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Abstract. Approximation theorems for algebraic stacks over a number field k are studied
in this article. For G a connected linear algebraic group over a number field we prove strong
approximation with Brauer-Manin obstruction for the classifying stack BG. This result
answers a very concrete question, given G-torsors Pv over kv, where v ranges over a finite
number of places, when can you approximate the Pv by a G-torsor P defined over k.

1. Introduction

This paper is motivated by the following question, let G be a connected linear algebraic
group over a number field k and let v1, . . . , vn be some non-archimedean places of k. Denote
by kvi the completion of k at vi. Fix G-torsors Pi over each kvi . Given this data, can one
find a G-torsor P over k that specialises to each of the fixed torsors? We provide a condition
(vanishing of the Brauer-Manin obstruction) on the Pi in order to guarantee the existence
of a P that is vi-adically close to Pi. It is worth remarking here that Lang’s theorem
implies that every G-torsor over Ovi is trivial where Ovi is the completion of the ring of
integers at the place non-archimedean place vi so that this question is a version of the
strong approximation property for the classifying stack of G-torsors. Note that for an
algebraic group, being connected and geometrically connected are the same, as the identity
component will be preserved by Galois actions.

We let BG be the classifying stack of G-torsors and let Ak be the adele ring of k. In
section 2, we equip the adelic points of BG with the structure of a topological space. The
essential idea for this construction can be found in [10]. There is a map BG(k) → BG(Ak)
induced from the natural embedding k → Ak. Note that this map need not be surjective
nor injective, as discussed in the next paragraph. Our results compute the closure of the
image of BG(k) inside BG(Ak), see 5.5. A variant of this theorem that applies to quotient
stacks is produced in 5.4. The main source of examples to which this theorem applies
are generated by quotients of groupic varieties, see [8] and the discussion after 5.4. Note
however, theorem 5.5 is not a corollary of 5.4.

The map BG(k) → BG(Ak) has been studied in classically in a different guise, as a
map on Galois cohomology. For PGLn the map need not be surjective as class field theory
describes the Brauer group of a number field in terms of local Brauer groups and hence puts
a restriction upon which PGLn-torsors can lift. The non-injectivity of the map is rather
subtle and it often is injective. The injectivity is known as the Hasse principle and it may
fail for some groups. For a general discussion see [33, pg. 285].

Given a scheme X of finite type over k, it is well known how to equip X(kv) with the
structure of a topological space, see [12]. The insight of [10] is if X is a finite type algebraic
stack and X → X a smooth surjective presentation then X(kv) should inherit the quotient
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2 A. DHILLON

topology from X(kv) if the properties of the topologization on schemes are to extend to
algebraic stacks. The paper [10] provides a topologization on schemes over fields or rings
more general than just a number field or a global field. Unfortunately, in topologizing the
adelic points of X the paper [10] contains an error, c.f. [10, 5.0.3], as projective modules over
the adele ring of k need not be trivial. Indeed over a product of rings it is straightforward to
construct non-trivial examples of projective modules. Only those of locally constant rank
are trivial, see 2.2. In §2 we develop a workaround for a broad class of algebraic stacks that
includes all algebraic stacks of interest to us. It should be noted however, the essential idea
in this workaround is based on the paper [10].

The Brauer group Br(X) produces an obstruction to the closure of X(k) being all of
X(Ak). In section 4, we construct the Brauer-Manin pairing for algebraic stacks:

< −,− >: X(Ak)× Br(X) → Q/Z

and prove it’s main properties needed for this paper. The pairing vanishes on k-rational
points of X(k) and the vanishing locus is a closed subset of X(Ak). In the case of varieties
and schemes this obstruction is well-known, see [36], [13], [22], [29], [11] and [7].

Our approach to questions of strong approximation for algebraic stacks is via an idea
borrowed from [4], see also [17, remark 2.11]. Given a quotient stack [X/G] where G is a
linear algebraic group over k then we can always write it as a quotient stack of the form
[X ′/H] where H is a special group. Indeed, we can fix a faithful representation G ↪→ GL(V )
or a representation G ↪→ SL(V ) and write

[X ×G GL(V )/GL(V )] ∼= [X/G] ∼= [X ×G SL(V )/SL(V )].

A linear algebraic group G always admits a faithful representation into SL(V ), see the
discussion at the start of §5.2. After fixing G ↪→ SL(V ) we are able to produce a stream
lined approach to strong approximation as the pullback map

Br([X/G]) → Br(X ×G SL(V ))

can be shown to be an isomorphism, see 5.3. This reduces the question of strong approx-
imation to one about approximation on X ×G SL(V ). When X = Spec(k) and G is a
connected linear algebraic group this has been considered in [7] and [11]. In these papers,
a kind of equivariant version of strong approximation, weaker than strong approximation
as we have defined it, is proved. This result is sufficient for our purposes. These works
are a culmination of a long development of ideas, see also [22] and [6]. We borrow their
ideas to settle strong approximation for classifying stacks BG where G is a connected lin-
ear algebraic group. Further examples of algebraic stacks to which strong approximation
applies can be generated by considering certain quotients of groupic varieties, see [8] and
the discussion after 5.4.

In 5.3 we produce a simple example to show that the connectedness assumption is needed.
This is not surprising. Indeed for homogeneous varieties with disconnected stabilisers, a
more powerful invariant, the étale Brauer-Manin obstruction is needed to produce strong
approximation type theorems, see [14] and [3]. The étale Brauer-Manin obstruction for
algebraic stacks will be considered in future work. The paper [7] also considers strong
approximation homogeneous spaces of abelian varieties. Our methods do not apply in this
situation. Indeed, to topologize BE(Ak), where E is an abelian variety, our procedure does
not work as E is not a subgroup of GL(V ). To topologize this space one would need to
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follow the procedure of constructing the adelic topology from the p-adic topology as in the
case of ordinary varieties.

In section 2 of the paper we introduce the topology on the adelic points of a algebraic
stack and prove the main properties of this topology. The previously pointed out error
in [10] is corrected here. However, many of the other ideas presented in this section are
borrowed from op. cit.

Section 3 discusses the Brauer group of an algebraic stack is defined, in this paper to be
the cohomological Brauer group. We briefly discuss how to spread out a Brauer class in
this section. As this result is mostly a standard extension of a known result for schemes we
only sketch the required argument.

