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1 Spectra

A spectrum X consists of pointed (level) simplicial sets Xn, n ≥ 0 together with
bonding maps σ : S1 ∧Xn → Xn+1.

Amap f : X → Y of spectra consists of pointed maps f : Xn → Y n which
respect structure in the sense that the diagrams

S1 ∧Xn σ //

S1∧f

��

Xn+1

f

��
S1 ∧ Y n

σ
// Y n+1

commute. The corresponding category will be denoted by Spt. This category
is complete and cocomplete.

Examples:

• Suppose that Y is a pointed simplicial set. The suspension spectrum Σ∞Y
consists of the pointed sets

Y, S1 ∧ Y, S1 ∧ S1 ∧ Y, . . . , Sn ∧ Y, . . .

where Sn = S1 ∧ · · · ∧ S1 (n-fold smash power). The bonding maps of
Σ∞Y are the canonical isomorphisms

S1 ∧ Sn ∧ Y ∼= Sn+1 ∧ Y.

There is a natural bijection

hom(Σ∞Y, X) ∼= hom(X, Y 0),

so that the suspension spectrum functor is left adjoint to the “level 0”
functor X 7→ X0.

• S = Σ∞S0 is the sphere spectrum.

• X = spectrum and K = pointed simplicial set: there is a spectrum X ∧K
with

(X ∧K)n = Xn ∧K

and having bonding maps

σ ∧K : S1 ∧Xn ∧K → Xn+1 ∧K.

Σ∞K ∼= S ∧K. The suspension of a spectrum X is the spectrum X ∧S1.

• The fake suspension ΣX of X has level spaces S1∧Xn and bonding maps

S1 ∧ σ : S1 ∧ S1 ∧Xn → S1 ∧Xn+1.
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• The fake loop spectrum ΩY has level spaces ΩY n and (adjoint) bonding
maps

Ωσ∗ : ΩY n → Ω2Y n+1.

The fake loops functor Y 7→ ΩY is right adjoint to the fake suspension
functor X 7→ ΣX.

• Suppose that X is a spectrum and K is a pointed simplicial set. There is
a spectrum hom∗(K, X) with

hom∗(K, X)n = hom∗(K, Xn),

and with bonding map

S1 ∧ hom∗(K, Xn)→ hom∗(K, Xn+1)

adjoint to the composite

S1 ∧ hom∗(K, Xn) ∧K
S1∧ev−−−−→ S1 ∧Xn σ−→ Xn+1.

There is a natural bijection

hom(X ∧K, Y ) ∼= hom(X,hom∗(K, Y )).

• Suppose that X is a pointed simplicial set. Write Z̃(X) for the kernel of
the map Z(X) → Z(∗). Then Hn(X, Z) = πn(Z(X), 0) and H̃n(X, Z) =
πn(Z̃(X), 0) (reduced homology). There is a natural pointed map

X
η−→ Z(X)→ Z̃(X),

denoted by h for “Hurewicz”. If A is a simplicial abelian group, there is
a natural simplicial set map

γ : S1 ∧A→ Z̃(S1)⊗A =: S1 ⊗A.

The Eilenberg-Mac Lane spectrum H(A) associated to A consists of the
spaces

A, S1 ⊗A, S2 ⊗A, . . .

with bonding maps

S1 ∧ (Sn ⊗A)
γ−→ S1 ⊗ (Sn ⊗A) ∼= Sn+1 ⊗A.

Suppose that X is a spectrum and n ∈ Z. The shifted spectrum X[n] is the
spectrum with

X[n]m =

{
∗ m + n < 0
Xm+n m + n ≥ 0
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Remarks: 1) There is a natural map

σ : ΣX → X[1]

defined by the bonding maps, and it’s easy to see that this map is a stable
equivalence. It’s more interesting, but still classical (the argument involves a
telescope construction) to show that there is a stable equivalence ΣX ' X ∧S1.
Thus, all flavours of suspension coincide with shift up to stable equivalence.

The adjoint map
σ∗ : X → ΩX[1]

is a stable equivalence for a spectrum X consisting of Kan complexes Xn.
2) There is a natural bijection

hom(X[n], Y ) ∼= hom(X, Y [−n])

and of course X[n][−n] ∼= X, so that all shift operators are invertible.
3) There is a natural bijection

hom(Σ∞K[−n], Y ) ∼= hom(K, Y n),

so that the nth level functor Y 7→ Y n has a left adjoint.
4) Given a spectrum X, the nth layer LnX is the spectrum

X0, . . . , Xn, S1 ∧Xn, S2 ∧Xn, . . .

