact that Hn−2(Pn−1,O(a)) = 0 for each integer a. □

Lemma 5.4. Let n ≥ 3 and let F be a reflexive sheaf on Pn. Suppose that there is a
closed subset Z ⊆ Pn of codimension at least 2, so that FPn\Z is a vector bundle. Suppose
that we have a short exact sequence

0→ F (−1)→ F
ϕ→

r⊕
i=1

OW (ai)→ 0

where W ∼= Pn−1 ↪→ Pn is a hyperplane and ai are finitely many integers. If ϕ|W is an
isomorphism then F ∼=

⊕r
i=1OPn(ai).

Proof. There is a short exact sequence

0→
r⊕

i=1

OPn(ai − 1)→
r⊕

i=1

OPn(ai)→
r⊕

i=1

OW (ai)→ 0.

By applying the functor Hom(F,−) to this sequence and applying the prior lemma we
see that ϕ lifts to a homomorphism

Φ : F →
r⊕

i=1

OPn(ai).

Now, ∧rΦ is an isomorphism on some neighbourhood of W . Hence it is an isomorphism
away from finitely many points. However, there is some open subset U with Pn \ U
having codimension at least 2, on which the two reflexive sheaves F and

⊕r
i=1OPn(ai)

are isomorphic. But then both these sheaves are reflexive extensions of the same vector
bundle, and hence must be isomorphic. □

Lemma 5.5. Let U ⊆ Pn be an open subset so that the closed set Pn \U has codimension
at least 2 in Pn. Let P be a principal G-bundle on U . If for each V ∈ Vect(BG) the vector
bundle P ×G V extends to a vector bundle on Pn then P exends to a principal bundle P̃
on Pn. Note that as extensions of vector bundles on U to Pn are unique we must have
that P̃ ×G V is the unique extension of the vector bundle P ×G V .

Proof. Fix a faithful representation V of G and consider the GL(V )-bundle Q := P ×G

GL(V ). As P ×G V has an extension to Pn so does Q. We will call this extension Q̃.

The GL(V )-bundle Q has a reduction of structure group to G that produces P . To
prove the result it suffices to show that this reduction extends to Pn. The reduction
corresponds to a natural transformation as in Theorem 3.5. The hypothesis of the lemma
insure that this natural transformation extends using Lemma 5.2. □

Lemma 5.6. Let Y be a smooth projective variety of dimension at least 3 with ample line
bundle OY (1). Let F be a reflexive sheaf on Y . Further assume that there are finitely
many closed points y1, . . . , yn ∈ Y so that FY \{y1,...,yn} is locally free. Then we have

H0(Y, F (ν)) = H1(Y, F (ν)) = 0 ∀ ν ≪ 0.
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Proof. See [RT, Lemma 2]. □

Lemma 5.7. Let Y be a smooth projective variety of dimension at least 3 with ample line
bundle OY (1). Let F be a reflexive sheaf on Y . Further assume that there are finitely
many closed points y1, . . . , yn ∈ Y so that FY \{y1,...,yn} is locally free. Let Z ⊆ Y be a
smooth hypersurface defined by the vanishing of a section of OY (a) for a > 0. Then the
natural map

Exti(F (ν), ωY )→ Exti(F (ν − a), ωY )

is an isomorphism for ν < 0.

Proof. This is [RT, Corollary 2]. □

Theorem 5.8. Let Y ⊆ Pn be an smooth hypersurface with dimY ≥ 3. Then a principal
G-bundle P admits a reduction of structure group to a one parameter subgroup if and only
if

H1(Y, adP (ν)) = H2(Y, adP (ν)) = 0,

for all ν < 0.

Proof. The forward implication is a straightforward application of the cohomology of line
bundles on Pn.

For the reverse implication, we see that P lifts to X, the formal completion of Pn along
Y using Theorem 2.4. Using Theorems 4.3 and 4.4 we can lift P to a neighbourhood U

of Y in Pn. Call the lift P̃ . As Y is a hypersurface, any positive dimensional subvariety
of Pn intersects it, and so we see that U = Pn \ {y1, . . . ym} for finitely many closed points

yi ∈ Pn. The vector bundle adP̃ extends to a reflexive sheaf F on Pn and we have exact
sequences

0→ F (ν − d)→ F (ν)→ adP (v)→ 0,

where ν ∈ Z and d is the degree of Y in Pn. Using the hypothesis H1(Y, adP (ν)) = 0
for all ν < 0, we see that H1(Pn, F (ν)) = 0 for ν < 0, using Lemma 5.6. We also have
isomorphisms

H2(Pn, F (ν − d)) ∼= H2(Pn, F (ν)) ∀ ν < 0.