In section 4, we construct the Brauer-Manin pairing on an algebraic stack and prove
it’s main properties. In particular, it is shown that the locus inside the adelic points
of an algebraic stack consisting of points orthogonal to the Brauer-Manin pairing form a
closed subset that contains the k-rational points. This produces an obstruction to strong
approximation for the entire stack. In the final subsection, we recall the definition of strong
and weak approximation with respect to the Brauer-Manin pairing. As a prelude to the
arguments to come, we show how [6] implies weak approximation for BG, see 4.8.

Section 5 proves the main result on strong approximation for BG after some prelimi-
nary lemma’s. The section concludes with an example that shows that the connectedness
assumptions are needed.
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Table 1: Notation

[X/G] If G is a group scheme acting on the scheme X then this is
the corresponding quotient stack.

k A number field.
Ok The ring of integers in k.
Ωk The set of places of k.
Ωfin

k The set of non-archimedean places of k.
Ω∞

k The set of archimedean places of k.
kv The completion of k at the valuation v.
Ov The valuation subring of kv.
kS For some finite subset S of Ωk this is the ring

∏
v∈S kv.

kT For some finite subset T of Ωk this is the ring
∏

v∈T kv ×
∏

v ̸∈T Ov

(kT )
�S

For some finite subsets S and T of Ωk this is the projection of kT into∏
v ̸∈S kv

Ak The adele ring of k
A

�S,k
For a finite subset S ⊆ Ωk, this is the image of Ak

under projection into the product
∏

v ̸∈S kv.

Continued on next page
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Table 1: Notation (Continued)

Br(X) The Brauer group of a stack or scheme.
Br1(X) The subgroup of the Brauer group trivialised by passage to an

algebraic closure. Precisely ker(Br(X) → Br(X⊗ k)).
Bra(X) The quotient of the Br1(X) by the image of Br(k).

G A linear algebraic group over k. Often it will be
assumed to be connected.

2. The topological structure of the adelic points of an algebraic stack

Given an algebraic stack X over a global field, the paper [10] associates to it a topological
space with underlying set the adelic points of X. Unfortunately, the construction has an
error at a critical point, see [10, Remark 12.0.6]. Indeed given a product of rings then there
are non-free finite rank projective modules over such a product so such a product cannot
be sufficiently disconnected in the terminology of [10, Definition 5.0.3].

In this paper we will sidestep this issue, and combine the basic idea of [10] with an idea
from [4] to construct a topological space associated to a suitable category of algebraic stacks
over a number field. This category will contain all stacks that we are interested in for this
paper.

2.1. A little lemma. We will make extensive use of the following.

Lemma 2.1. Let X/k be a scheme of finite type and H ↪→ G an closed inclusion of linear
algebraic groups over k. Suppose that H acts on X. Then we have an isomorphism

[X/H] ∼= [X ×H G/G]

of quotient stacks.

Proof. The proof follows easily from definitions. See also [17, 2.11]. □

2.2. Vector bundles over the adeles.

Proposition 2.2. Let V be a k-vector space of finite dimension and let S ⊂ Ωk be some
finite subset. Every GL(V )-torsor over Spec(A

�S,k
) is trivial.

Proof. Giving a principal GL(V )-bundle over Spec(A
�S,k

), for some finite subset S ⊆ Ωk,
is equivalent to giving a finitely generated projective module P over A

�S,k
of constant rank

dimV . We can write P ⊕Q ∼= An

�S,k
for some projective module Q. It follows that P is the

kernel of

p : An

�S,k
↠ Q ↪→ An

�S,k

with p2 = p. We write [p] for the matrix representing p. It is defined over (kT )
�S
for some

finite subset T ⊂ Ωk so that

[p] ∈ Matn×n(k
T

�S
).

For each v ∈ Ωk \ S we obtain a matrix

[p]v ∈ Matn×n(kv)
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which will have coefficients in Ov whenever v ̸∈ T . Now ker([p]v) is a projective module as
p is idempotent, and it has rank dimV as P has constant rank. As Ov is local we can find
isomorphisms

ker([p]v) ∼=

{
kdimV
v if v ∈ T

OdimV
v otherwise.

It follows that ker([p]) is a trivial projective kT -module. As P is obtained from it via base
extension, it is trivial also. □

Corollary 2.3. Every SL(V )-torsor over Spec(A
�S,k

) is trivial.

Proof. A SL(V )-torsor is a GL(V )-torsor equipped with a reduction of structure group to
SL(V ). The reduction of structure group amounts to a trivialization of the top exterior
power of the projective A

�S,k
-module associated to the GL(V )-torsor. We have seen that

the projective module is trivial so the reduction amounts to a choice of

w ∈
n∧
An

�S,k

that induces an isomorphism

A
�S,k

∼−→
n∧
An

�S,k
.

Any two choices of w can be identified via an automorphism ofAn

�S,k
and hence the associated

SL(V )-torsor is trivial. To make this explicit, one can choose a basis, say ei, for the free
module An

�S,k
. Then

w = λe1 ∧ . . . ∧ en

where λ ∈ A×
C,k is an idele. Then one considers the new basis

λe1, e2, . . . , en

and the associated change of basis automorphism of An

�S,k
. □

2.3. Topologies on schemes and algebraic spaces over topological rings. Given a
finite type scheme X over a local field kv, the collection of kv-points of X has the structure
of a topological space. For a finite type scheme X over k, it’s adelic points, X(Ak) also has
the structure of a topological space.

If R is a Hausdorff topological ring. Denote by Afffin.type
R the category of finite type affine

schemes over R and let Top be the category of topological spaces. Then there is a functor

F : Afffin.type
R −→ Top

that is essentially unique. We refer the reader to [12, Proposition 2.1] for a construction of
this functor, it’s basic properties and the precise meaning of “essentially unique”.

Remark 2.4. Using this results, the collection of units R× obtains a topology from the closed
embedding Gm ↪→ A2 as the subscheme V (xy − 1). There are two potential topologies on
R×, one from the proposition and the other from the subspace topology coming from the
topology on R. These two topologies need not be the same. In fact, for the main example
that we will be interested in, the ring of adeles R = Ak they are different.

Definition 2.5. Let R be a Hausdorff topological ring. We say that R has continuous
inversion if the two topologies on R× are the same.
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The fields kv have continuous inversion.

As a consequence the inverse map on R× will be continuous with respect to the subspace
topology for a ring with continuous inversion. When our ring has continuous inversion the
functor above extends to functor on finite type schemes, see [12, Proposition 3.1].

When R is a completion of k or a completion of Ok we can say slightly more.