There are obvious maps LnX → Ln+1X → X and a natural isomorphism

lim−→
n

LnX ∼= X.

The functor X 7→ LnX is left adjoint to truncation up to level n. The system
of maps

Σ∞X0 = L0X → L1X → . . .

is called the layer filtration of X. Here’s an exercise: show that there are pushout
diagrams

Σ∞(S1 ∧Xn)[−n− 1] //

σ∗

��

LnX

��
Σ∞Xn+1[−n− 1] // Ln+1X

2 Presheaves of spectra

A presheaf of spectra X is a functor

X : Cop → Spt.
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Alternatively, X consists of pointed simplicial presheaves Xn, n ≥ 0 together
with bonding maps

σ : S1 ∧Xn → Xn+1, n ≥ 0.

Here, S1 is identified with the constant pointed simplicial presheaf U 7→ S1.
A map f : X → Y of presheaves of spectra consists of pointed simplicial

presheaf maps f : Xn → Y n, n ≥ 0, which respect structure in the obvious
sense. Write Spt(C) for the category of presheaves of spectra on C.

Examples:
1) If I is a small category, then the category of I-diagrams X : I → Spt is a
category of presheaves of spectra on Iop, where Iop has the trivial topology. In
particular, the ordinary category Spt of spectra is the category of presheaves
of spectra on the one-object, one-morphism category.
2) A spectrum Y (of pointed simplicial sets) determines an associated constant
presheaf of spectra Γ∗Y on C, where

Γ∗Y (U) = Y,

and every morphism φ : V → U induces the identity morphism Y → Y . We
shall often write Y = Γ∗Y when there is no possibility of confusion. The sphere
spectrum S in Spt(C) is the constant object Γ∗S associated to the ordinary
sphere spectrum.

The functor Y 7→ Γ∗Y is left adjoint to the global sections functor Γ∗ :
Spt(C)→ Spt, where

Γ∗X = lim←−
U∈C

X(U).

3) If A is a sheaf (or presheaf) of abelian groups, the Eilenberg-Mac Lane
presheaf of spectra H(A) is the presheaf of spectra underlying the suspension
object

A,S1 ⊗A,S2 ⊗A, . . .

in the category of presheaves of spectra in simplicial abelian groups. Note that
, as a simplicial presheaf, Sn ⊗A = K(A,n).

If j : K(A,n)→ FK(A,n) is a globally fibrant model of K(A,n) then there
are natural isomorphisms

πjΓ∗FK(A,n) =

{
Hn−j(C, A) 0 ≤ j ≤ n

0 j > n.

We’ll see later that these isomorphisms assemble to give an identification of the
stable homotopy groups of global sections of a (stably) fibrant model for H(A)
with the cohomology of C with coefficients in A.
Slogan: All sheaf cohomology groups are stable homotopy groups.
4) More generally, every chain complex (bounded or unbounded) D determines
a presheaf of spectra H(D), which computes the hypercohomology of C with
coefficients in D, via computing stable homotopy groups of global sections of a
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fibrant model. Spectrum objects in presheaves of simplicial R-modules give a
model for the full derived category.
5) There is a presheaf of spectra K on Sch |S , called the algebraic K-theory
spectrum, such that πjK(U) is the jth algebraic K-group Kj(U). The con-
struction of this object is still rather unsatisfactory, after all these years: in its
most general form, it starts with a pseudo-functor on S-schemes taking values
in pseudo-simplicial symmetric monoidal categories [6], [7]. I will give a simpler
version of this construction later in these lectures.

3 Model structures

For much of what follows C will be an arbitrary small Grothendieck site.
Write s∗ Pre(C) for the category of pointed simplicial presheaves ∗ → X,

with base point preserving maps

∗

����
��
��

��1
11

11
1

X
f
// Y

Recall that this category has a proper closed simplicial model structure for which
a map f as above is a local weak equivalence (resp. global fibration, cofibration)
if and only if the underlying map f : X → Y of simplicial presheaves is a local
weak equivalence (resp. global fibration, cofibration). The function complex
hom(X, Y ) is defined in simplicial degree n by

hom(X, Y )n = all maps X ∧∆n
+ → Y

(Z+ always means Z union a disjoint base point). In particular a cofibration
of simplicial presheaves is a map which is a monomorphism in each simplicial
degree and each section. In the presence of a meaningful theory of stalks, a map
f : X → Y is a local weak equivalence if and only if it induces weak equivalences
f : Xx → Yx of simplicial sets in all stalks.