As U is the complement of finitely many points, so we may find a hyperplane W = Pn−1

contained within U . We have an exact sequence

0→ F (−1)→ F → adP̃ |W → 0.

Using the vanishing H1(Pn, F (ν)) = 0, established above, together with Lemma 5.7, we
see that

H1(W, adP̃ (ν)|W ) = 0 ∀ ν < 0.

By [B] we see that adP̃ |W splits into a sum of line bundles. Arguing as in the proof of
Theorem 4 in [RT], we see that this splitting lifts to a splitting of F into a sum of line
bundles on Pn. Consequently, adP splits into a sum of line bundles.

By [BCT, Proposition 1] there is a 1-parameter subgroup Gm → G so that P̃ |W admits
a reduction of structure group to Gm. Call the Gm-bundle Q. Let V be a representation

of G. The vector bundle P̃ ×G V extends from U to Pn by Lemma 5.4 as

P̃ ×G V |W = Q×Gm V.
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Furthermore, this extension is a direct sum of line bundles. By Lemma 5.5, the principal

G-bundle P̃ extends to Pn. As we have already observed, adP splits into a sum of line
bundles, and this decomposition extends to Pn. Therefore, the extended principal bundle
on Pn, and consequently its restriction P on the hypersurface, also admit a reduction of
the structure group to Gm by a second application of [BCT, Proposition 1]. □

6. The Noether-Lefschetz theorem

We now state the analogue of the Noether-Lefschetz theorem to G-bundles.

Theorem 6.1. Let Y be a general (in particular smooth) hypersurface of degree d ≥ 4 in
P3 and P be a principal G-bundle. Suppose that P satisfies the following conditions:

(1) H1(Y, adP (ν)) = 0 for all ν < 0.
(2) the multiplication map

H0(Y, adP ⊗KY )⊗ H0(Y,OY (a))→ H0(Y, adP ⊗KY (a))

is surjective for all a ≥ 0.

Then P admits a reduction of structure group to a one parameter subgroup.

Proof. It is enough to show that condition (2) implies that adP extends to a reflexive
sheaf on P3. Then by arguing as in the proof of Theorem 5.8, we will be done.

Let Y → T be the universal family of smooth degree d hypersurfaces in P3. The
hypothesis that P is a principal bundle on a general hypersurface means by definition the
following: there is a smooth scheme S → T which is étale over its image and a G-bundle
P on Y such that for each s ∈ S, Ps := P ⊗OYs is a principal G-bundle over the fibre Ys.
Furthermore, adP ⊗OYs

∼= adPs.

Let o ∈ S be any point parameterising a smooth hypersurface Y . If m is the maximal
ideal of the point o in the local ring OS,o, then one has the following identications for the
dual of the tangent space

Ω1
S,0 := m/m2 ∼= H0(Y,OY (d)).

In our situation, we then have that under the Kodaira-Spencer map

H2(Y, adP (−d)) → Hom(TS,o,H
2(Y, adP ))

ξ 7→ (∂/∂(x) 7→ ∂/∂(x)(ξ))

the obstruction class η 7→ 0.

The Kodaira-Spencer map can be rewritten as

H2(Y, adP (−d))→ H2(Y, adP )⊗ V ∗,

or using Serre duality as

H0(Y, adP ⊗KY )⊗ H0(Y,OY (d))→ H0(Y, adP ⊗KY (d)).

However, by our hypothesis, this map is surjective, and hence its dual map is injective.
Since η 7→ 0, this implies that η = 0. In particular, this means that adP extends to a
bundle on Y1 ⊂ P3, the first order thickening of Y in P3.
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Suppose that we have been able to extend adP to Ym−1. Then we consider the higher
order Kodaira-Spencer map

H2(Y, adP (−md))→ Hom(SymmTS,o,H
2(Y, adP )).

Let ηm ∈ H2(Y, adP (−md)) be obstruction for Pm−1 to lift to a principal bundle Pm

on Ym. The same argument as above implies that the element ηm 7→ 0. Consequently, we
see that ηm = 0 for all m ≥ 0 and so we have an extension of adP to the thickenings Ym

for all m ≥ 0. □

Remark 6.2. One can extend the Lefschetz theorems to complete intersections as well.
We refer the reader to [RT] for the precise statements.
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