Proposition 2.6. Let f : X → Y be a smooth morphism between finite type Ov-schemes.
Let R = kv or Ov. Then

f : X(R) → Y (R)

is an open morphism of topological spaces. Hence, the subspace topology on f(X(R)) is
quotient topology induced from the topology on X(R).

Proof. Being an open map is local on the domain. In view of the previous proposition we
may replace X by an open subscheme. After shrinking Y , we can find an open affine cover
Vi of X and local factorizations of f as

f |V i : Vi → An × Y
proj→ Y

where the first map is etale. From [12, Lemma 5.3] the first map induces a local homeomor-
phism on R-points. As the topology on the product, is the product topology, the projection
is also an open morphism. □

The above observation is the starting point in [10] in order to topologize points of stacks.

To define a topology on the adelic points of a scheme we need a different approach as
the adele ring does not have continuous inversion. Fix a finite subset S of Ωk containing
all infinite places. We denote by Ok,S the intersection of k with kS. Alternatively,

Ok,S = {x ∈ k | v(x) ≥ 0 ∀v ̸∈ S}.

There is an inclusion
Ok,S ↪→ kS.

Theorem 2.7. Let X ∈ Schfin.type
Ok,S

. Then the natural map

X(kS) →
∏
v∈S

X(kv)×
∏
v ̸∈S

X(Ov)

is a bijection. If we use this to equip X(kS) with a topology by using the product topology
on the right hand side and the above discussion then one obtains a functor to topological
spaces. This functor coincides with the functor in the above discussion when restricted to
affine schemes. For S ⊆ S ′ the natural map X(kS) ↪→ X(kS′

) open inclusion for separated
schemes.

Proof. See [12, 3.6]. □

For a scheme X of finite type over k one obtains a topological space structure on it’s
adelic points by first spreading X out to a finite type scheme over Ok,S for some subset
S ⊂ Ωk and then taking a direct limit of the topological spaces X(kS′

) for S ′ ⊇ S. We refer
the reader to [12, Theorem 3.6] and the surrounding discussion for a complete argument.
Spreading out schemes is discussed in [34, 3.2].

The analogue of 2.6 also holds true for adelic points.
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Proposition 2.8. Let f : X → Y be a smooth morphism between finite type Ok,S-schemes.
Let R = kS. Suppose further that the induced map

f : X(Ov) → Y (Ov)

is surjective for almost all v ̸∈ S. Then

f : X(R) → Y (R)

is an open morphism of topological spaces. Hence, the subspace topology on f(X(R)) is
quotient topology induced from the topology on X(R).

Proof. Compare [10, 4.0.5]. A basic open set of X(R) is of the form,∏
s∈S

Us ×
∏
t∈T

Vt ×
∏
t̸∈T

X(Ot)

where T ⊆ Ωk is a finite set disjoint from S, Vt ⊆ X(Ot) is open, and Us ⊆ X(ks) is open.
The result follows from 2.6 and the definition of the product topology. □

If the base topological ring is a complete valued field, denoted kv, then the above con-
structions can be extended to algebraic spaces.

Theorem 2.9. Denote by Alg.Spkv the category of quasi-separated algebraic spaces locally
of finite type over kv. Then the above functor can be extended to a functor

Alg.Spkv → Top.

This functor preserves fibred products, open and closed immersions. Étale morphism are
sent to local homeomorphisms.

Proof. This is in [12, §5]. The essential idea is given an algebraic space X and a subset
S ⊆ X(kv), we will say that S is open if and only if f−1(S) is open for every étale morphism
f : U → X where U is a finite type scheme. We have previously topologized U(k). □

Proposition 2.10. Let f : X → Y be a smooth morphism between finite type Ov-algebraic
spaces. Let R = kv or Ov. Then

f : X(R) → Y (R)

is an open map. Hence the subspace topology on f(X(R)) is quotient topology induced from
the topology on X(R).

Proof. The proof follows in the same way as for schemes, see 2.6. Note that for an étale
morphism between algebraic spaces, the assertion is proved in [12, 5.4]. One can prove the
required factorisation for smooth maps of algebraic spaces by construct the factorisation
on an atlas. □

Given a finite type algebraic space over k, one can spread it out. We will briefly describe
this construction in §4. One can now construct a topological space structure on the adelic
points of an algebraic space, mimicking the construction for schemes. This is carried out
in [12, pg. 90] which we refer the reader to for further details. Let us just recall a few key
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components of the construction. It X is an algebraic space over Ok,S of finite type then
there is a natural bijection

X(kS) −→
∏
v∈S

X(kv)×
∏
v ̸∈S

X(Ov).

This bijection is used to equip the right hand side with the product topology. It follows
that if S ⊆ T then the natural map

X(kS) ↪→ X(kT )

is an inclusion of an open set. Then the topology on

X(Ak) = colim−−−→
S⊆Ωk

X(kS)

is the colimit topology.

The smooth quotient property holds also for algebraic spaces.

Proposition 2.11. Let f : X → Y be a smooth morphism between finite type Ok,S-algebraic
spaces. Suppose further that the induced map

f : X(Ov) → Y (Ov)

is surjective for almost all v ̸∈ S. Then

f : X(kS) → Y (kS)

is an open morphism of topological spaces. Hence, the subspace topology on f(X(kS)) is
quotient topology induced from the topology on Y (kS).

Note that we will briefly discuss how to spread out finite type algebraic spaces in §4 so
that the last part of the proposition makes sense.

Proof. This is carried out in [10, §8] but it readily follows from the discussion above. □

2.4. Adelic topologies on algebraic stacks. In this subsection we wish to define a
topological space structure on X(Ak) for a certain class of algebraic stacks over k. We will
discuss how to spread out finite type algebraic stacks in 4.2.

Definition 2.12. Let X be an algebraic stack of finite type over kv. We say that X is
kv-liftable, or just liftable when the context is clear if there is a presentation P → X where
P is a finite type algebraic space over kv such that the induced map

P (kv) → X(kv)

is surjective. In this situation, we call P a lifting presentation.

Remark 2.13. In the situation of the definition, if X has affine stabilizers then it is kv-liftable
by [15, Theorem 1.2].

Definition 2.14. Let S ⊂ Ωk be a finite set containing all infinite places.

Let X be an algebraic stack over Ok,S. We say that X is S-liftable if there is a single
presentation P → X with P a finite type Ok,S-algebraic space such that

(1) every s ∈ X(kT ) lifts to P where T is a finite subset of Ωk containing S,
(2) and the induced map P (Ov) → X(Ov) is surjective for all but finitely many v ̸∈ S.
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In this situation, we will call P → X a S-lifting presentation.