Warning: A map f of pointed simplicial presheaves is a local weak equivalence
if and only if it induces an isomorphism on sheaves of path components, and
induces isomorphisms

π̃n(X|U , x)→ π̃n(Y |U , f(x))

for all U ∈ C and all (local) choices of base points x ∈ X(U). It is not sufficient
to check that the obvious maps π̃n(X, ∗) → π̃n(Y, ∗) (based at the canonical
point ∗ → X) are isomorphisms.

Say that a map f : X → Y of presheaves of spectra is a strict weak equiv-
alence (respectively strict fibration) if all maps f : Xn → Y n are local equiva-
lences (respectively global fibrations).

A cofibration i : A→ B of Spt(C) is a map for which
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• i : A0 → B0 is a cofibration, and

• all maps
(S1 ∧Bn) ∪(S1∧An) An+1 → Bn+1

are cofibrations.

One can show that i : A → B is a cofibration of spectra if and only if all
maps An → Bn and all maps S1 ∧ (Bn/An) → Bn+1/An+1 are cofibrations of
pointed simplicial sets.

The function complex hom(X, Y ) for presheaves of spectra X, Y is defined
in simplicial degree n in the usual way:

hom(X, Y )n = all maps X ∧∆n
+ → Y.

Lemma 3.1. With these definitions, the category sPre(C) satisfies the axioms
for a proper closed simplicial model category.

The proof is an exercise. Of course, Lemma 3.1 is just an opening act.
A presheaf of spectra X has presheaves πnX of stable homotopy groups,

defined by
U 7→ πnX(U).

Write π̃nX for the sheaf associated to the presheaf πnX. The sheaves π̃nX,
n ∈ Z, are the sheaves of stable homotopy groups of X.

Say that a map f : X → Y of presheaves of spectra is a stable equivalence if
it induces isomorphisms

π̃nX
∼=−→ π̃nY

for all n ∈ Z.
Observe that every strict equivalence is a stable equivalence.
Say that p : Z → W is a stable fibration if it has the right lifting property

with respect to all maps which are cofibrations and stable equivalences.

Remark 3.2. These definitions of cofibration, stable equivalence and stable fi-
bration are direct generalizations of (and specialize to) corresponding definitions
given by Bousfield and Friedlander [1] for the category of spectra. In particular,
a map i : A→ B is a cofibration of presheaves of spectra if and only if all maps
A(U)→ B(U) are cofibrations of spectra.

Theorem 3.3. With the definitions of cofibration, stable equivalence and stable
cofibration given above, the category Spt(C) satisfies the axioms for a proper
closed simplicial model category. This model structure is cofibrantly generated.

Lemma 3.4. A map p : X → Y is a stable fibration and a stable equivalence
if and only if all maps p : Xn → Y n are trivial global fibrations of simplicial
presheaves.
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Proof. One implication is a consequence of the strict model structure.
The other is a factorization argument. Suppose that p is a stable fibration

and a stable equivalence. Then p has a factorization

X
j //

p
  B

BB
BB

BB
B W

q

��
Y

where j is a cofibration and q is a trivial strict fibration. But then j is stable
equivalence as well as a cofibration, so that the lifting exists in the diagram

X
1 //

j

��

X

p

��
W q

//

>>

Y

so that p is a retract of q and is therefore a trivial strict fibration.

Suppose that α is a cardinal number. Say that a presheaf of spectra A
is α-bounded if all pointed sets An

m(U), m,n ≥ 0, U ∈ C satisfy |An
m(U)| < α.

Observe that every presheaf of spectra X is a union of its α-bounded subobjects.
Now suppose that α is an infinite cardinal such that |Mor(C)| < α.
We have to know something basic about cofibrations:

Lemma 3.5. Suppose that i : X → Y is a cofibration of spectra, and that A is
a subobject of Y . Then the induced map A ∩X → A is a cofibration of spectra.