Given an algebraic stack over k of finite type, we will discuss in 4.2 how one can spread
it out to a stack over Ok,S for some subset S of Ωk.

Examples of S-liftable stacks abound. Indeed any quotient stack X = [P/G] where P is a
finite type Ok,S-scheme and G is a linear algebraic group over Ok,S is S-liftable. To see this,
choose a faithful representation G ↪→ GLn and observe that [P/G] = [P ×GGLn /GLn], see
2.1. Then the presentation P ×G GLn → X has the required property as every GLn-torsor
over kS is trivial, see 2.2 and it’s proof. Further, as the ring Ov is local, the second condition
also holds. In a similar way examples of kv-liftable stacks exist.

Remark 2.15. For a stack X over Ov satisfying one of the following conditions

(1) X has affine stabilizers,
(2) X has quasi-affine diagonal,
(3) X is Deligne-Mumford

then the second condition of the previous definition is automatic by [21, Corollary 1.5] and
formal smoothness.

If X is a liftable algebraic stack over kv then we topologize X(kv) in the following way.
First fix a lifting presentation P → X so that P (kv) → X(kv) surjects. Then equip X(kv)
with the quotient topology. Note that if X → Y is a morphism of schemes of finite type
which is smooth and surjective on kv-points then the topology on Y (kv) is necessarily the
quotient topology of that on X(kv) by 2.6.

Similarly, if X is a S-liftable stack we equip X(kS) with the quotient topology via the
morphism

P (kS) → X(kS).

Proposition 2.16. The above definitions do not depend on the choice of lifting presenta-
tion. It is functorial for representable morphisms.

Proof. The proof for S-liftable stacks will be given. The other case is similar, and easier.

Suppose that we have two lifting presentations Pi → X then the fibered product P1×XP2

is also a lifting presentation. The morphism P1 ×X P2 → Pi is smooth and surjective and
satisfies the hypothesis of 2.11. Hence the continuous map

(P1 ×X P2)(kv) → Pi(kv)

is a quotient map of topological spaces. The result follows by composing quotients.

Consider a representable morphism X → Y of liftable stacks. Then given a lifting
presentation Y → Y the fibered product Y ×Y X → X is a lifting presentation. The result
follows from the independence of the topology from the presentation. □

Lemma 2.17. Let X be a S-liftable stack over Ok,S. Suppose that P → X is a lifting
presentation with P a separated algebraic space. Then for every finite subset T ⊂ Ωk

containing S, the stack is X⊗Ok,S
Ok,T is T -liftable. We also have that the natural map

X(kS) → X(kT )

is an open morphism.
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Proof. The first assertion is clear. The analogous result holds for algebraic spaces, see [12,
§5] so that

P (kS) ⊆ P (kT )

is open. The result now follows from the fact that the topology on X(kT ) is the quotient
topology inherited from P (kT ). □

Given a S-liftable stack X we define a topology on it’s adelic points by equipping

X(Ak) = colim−−−→
S⊆Ωk

X(kS)

with the colimit topology in topological spaces. The colimit is over all finite subsets of Ωk.
In subsection 4.2 we will discuss spreading out stacks over k to stacks over Ok,S.

3. The Brauer group of an algebraic stack

3.1. The big étale site. If X is a an algebraic stack then (Sch /X)ét will denote the big
étale site on X. This is the category with objects morphisms X → X where X is a scheme
and morphisms are commuting triangles. The covers are étale covers of schemes. This site
is functorial for morphisms of algebraic stacks, see [37, Tag 06NW], unlike other commonly
used sites such as the lisse-étale site, see [31, 3.3], [5, 4.42] or [37, Tag 07BF].

For every scheme X and every morphism f : X → X there is an inclusion functor
(Sch /X)ét → (Sch /X)ét obtained by composing with f .

If F is a sheaf on (Sch /X)ét then for every morphism f : X → X we obtain a restricted
sheaf on (Sch /X)ét that we denote by F |X when the morphism f is clear from the context.

Theorem 3.1. Let R be an integral domain with field of fractions K. Let X̃ be an algebraic
stack over R of finite type so that it has a presentation X → X̃ so that X is an R-scheme
of finite type. Let σ ∈ H2(X̃K ,Gm) then there is an a ∈ R so that σ lifts to X̃a.

Proof. We start by remarking that this result is well-known for schemes and can easily be
extended to algebraic spaces, for example by adapting the argument below to pass from
schemes to algebraic spaces. Given this, we proceed to sketch the proof for an algebraic
stack as the details are relatively standard. The argument for schemes can be found in [2,
Expose V, 5.7-5.8].

Choose a presentation X → X̃ as in the statement of the theorem. Then the simplicial
algebraic space X• formed by taking the coskeleton of u : X → X̃ has the same cohomology
with coefficients in u−1F as the stack. This follows from [37, Tag 06XF]. The result follows
from the known result for algebraic spaces. □

3.2. The Brauer group of an algebraic stack. Let X be an algebraic stack. We define
its Brauer group to be

Br(X) := H2((Sch /X)ét,GmX)tors.

One could potentially use the lisse-etale site to define this but this makes no difference, see
[23, A.1].

If X is an algebraic stack over k, our number field we introduce some variations on the
Brauer group that will play an important role later. We define

Br1(X) := ker
(
Br(X) → Br(X⊗k k)

)

https://stacks.math.columbia.edu/tag/06NW
https://stacks.math.columbia.edu/tag/07BF
https://stacks.math.columbia.edu/tag/06XF
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and
Bra(X) := Br1(X)/ (p

∗ Br(k))

where p : X → Spec(k) is the structure map.

These definitions are just adaptations to algebraic stacks of the corresponding construc-
tions in [36].

4. The Brauer-Manin pairing for algebraic stacks

4.1. Spreading out schemes, algebraic spaces and their morphisms. We will follow
the conventions of [37, Tag 0ELT] regarding algebraic spaces. An algebraic space X is a
a sheaf on the fppf site of Sch such that X → X × X is representable and there is a
scheme U and a surjective étale morphism U → X. Such data is equivalent to giving an
étale equivalence relation on a scheme. In the present context, the equivalence relation is
recovered as

U ×X U −−−−→→ U.

The scheme U is called a presentation for X. Some pertinent definitions will be recalled in
its proof.

The following result is well-known and we record it here for future use.

Theorem 4.1. Let R be an integral domain with field of fractions K.