Proof. If A ⊂ Y , certainly all maps An ∩Xn → An are cofibrations, and there
are commutative diagrams

S1 ∧ (An/(An ∩Xn)) //

��

An+1/(An+1 ∩Xn+1)

��
S1 ∧ Y n/Xn // Y n+1/Xn+1

in which the vertical maps are cofibrations.

The next result asserts that the stably trivial cofibrations satisfy a “bounded
cofibration condition”:

Lemma 3.6. Suppose given a cofibration i : X → Y which is a stable equiv-
alence, and suppose that A is an α-bounded subobject of Y . Then there is an
α-bounded subobject B of Y such that A ⊂ B and the cofibration B ∩X → B is
a stable equivalence.
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Proof. Note that π̃nZ = 0 if and only if for all x ∈ πnZ(U) there is a covering
sieve φ : V → U such that φ∗(x) = 0 for all φ in the covering.

The sheaves π̃n(Y/X) are trivial (sheafify the natural long exact sequence
for a cofibration), and

π̃n(Y/X) = lim−→
C

π̃n(C/C ∩X)

where C varies over all α-bounded subobjects of Y . The list of elements of all
x ∈ πn(A/A ∩ X)(U) is α-bounded. For each such x there is an α-bounded
subobject Bx ⊂ X such that

x 7→ 0 ∈ π̃n(Bx/Bx ∩X).

It follows that there is an α-bounded subobject

B1 = A ∪ (∪xBx)

such that all x 7→ 0 ∈ π̃n(B1/B1 ∩X).
Write A = B0. Then inductively, we can produce an ascending sequence

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .

of α-bounded subobjects of Y such that all presheaf homomorphisms

πn(Bi/Bi ∩X)→ π̃n(Bi+1/Bi+1 ∩X)

are trivial. Set B = ∪iBi. Then B is α-bounded and all sheaves π̃n(B/B ∩X)
are trivial.

Lemma 3.7. The class of stably trivial cofibrations has a generating set, namely
the set I of all α-bounded stably trivial cofibrations.

The proof of this result amounts to the verification of a “solution set condi-
tion”, with the category theory language excised.

Proof. By Lemma 3.4, the class of cofibrations of Spt(C) is generated by the set
J of cofibrations

Σ∞A[−n]→ Σ∞B[−n]

which are induced by α-bounded cofibrations A → B of pointed simplicial
presheaves.

Suppose given a diagram

A //

j

��

X

f

��
B // Y
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where j is a cofibration, B is α-bounded, and f is a stable equivalence. Then
f has a factorization f = q · i where i is a cofibration and q is a strictly trivial
fibration, hence a stable equivalence, and the lifting exists in the diagram

A //

j

��

X

i

��
Z

q

��
B //

>>

Y

The cofibration i : X → Z is a stable equivalence, and the image θ(B) ⊂ Z is
α-bounded, so there is an α-bounded subobject D ⊂ Z with θ(B) ⊂ D such
that D ∩X → D is a stable equivalence. It follows that there is a factorization

A //

j

��

D ∩X //

��

X

f

��
B // D // Y

of the original diagram through an α-bounded stably trivial cofibration.
In particular, if f is a stable equivalence which has the right lifting property

with respect to all α-bounded stably trivial cofibrations, then f has the right
lifting property with respect to all cofibrations.

Now suppose that i : C → D is a stably trivial cofibration. Then i has a
factorization

C
j //

i   @
@@

@@
@@

E

p

��
D

where j is a cofibration in the saturation of the set of α-bounded stably trivial
cofibrations and p has the right lifting property with respect to all α-bounded
stably trivial cofibrations. The map j is a stable equivalence since the class
of stably trivial cofibrations is closed under pushout (by a long exact sequence
argument) and composition. Then p is a stable equivalence and has the right
lifting property with respect to all α-bounded cofibrations; p therefore has the
right lifting property with respect to all cofibrations. It follows that i is a retract
of the map j.

Proof of Theorem 3.3. The model structure and the cofibrant generation follow
from Lemmas 3.4 – 3.7. The argument for the simplicial model axiom SM7
is standard: one shows by induction on n that if i : A → B is a stably trivial
cofibration then all maps

i ∧ ∂∆n
+ : A ∧ ∂∆n

+ → B ∧ ∂∆n
+
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are stable equivalences. Left and right properness are consequences of long exact
sequences in stable homotopy groups.