(1) If X is an algebraic space of finite type over K then there is open subscheme V ⊆
SpecR and an algebraic space X̃ → V whose generic fibre is X. Further, X̃ is of
finite presentation over V .

(2) If X̃ and Ỹ are algebraic spaces of finite presentation over SpecR and f : X̃K → ỸK

is a morphism over their generic fibers then f can be lifted to a morphism f̃ : X̃V →
ỸV for some open subscheme V ⊆ SpecR.

(3) In the situation of the previous part, if f is smooth or étale then there is an open
subscheme of SpecR over which the lift is smooth or étale.

(4) In the above situation suppose that we have finitely presented algebraic spaces X̃, Ỹ

and Z̃ over S with generic fibers X, Y and Z. If f̃ : X̃ → Ỹ , g̃ : Ỹ → Z̃ and
h̃ : X̃ → Z̃ are morphisms whose generic fibers satisfy g ◦ f = h then there is an
open subscheme U of S with

g̃ ◦ f̃ = h̃

over U .

Proof. For a scheme [34, 3.2.1] proves the first three parts. For a scheme the last part is an
elementary result of commutative algebra.

We move on to the case of an algebraic space.

The fact that X is of finite type means that we can find a presentation U → X with U
of finite type over K, see [37, Tag 03XE]. It follows that U ×X U is also of finite type. By
the result for schemes, we can find an open subscheme V ⊆ SpecR and schemes of finite
presentation Q̃ and Ũ that extend U ×X U and U respectively. By the same result, we can
assume that the two projections U×XU → U extend to étale morphisms and the morphism
U ×X U → U ×K U extends to a monomorphism

m : Q̃ → Ũ ×R Ũ .

https://stacks.math.columbia.edu/tag/0ELT
https://stacks.math.columbia.edu/tag/03XE
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It is claimed that after further restricting V we can assume that this data forms an étale
equivalence relation. For example, to check the first condition of being an equivalence
relation, reflexivity, we need to show that the diagonal map Ũ → Ũ ×R Ũ factors through
Q̃. This follows from the result for schemes. The other axioms are proved similarly.

The quotient algebraic space Ũ/Q̃, see [37, Tag 02WW], is the required extension of X.

The remaining two parts follow from the known result for schemes by lifting the mor-
phisms on atlases. Note that a morphism of algebraic spaces is smooth or étale if the
induced morphism on atlases is. □

4.2. Spreading out algebraic stacks.

Theorem 4.2. Let R be an integral domain with function field K. Let X be an algebraic
stack of finite type over K. Then there is an algebraic stack X̃ over an open subscheme
U ⊆ SpecR whose generic fiber is X.

Proof. Once again, this is a standard result so we provide a brief sketch of the argument
only.

Consider a presentation X → X. In view of the hypothesis on X the scheme X can be
chosen to be of finite type. As smooth morphisms are of finite presentation we have that
all the products X×X×X · · ·×XX are of finite type over K. This data forms a groupoid in
algebraic spaces (X,X×XX, π1, π2), π13), [37, Tag 0231], [37, Tag 0437] and [25, 2.4.3]. We
can find an open subscheme U ⊆ SpecR to which all the defining data of this groupoid lifts.
We require this lift to form a groupoid, which amounts to certain diagrams commuting as
in [25, 2.4.3]. By further refinement, we can find U ′ ⊆ U ⊆ SpecR over which we have a
groupoid in schemes. To this groupoid in schemes there is an associated algebraic stack,
see [25, 4.3.1]. This algebraic stack lifts X. □

Corollary 4.3. We work in the situation of the previous theorem. Let x ∈ Br(X) be a

Brauer class. Then there is an open subscheme V ⊆ U and a Brauer class x ∈ Br(X̃|V )
extending x.

Proof. This follows from 3.1. □

4.3. The Brauer-Manin pairing on algebraic stacks. In this subsection we will con-
struct the Brauer-Manin pairing on an algebraic stack of finite type over a number field.
Before doing so, let’s recall a few facts pertaining to the construction of the pairing for
schemes.

For each v ∈ Ωk, local class field theory constructs a morphism

invk,v : Br(kv) → Q/Z,
known as the Hasse invariant. The subscripts k and v will frequently be dropped from
the notation when the context makes them clear. For finite places, this is an isomorphism.
Further there is a short exact sequence

0 → Br(k) →
⊕
v∈Ωk

Br(kv)
∑
→ Q/Z.

If X is a finite type scheme over k then given an adelic point x ∈ X(Ak) we obtain for
each v ∈ Ωk a point xv ∈ X(kv) by restricting along the projection Ak → kv. The scheme

https://stacks.math.columbia.edu/tag/02WW
https://stacks.math.columbia.edu/tag/0231
https://stacks.math.columbia.edu/tag/0437
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can be spread out to a scheme over Ok,S using 4.1. All but finitely many of the xv will lie
inside X(Ov) where v ̸∈ S.

Given a Brauer class b ∈ Br(X), we can also spread it out to a Brauer class over Ok,S by
potentially increasing S, see 4.3. As Br(Ov) = 0 we obtain a pairing

X(Ak)× Br(X) → Q/Z
given by

< x, b >=
∑
v∈Ωk

invk,v(x
∗
v(b)).

The sum is finite in view of the remarks above.

Now let X be a finite type algebraic stack over k. We can assume that it lifts to an
algebraic stack overOk,S. LetAk be the ring of adeles of k. Given an adelic point x ∈ X(Ak)
we obtain for each v ∈ Ωk a kv-point by restricting along the projection

Ak → kv.

We will denote this point by xv. All but finitely many of these will lift to Ov-points.

We define a pairing, the Brauer-Manin pairing,

<,>: X(Ak)×Br(X) → Q/Z
given by

< (xv), b >=
∑
v∈S

invk,v x
∗
v(b).

Proposition 4.4. The pairing constructed above exists, in other words the sum is finite.

Proof. By 4.2 there is a f ∈ Ok so that the stack X lifts to a stack X̃ over Ok[f
−1]. We can

further assume that the Brauer class lifts to X̃ by 4.3. There are only finitely many primes
outside Spec(Ok[f

−1]) and the Brauer class x∗
v(b) vanishes for each v ∈ Spec(Ok[f

−1]). The
reason is that the Brauer group Br(Ov) = 0 is trivial. □

For a subset B ⊆ Br(X) we denote by X(Ak)
B the B-fixed point locus (or B-orthogonal

locus) of this pairing. It is the subset

X(Ak)
B := {x ∈ X(Ak) |< b, x >= 0, ∀ b ∈ B}.