Since the stable model structure on Spt(C) is cofibrantly generated there is
a functorial stably fibrant model construction.

j : X → LX

Note that if X and Y are stably fibrant, any stable equivalence f : X → Y
must be a strict equivalence — this is a consequence of Lemma 3.4. It follows
that a map f : X → Y of arbitrary presheaves of spectra is a stable equivalence
if and only if the induced map LX → LY is a strict equivalence, and so a map
f : X → Y is a stable equivalence if and only if it is an “L-equivalence”.

We also have the following:

A4 The functor L preserves strict equivalences.

A5 The maps jLX , LjX : LX → LLX are strict weak equivalences.

A6′ Stable equivalences are preserved by pullback along stable fibrations.

Here is a recognition principle for stable fibrations:

Theorem 3.8. A map p : X → Y of Spt(C) is a stable fibration if and only it
is a strict fibration and the diagram

X
j //

p

��

LX

Lp

��
Y

j
// LY

is strictly homotopy cartesian.

The following result encapsulates one of the basic ideas in the proof of The-
orem 3.8. The other main ingredient is the properness of the stable model
structure.

Lemma 3.9. Suppose that p : X → Y is a strict fibration, and that the maps
j : X → LX and j : Y → LY are strict equivalences. Then p is a stable
fibration.

Proof. Consider the lifting problem

A
α //

i

��

X

p

��
B

β
//

>>

Y
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There is a diagram

LA
Lα //

jα ''OOOOOO

Li

��

LX

Lp

��
Z

pα

77nnnnnn

π

��
LB //

jβ ''OOOOOO LY

W
pβ

77nnnnnn

where jα, jβ are strictly trivial cofibrations and pα, pβ are strict fibrations. There
is an induced diagram

A //

i

��

Z ×LX X //

π∗

��

X

p

��
B // W ×LY Y // Y

and the lifting problem is solved if we can show that π∗ is a strict weak equiva-
lence. But there is finally a diagram

LA
jα //

Li

��

Z

π

��

Z ×LX X
proo

π∗

��
LB

jβ

// W W ×LY Ypr
oo

The maps Li, jα and jβ are strict weak equivalences so that π is a strict weak
equivalence. The maps pr are strict weak equivalences by right properness and
the assumptions on X and Y . It follows that π∗ is a strict weak equivalence.

Corollary 3.10. Suppose that p : X → Y is a strict fibration between stably
fibrant objects. Then p is a stable fibration.

Proof of Theorem 3.8. Suppose that p is a strict fibration and that the diagram

X
j //

p

��

LX

Lp

��
Y

j
// LY

is strictly homotopy cartesian. The map Lp has a factorization Lp = q · i where
q : Z → LY is a stable fibration and i : LX → Z is a cofibration and a stable
equivalence. Then i is a strict equivalence since LX and Z are stably fibrant.
The pullback q∗ : Y ×LY Z → Y is a stable fibration, and the induced map
θ : X → Y ×LY Z is a strict equivalence since the square is strictly homotopy
cartesian. Then p is a stable fibration by Lemma 3.9.
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Suppose that p is a stable fibration, and factorize the map Lp as Lp = q · i
as above, ie. so that q : Z → LY is a stable fibration and i is a stably trivial
cofibration. Then the induced map θ : X → Y ×LY Z is a stable equivalence
since j pulls back to a stable equivalence along q, and in fact determines a stable
equivalence between stably fibrant objects of Spt(C)/Y . The map θ is therefore
a strict equivalence.

Lemma 3.11. Suppose that p : X → Y is a stable fibration. Then the diagrams

Xn
σ∗ //

p

��

ΩXn+1

Ωp

��
Y n

σ∗
// ΩY n+1

are strictly homotopy cartesian.

Proof. Since p is a stable fibration, any stably trivial cofibration θ : A → B
induces a homotopy cartesian diagram

hom(B,X)
p∗ //

θ∗

��

hom(B, Y )

θ∗

��
hom(A,X)

p∗
// hom(A, Y )

If θ : A → B is a stable equivalence between cofibrant objects, then the
diagram above is still homotopy cartesian. In effect, θ has a factorization θ = π·j
where j is a trivial cofibration and π · i = 1 for some trivial cofibration i. It
follows that the diagram above is a retract of a homotopy cartesian diagram,
and is therefore homotopy cartesian.

The diagrams of the statement arise from the stable equivalences Σ∞S1[−1−
n]→ S[−n].

Corollary 3.12. If X is stably fibrant, then all simplicial presheaves Xn are
globally fibrant and all adjoint bonding maps σ∗ : Xn → ΩXn+1 are sectionwise
weak equivalences.

Note that a map f : X → Y of globally fibrant simplicial presheaves is a
local weak equivalence if and only if it is a sectionwise weak equivalence.

In effect, every trivial global fibration is a sectionwise trivial fibration, and
every map f : X → Y between globally fibrant simplicial presheaves can be
factored f = p · j where p is a global fibration and j is a section of a trivial
global fibration. This follows from a standard construction: form the pullback

X ×Y Y I
pr //

d0∗

��

Y I
d1 //

d0

��

Y

X
f

// Y

13



where Y I = hom(∆1, Y ). Then p = d1 · pr and j : X → X ×Y Y I is induced
by the constant homotopy s0 : Y → Y I , and is therefore a section of the trivial
fibration d0∗.

Proposition 3.13. A presheaf of spectra X is stably fibrant if and only if all
level objects Xn are globally fibrant and all adjoint bonding maps σ∗ : Xn →
ΩXn+1 are local weak equivalences.

Proof. Suppose that all Xn are globally fibrant and all σ∗ : Xn → ΩXn+1

are local weak equivalences. Then the simplicial presheaves Xn and ΩXn+1

are globally fibrant and cofibrant, so that all σ∗ are homotopy equivalences.
It follows that all spaces Xn(U) are fibrant and that all maps σ∗ : Xn(U) →
ΩXn+1(U) are weak equivalences of pointed simplicial sets, and hence that all
maps

πkXn(U)→ πk−nX(U)

taking values in stable homotopy groups are isomorphisms.

Suppose that j : X → LX is a stably fibrant model for X. Then all spaces
LXn(U) are fibrant and all maps LXn(U) → ΩLXn+1(U) are weak equiva-
lences, and so all maps

πkLXn(U)→ πk−nLX(U)

are isomorphisms. The map j induces an isomorphism in all sheaves of stable
homotopy groups, and so the maps j : Xn → LXn induce isomorphisms

π̃kXn → π̃kLXn

of sheaves of homotopy groups for k ≥ 0. The spectrum objects X and LX are
presheaves of infinite loop spaces, and so the maps Xn → LXn are local weak
equivalences of simplicial presheaves. In particular, j : X → LX is a strict weak
equivalence.

The result then follows from Lemma 3.9.

Remark 3.14. In other words, a stably fibrant presheaf of spectra X is a
presheaf of Ω-spectra such that each level object Xn is globally fibrant.

Write Ω∞X for the filtered colimit of the system of maps

X
σ∗−→ ΩX[1] Ωσ∗−−→ Ω2X[2] Ω2σ∗−−−→ . . .

in the category Spt(C). Write j : Y → FY for a natural strictly fibrant model.

Corollary 3.15. The presheaf of spectra

QX = FΩ∞FX

is stably fibrant, for any presheaf of spectra X.
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Proof. The natural map η : X → QX defined by the composite

X → FX → Ω∞FX → FΩ∞FX

is a stable equivalence. The object FΩ∞FX is stably fibrant, since the loop
functor Y 7→ ΩY preserves local weak equivalences between presheaves of
pointed Kan complexes.

4 Fibrations and cofibrations

Suppose that i : A → X is a levelwise cofibration of spectra with cofibre π :
X → X/A. Suppose that α : Sr → Xn represents a homotopy element such
that the composite

Sr α−→ Xn π−→ Xn/An

represents 0 ∈ πr(X/A)n. Then, by comparing cofibre sequences, there is a
commutative diagram

Sr //

α

��

CSr //

��

S1 ∧ Sr ' //

��

S1 ∧ Sr

S1∧α

��
Xn

π
// (X/A)n // S1 ∧An S1∧i //

σ

��

S1 ∧Xn

σ

��
An+1

i
// Xn+1

where CSr ' ∗ is the cone on Sr. It follows that the image of [α] under the
suspension map

πrX
n → πr+1X

n+1

is in the image of the map πr+1A
n+1 → πr+1X

n+1. We have proved the follow-
ing:

Lemma 4.1. Suppose that A → X → X/A is a levelwise cofibre sequence of
spectra. Then the sequence

πkA→ πkX → πk(X/A)

is exact.