4.4. Continuity of the Brauer-Manin pairing.

Proposition 4.5. Let kv be a local field. Let X a finite type liftable algebraic stack over kv.
Let b ∈ Br(X). Then the map

X(kv) → Q/Z
given by

x 7→ inv(x∗(b))

is locally constant.

Proof. First assume that X is an algebraic space. Using [12, Proposition 5.4] we can find a
finite type scheme X and étale morphism f : X → X so that a point x ∈ X(kv) lifts to a
point x ∈ X. The morphism X → X is a local homeomorphism. By [34, pg. 235] there is
an open neighborhood of x on which the map

y 7→ inv(y∗f ∗b)
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is constant. The result for algebraic spaces follows.

Now suppose X is a finite type liftable algebraic stack. Fix a point x ∈ X(kv). There
is a presentation by a finite type algebraic space f : X → X such that x lifts to a point
x ∈ X(kv). By the above, there is an open subset U ⊆ X(kv) in the v-adic topology on
which the map

f ∗b : X(kv) → Q/Z
is constant. The result follows from the definition of the topology on X(kv), see subsection
2.4. □

Proposition 4.6. Let X be an algebraic stack over a number field k. Assume that X is
S-liftable and of finite type. For each b ∈ Br(X) the function

X(Ak) → Q/Z
given by

x 7→< b, x >

is locally constant.

Hence the fixed point locus

X(Ak)
b = {x |< b, x >= 0}

is closed (and open).

Proof. By 4.2, we may assume that X is defined over some Ok,T . Further we can assume
that b is defined over Ok,T by 4.3.

Let x ∈ X(Ak). By considering projections

Ak → kv

we obtain kv-points of X written xv. We can find a finite subset T ⊆ S ⊆ Ωk so that
xv ∈ X(Ov) for v ̸∈ S. For each v ∈ S we can find an open neighbourhood of xv ∈ X(kv),
denoted Uv, on which evaluation at b is constant. Then evaluation at b is constant on the
open subset ∏

v∈S

Uv ×
∏
v ̸∈S

X(Ov)
open

⊆ X(kS).

This is also open in the adelic points of X, see 2.17. □

4.5. Approximation on stacks.

Definition 4.7. Let S be a finite subset of Ωk and suppose X is a finite type algebraic
stack over k such that X⊗k kv is kv-liftable for each v ∈ S. We say that weak approximation
for X holds at S if the diagonal image of X(k) inside∏

v∈S

X(kv)

is dense when the above is equipped with the product topology.

The following theorem boils down to the work of M. Borovoi.

Theorem 4.8. Let S be a finite collection of finite places in Ωk. Let G be a connected
linear algebraic group over k. Then weak approximation holds for BG at S.
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Proof. We fix a faithful representation G ↪→ GLn. Then we have a liftable presentation

f : GLn /G → BG

by 2.2. By [6, Corollary 2.5 ], GLn is connected, weak approximation holds for GLn /G at
S. If

U ⊆
∏
v∈S

BG(kv)

is open then f−1(U) is open in
∏

v∈S GL /G(kv) and hence contains a rational point x, say.
Then f(x) is a rational point in U . □

Definition 4.9. Let S be a finite subset of Ωk and let X be a S-liftable algebraic stack
over k. If B is a subgroup of Br(X) then we say that strong approximation for X holds off
S with respect to B if the diagonal image of X(k) is dense inside X(A

�S,k
)B.

Our results below will verify this property for certain stacks, in particular for classifying
stacks of connected linear algebraic groups over k.

5. Strong approximation for quotient stacks

5.1. Some facts about SL(V ). We let V be a finite dimensional k-vector space and denote
by SL(V ) the special linear group of V .

Proposition 5.1. Let X be a smooth k-variety. Consider the projection map X×kSL(V ) →
X. Then it induces isomorphisms

(1) H0(X,Gm) ∼= H0(X ×k SL(V ),Gm),
(2) H1(X,Gm) ∼= H1(X ×k SL(V ),Gm),
(3) H2(X,Gm) ∼= H2(X ×k SL(V ),Gm).

Proof. For a variety, Y over k, the Leray spectral sequence for the morphism Y → k has

Epq
2 = Hp(k,Hq(Y ⊗k k,Gm)) =⇒ Hp+q(Y,Gm).

The result will follow by comparison of spectral sequence once we have assembled some
results on the cohomology (X × SL(V ))⊗k k. Now

H0(X ⊗k k,Gm) ∼= H0((X × SL(V ))⊗k k,Gm)

by [36, 6.5]. Note that in the notation of Sansuc, U(SL(V )) := k[SL(V )]×/k× = 0. This
follows from [35, theorem 3], using the fact that SL(V ) is equal to it’s derived subgroup.
Further,

H1(X ⊗k k,Gm) ∼= H1((X × SL(V ))⊗k k,Gm)

by [36, 6.6] and [36, 6.9]. Note that SL(V ⊗k k) is rational. It remains to show that

H2(X ⊗k k,Gm) ∼= H2((X × SL(V ))⊗k k,Gm).

In view of the proved result for H1, it suffices to show that

H2(X ⊗k k, µn) ∼= H2((X × SL(V ))⊗k k, µn)

using the Kummer sequence

1 → µn → Gm → Gm → 1
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and the fact that the groups in question are torsion. Using the comparison theorem for
cohomology, see [2, Exp. XI], we have

H1(SL(Vk), µn) = H2(SL(Vk), µn) = 0

by [28, pg. 148, Thm 6.5] and the universal coefficient theorems. The equality of H2 with
µn-coefficients results from the Kunneth formula. The final result is deduced by comparison
of Leray spectral sequences for X → k and X × SL(V ) → k. □

Corollary 5.2. In the above situation, consider the projection map f : X × SL(V ) → X.
Then we have

(1) f∗Gm
∼= Gm,

(2) R1f∗Gm = 0,
(3) R2f∗Gm = 0.