Corollary 4.2. Any levelwise cofibre sequence

A→ X → X/A

induces a long exact sequence

. . .
∂−→ πkA→ πkX → πk(X/A) ∂−→ πk−1A→ . . .
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Proof. The map X/A → A ∧ S1 in the Puppe sequence induces the boundary
map

πk(X/A)→ πk(A ∧ S1) ∼= πk(A[1]) ∼= πk−1A.

since A ∧ S1 is naturally stably equivalent to the shifted spectrum A[1].

The long exact sequence for a cofibre sequence of spectra is natural, and
hence determines a long exact sequence

. . .
∂−→ π̃kA→ π̃kX → π̃k(X/A) ∂−→ π̃k−1A→ . . .

in sheaves of stable homotopy groups for a cofibre sequence A→ X → X/A of
presheaves of spectra. This long exact sequence is natural in cofibre sequences
of presheaves of spectra.

There is also a natural long exact sequence in stable homotopy groups

· · · ∂−→ πkF → πkE → πkB
∂−→ πk−1F → . . .

for a levelwise fibre sequence of spectra

F → E → B.

This follows (by taking appropriate filtered colimits) for the comparisons of fibre
sequences

. . . // En //

��

Bn

��
. . . // ΩEn+1 // ΩBn+1 // Fn+1 // En+1 // Bn+1

Again a naturality argument implies that there is a long exact sequence

· · · ∂−→ π̃kF → π̃kE → π̃kB
∂−→ π̃k−1F → . . .

in sheaves of stable homotopy groups for a levelwise fibre sequence of presheaves
of spectra

F → E → B.

This long exact sequence is natural in levelwise fibre sequences of presheaves of
spectra.

Corollary 4.3. Suppose that X and Y are presheaves of spectra. Then the
inclusion X ∨ Y → X × Y is a natural stable equivalence.

Proof. The sequence

0→ π̃kX → π̃k(X ∨ Y )→ π̃kY → 0

arising from the level cofibration X ⊂ X ∨ Y is split exact, as is the sequence

0→ π̃kX → π̃k(X × Y )→ π̃kY → 0

arising from the fibre sequence X → X × Y → Y . It follows that the map
X ∨ Y → X × Y induces an isomorphism in all sheaves of stable homotopy
groups.
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Corollary 4.4. The stable homotopy category Ho(Spt(C)) is additive: the sum
of two maps f, g : X → Y is represented by the composite

X
∆−→ X ×X

f×g−−−→ Y × Y
'←− Y ∨ Y

∇−→ Y.

Example 4.5. The map ×n : X → X which is multiplication by n in the stable
category is defined in the stable category by the composite

X
∆−→

∏
n

X
'←−

∨
n

X → ∇X.

and the presheaf of spectra X/n is the homotopy cofibre of this map, so that
there is a cofibre sequence

X
×n−−→ X → X/n.

Evaluating in sections gives cofibre sequences of ordinary spectra

X(U) ×n−−→ X(U)→ X/n(U),

so that X/n(U) ' X(U)/n. The multiplication by n map ×n : X → X in-
duces multiplication by n in stable homotopy groups (hence in sheaves of stable
homotopy groups), so the cofibre sequence induces short exact sequences

0→ π̃k(X)⊗ Z/n→ π̃kX → nπ̃k−1(X)→ 0,

where the thing on the right denotes the n-torsion in π̃k−1(X). In the world of
ordinary spectra, one often writes

πk(X, Z/n) = πk(X/n).

• The mod n K-groups Ki(S, Z/n) of a scheme S are the stable homotopy
groups of the spectrum K(S)/n constructed from the algebraic K-theory
spectrum K(S) of S.

• The spectrum S/n obtained from the sphere spectrum S has a special
name: it’s the mod n Moore spectrum.

Slogan: Fibre and cofibre sequences coincide in the stable category:

Lemma 4.6. Suppose that A
i−→ X

π−→ X/A is a pointwise cofibre sequence in
Spt(C), and let F be the strict homotopy fibre of the map π : X → X/A. Then
the induced map i∗ : A→ F is a stable equivalence.

Proof. Choose a strict fibration p : Z → X/A such that Z → ∗ is a strict weak
equivalence. Form the pullback

X̃
π∗ //

p∗

��

Z

p

��
X π

// X/A

17



Then X̃ is the homotopy fibre of π and the maps i : A → X and ∗ : A → Z
together determine a map i∗ : A→ X̃. We show that i∗ is a stable equivalence.