Proof. The etale site has enough points so the statements can be checked on stalks. Let
x : Spec(k) → X be a geometric point. Denote by Osh

X,x the strict Henselisation of the local
ring at the image of x. We have a diagram

Spec(Osh
X,x)× SL(V ) X × SL(V )

Spec(Osh
X,x) X.

p

We have p−1Gm = Gm, [37, Tag 04DI]. The stalks can be computed as

H i(Spec(Osh
X,x)× SL(V ),Gm),

see [37, Tag 03Q7]. Furthermore, let Nx be the category of affine étale neighbourhood of
x. So that

Spec(Osh
X,x)× SL(V ) = lim

U∈Nx

N × SL(V ),

so we may apply [2, Expose V, 5.7-5.8]. In view of the isomorphisms

H i(U × SL(V ),Gm) ∼= H i(U,Gm)

we obtain

H i(Spec(Osh
X,x)× SL(V ),Gm) ∼= H i(Spec(Osh

X,x),Gm) = 0 i = 1, 2

using the fact that Osh
X,x is local and [27, pg. 148,2.13]. The first assertion is proved in a

similar way using the definition of the pushforward of sheaf on the étale topos. □

5.2. Strong Approximation. We will equip Artin stacks with their big étale site. This
has the advantage over the lisse-etale site in that it is functorial. Recall that we have defined
the Brauer group of a stack to be the cohomological Brauer group in this topology.

In this section G/k will be a connected linear algebraic group. Fix a faithful represen-
tation G ↪→ SL(V ). Such a representation always exists. For example, in view of the fact
that G is linear we can find a representation G ↪→ GLn. Then we may compose it with the
representation GLn ↪→ SL2n given by

M 7−→
(
M 0
0 (M t)−1

)
.

https://stacks.math.columbia.edu/tag/04DI
https://stacks.math.columbia.edu/tag/03Q7
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Given a quotient stack of the form [Y/G] we may write it as an SL(V )-quotient

[Y/G] ∼= [Y ×G SL(V )/SL(V )],

see 2.1. The object X := Y ×G SL(V ) always exists as an algebraic space. If G is reductive
and Y is quasi-projective with a linearised action then the quotient will be a scheme, see
[30].

Proposition 5.3. Let X be a smooth variety with an action of SL(V ). Consider the
morphism

f : X → [X/SL(V )].

Then
f ∗ : Br([X/SL(V )]) → Br(X)

is an isomorphism.

Proof. We have a cartesian diagram

X × SL(V ) X

X [X/SL(V )] .

The top horizontal map is the action and the left vertical map is projection. There is an
automorphism of X×SL(V ) that switches these, so both maps are smooth. We may apply
the spectral sequence [37, Tag 06XJ] to both of these maps. The spectral sequence for
X → [X/SL(V )] has

Epq
1 = Hq(X × SL(V )×p,Gm).

The spectral sequence for X × SL(V ) → X has

Epq
1 = Hq(X × SL(V )×p+1,Gm).

The induced maps

Hq(X × SL(V )×q,Gm) → Hq(X × SL(V )×q+1,Gm).

are induced by projections so the result follows from 5.1. □

Using 2.2 every adelic point of [Y ×G SL(V )/SL(V )] lifts to Y ×G SL(V ). In other words,
the presentation

Y ×G SL(V ) → [Y ×G SL(V )/SL(V )]

is S-liftable for various S.

Recall from earlier in this section, given a linear algebraic group G we can always find a
faithful representation

G ↪→ SL(V ).

Theorem 5.4. Let G be a linear algebraic group. Fix a faithful representation

G ↪→ SL(V ).

Let S be a finite subset of Ωk. Suppose Y ×GSL(V ) is smooth and that strong approximation
holds for Y×GSL(V ) holds off S with respect to Br(Y×GSL(V )). Then strong approximation
holds for [Y ×G SL(V )/SL(V )] off S with respect to Br([Y ×G SL(V )/SL(V )]).

https://stacks.math.columbia.edu/tag/06XJ
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Proof. In what follows we will write f for the presentation

Y ×G SL(V ) → [Y ×G SL(V )/SL(V )].

We will abuse notation and write f for the map induced on R-points for various rings R.

Let x ∈ [Y ×G SL(V )/SL(V )](A
�S,k

) be a point orthogonal to Br([Y ×G SL(V )/SL(V )]).

We can lift it to a point y ∈ Y ×G SL(V )(A
�S,k

). In view of the above corollary, if x is

orthogonal to Br([Y ×G SL(V )/SL(V )]) then y is orthogonal to Br(Y ×G SL(V )) as the
Brauer-Manin pairing is easily seen to be functorial, i.e

< x, b >=< y, f∗b > .

If U is an open neighbourhood of x in the adelic topology then f−1(U) is an open neigh-
bourhood of y in the adelic topology. Then there a k-point t ∈ Y ×G SL(V )(k) in f−1(U).
It follows that f(t) is a k-point in U . □

To generate examples to which this theorem applies, we may use the ideas of [8]. A
variety with X with G-action is said to be groupic if there is an dense equivariant open
subset of X that is isomorphic to G as a G-variety. It is easy to see that if X is G-groupic
then X ×G SL(V ) is SL(V ) -groupic as

G×G SL(V ) ∼= SL(V ).

The main theorem of [8, 1.3] can be used to generate examples. In this vein, quotients of
toric varieties by tori can be use to provide examples.

We change direction now and consider classifying stacks, which are not covered by the
above examples. This result is in contrast to the above result for quotient stacks as strong
approximation, as we have defined it, does not hold for homogeneous spaces in general. In
[7, 6.1] and [11, 3.7(b)] a kind of equivariant strong approximation theorem for homogeneous
spaces is proved which is exactly what is needed in order to prove strong approximation for
classifying spaces.

Theorem 5.5. Let G be a connected linear algebraic group. Let S be a finite set of places
of k that contains at least one finite place and all archimedean places. Then strong approx-
imation for BG off S with respect to Br(BG) holds.

Proof. Fix a faithful representation

G ↪→ SL(V ).

Let X = G \ SL(V ) which is smooth. Then there is a presentation

f : X → [X/SL(V )] ∼= BG.

The isomorphism is from 2.1. We will abuse notation and write f for the map induced on
R-points for various rings R.

Now consider a point x̄ ∈ BG(AS)
Br(BG) which can be lifted to a point x ∈ X(AS)

Br(X),
using 5.3 and 2.2.

Let U be an adelic neighbourhood of x̄ so that f−1(U) is a neighbourhood of x. Observe
that strong approximation holds for SL(V ), see [24] and [32]. So we may apply [7, Theorem
6.1]. By this theorem we can find a rational point t ∈ X(k) and a point g ∈ G(kS) so that
g.t belongs to f−1(U). Now, f(t) = f(gt) ∈ U . Further, although gt is not k-rational, we
have that f(gt) = f(t) ∈ U is. Hence the result. □
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5.3. A counterexample for disconnected groups. The aim of this subsection is to
show that the connectedness assumption is essential in 5.5. We let ξ ∈ C be a primitive
cube root of unity. In this subsection k = Q(ξ). Our specific goal is the following theorem.

Theorem 5.6. Let k = Q(ξ). Let S be the set of archimedean (i.e infinite) places of k.
Then strong approximation fails for Bµ2 with respect to Br(Bµ2) off S.

The proof will be a lengthy computation. The calculation will show that the failure of
strong approximation holds more generally, that is, one could prove similar results for other
µn. We leave these generalisations to the reader. We do note that strong approximation with
respect to the Brauer group is known for Gm, see [9], which should be seen as motivation
for the computations that follow. We prove and recall some preliminary results before
presenting the proof of the theorem at the end of the subsection.

There is a faithful representation µ2 ↪→ Gm and the quotient is Gm = Gm/µ2. It follows
that Bµ2 = [Gm/Gm] where the action is via the square map

Gm → Gm z 7→ z2.

We write f : Gm → Bµ2 for the corresponding liftable presentation.

Lemma 5.7. In the above situation, let R be a ring over which every Gm-torsor is trivial,
for example the adele ring (see 2.2) or a local ring. Then every R-point p ∈ Bµ2(R) lifts
to Gm. Further two R-points of Gm say p1 and p2 ∈ R× satisfy

f(p1) = f(p2)

if and only if there is a λ ∈ R× with λ2p1 = p2.

Proof. The proof is straightforward. □

To proceed we need to describe the image of the map

f ∗ : Br(Bµ2) → Br(Gm).

The Brauer group of Bµ2 has been described in [1, §3] and also [26, §4]. We recall their
results and refer to the articles for proofs. There is a split short exact sequence

0 → Br(k) → Br(Bµ2) → H1(k, µ2) → 0.

One can describe the splitting in the following way. We have the usual Kummer sequence
for H1:

0 → {±1} → k× (−)2→ k× → H1(k, µ2) → 1.

Given a non-square d ∈ k then consider the matrix(
0 d
1 0

)
.

It has order two in PGL2 so that it defines an action of µ2 on the matrix algebra M2×2. The
corresponding Azumaya algebra on Bµ2 is the splitting. We denote it by A(d). Technically,
we have defined the Brauer group of an algebraic stack to be it’s cohomological Brauer
group, however, the Azumaya algebra definition agrees with cohomological definition in
this case, see [26].

Next we recall the description of the Brauer group of Gm = Spec(k[t, t−1]). The general
description can be found in [18]. However, we really only a description of the 2-torsion
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and 3-torsion parts of the Brauer group. This can be made more explicit by using cyclic
algebras. The 2-torsion is generated by the 2-torsion in Br(k) and the cyclic algebras

(d, t)−1 where d ∈ k×

and t is the parameter on Gm. Likewise the 3-torsion is generated 3-torsion in Br(k) and
the cyclic algebras

(d, t)ξ where d ∈ k×,

see [20, 2.7]. We claim that f ∗A(d) = (d, t)−1 so that the pullback map on 2-torsion is
surjective. The reason is that the algebra f ∗A(d) is the quotient of the trivial algebra on
Gm by the µ2-action defined by the matrix described above. But this is exactly a cyclic
algebra, see [19, 2.5]. Technically the calculation is for fields but this makes no difference
by [18, 3.1].

Further, modulo Br(k), the image of f ∗ is entirely 2-torsion.

We write inv(α, β)ω ∈ Q/Z for the Hasse invariant of a cyclic algebra over a local or
global field. We will make frequent use of the fact that (α, βγ)ω = (α, β)ω + (α, γ)ω in the
Brauer group, see [16, Lemma 4, pg. 72].

We will need the following technical lemma.

Lemma 5.8. Recall that k = Q(ξ) where ξ is a primitive cube root of unity. There is a
finite place v ∈ Ωk, an integer n ∈ Ok and an element x ∈ k×

v so that

(1) inv(n, x)ξ =
2
3

(2) inv(d, x)−1 = 0 for all d ∈ k.

Proof. Let n ∈ Ok be a non-cube. Then consider L the splitting field of X3 − n. There are
only finitely many primes of Ok that ramify in L, so let v be an umramified prime. If π is
a local parameter for Ov then consider the cyclic algebra A = (n, π)ξ. It satisfies

invA =
1

3
.

We take x = π2. Then (n, x)ξ has the same Brauer class as A2 so the first property
follows. Further the element (d, π)−1 is 2 -torsion for all d ∈ k. Hence the second property
follows. □

Proof. (of 5.6)

We have a previously described lifting presentation

f : Gm → Bµ2.

We let n, v and x be as in the previous lemma. Let U be the subset of Gm(Ak,S) consisting
of (xw) ∈ Gm(Ak,S) so that

inv(xw)
∗(n, t)ξ = 2/3.

By [34, 8.2.11] the set U is open. Next we show that U is non-empty. Indeed consider the
idele defined by

xw =

{
1 w ̸= v

x w = v.
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As Br(Ow) = 0, it follows by the previous lemma that (xw) ∈ U . Let B be the 2-torsion
subgroup of Br(Gm). Recall that it is generated by cyclic algebras of the form (d, t)−1 with
d ∈ k×. By the lemma, we have

(①) Gm(Ak,S)
B ∩ U ̸= ∅.

We claim that

(②) y2U ∩Gm(k) = ∅ ∀y ∈ Gm(Ak,S).

To see this take x ∈ U then

inv((n, y2x)ξ) = 2 inv((n, y)ξ) + inv((n, x)ξ) ̸= 0

as inv((n, y)ξ) is 3-torsion. The result follows from the fact that elements of Gm(k) are
orthogonal to Br(Gm).

Consider the open set f(U) inside Bµ2(Ak,S). As the pullback map

f ∗ : Br(Bµ2) → Br(Gm)

is surjective on 2-torsion and Br(Bµ2) is generated by the image of Br(k) and the 2-torsion
subgroup, we see that

f(U) ∩Bµ2(Ak,S)
Br(Bµ2) ̸= ∅

by ①.

On the other hand, it is non-empty and contains no rational points. To see this, if p is a
k-rational point of Bµ2 then it lifts to a k-rational point of Gm by 5.7. Further two points
p and x of Gm(Ak,S) satisfy f(p) = f(x) if and only if there is a y ∈ Gm(Ak,S) so that
y2p = x, by 5.7. But such an x can never be in U by ②.

It follows that f(U) has no k-rational points. □
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