Pull back the cofibre square

A //

i

��

∗

��
X π

// X/A

along the fibration p to find a (levelwise) cofibre square

Ã //

ĩ

��

U

��
X̃ π∗

// Z

The spectrum Z is contractible, so a Mayer-Vietoris sequence argument implies
that the map Ã→ X̃ × U is a stable equivalence.

Also, from the fibre square

Ã //

��

U

��
A // ∗

we see that the map Ã → A× U is a stable equivalence. The map i∗ : A → X̃
induces a section θ : A → Ã of the map Ã → A which composes with the
projection Ã → U to give the trivial map ∗ : A → U . It follows that there is a
commutative diagram

A
i∗ //

(1A,∗)

||zz
zz

zz
zz

z

θ

��

X̃

(1X̃ ,∗)
��

A× U

pr
""E

EE
EE

EE
EE Ã

'oo ' //

��

X̃ × U

||xxxxxxxx

U

It follows that A is the stable homotopy fibre of the map Ã→ U , and so i∗ is a
stable equivalence.

Lemma 4.7. Suppose that
F

i−→ E
p−→ B

is a strict fibre sequence, where i is a levelwise cofibration. Then the induced
map γ : E/F → B is a stable equivalence.
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Proof. There is a diagram

F
i //

=

��

j′∗

��>
>>

>>
>>

> E
π //

=

��

j′

��=
==

==
==

= E/F

γ

��

=

""F
FFFFFFF

F ′

θ∗��~~
~~

~~
~~

i′ // U

θ����
��

��
��

p′ // E/F

γ
{{ww

ww
ww

ww
w

F
i

// E p
// B

where p′ is a strict fibration, j′ is a cofibration and a strict equivalence, and θ
exists by a lifting property:

E
= //

j′

��

E

p

��
U

γp′
//

θ

??

B

Then the map j′∗ is a stable equivalence by Lemma 4.6, so that θ∗ is a
stable equivalence. The map θ is a strict equivalence, so it follows from a
comparison of long exact sequences in stable homotopy groups that γ is a stable
equivalence.

5 Descent

A stably fibrant model of a presheaf of spectra F is a stably trivial cofibration
j : F → Z such that Z is stably fibrant.

I say that a presheaf of spectra F satisfies descent if some (hence any)
stably fibrant model j : F → Z induces stable equivalences F (U)→ Z(U) in all
sections (this is a sectionwise stable equivalence).

Why should we care about descent? Why should we care about stably fibrant
objects?

Suppose that Z is stably fibrant and that X is a pointed simplicial presheaf.
Then there is a spectrum hom(X, Z) with spaces at level n given by the pointed
function complexes hom(X, Zn) and with bonding maps

hom(X, Zn) σ∗−→ hom(X, ΩZn+1) ∼= Ωhom(X, Zn+1).

The maps Zn → ΩZn+1 are local weak equivalences of globally fibrant objects,
and therefore induce weak equivalences

hom(X, Zn)→ hom(X, ΩZn+1).

Also, all pointed simplicial sets hom(X, Zn) are Kan complexes. All of this
follows from the fact that pointed simplicial presheaves has a closed simplicial
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model structure. In particular, the spectrum hom(X, Z) is stably fibrant —
it’s an Ω-spectrum.

But the same general nonsense says that any local weak equivalence X → Y
of pointed simplicial presheaves induces a stable (even levelwise) weak equiva-
lence

hom(Y, Z)→ hom(X, Z).

Example: Suppose that S is some scheme and that T → S is an S-scheme
which is locally of finite type; as such it is an object of the category Sch|S of
S-schemes which are locally of finite type. Write (Sch|S)et for the “big” site of
S-schemes with the étale topology.

Let T represent a constant simplicial presheaf on the big étale site. A hy-
percover V → T is most generally defined to be simplicial presheaf map which
is a trivial Kan fibration in all stalks. It is, in any case a weak equivalence.
Examples include Čech resolutions C(U)→ T associated to étale covers U → T
of T .

A hypercover is, in any case, a local weak equivalence. Thus, if Z is a stably
fibrant presheaf of spectra on (Sch|S)et, any hypercover V → T induces a stable
equivalence

Z(T ) ∼= hom(T+, Z)→ hom(V+, Z).

If V has the good manners to be representable, and this can be arranged up to
refinement, then hom(V,Z) is a realization (or total object) of the cosimplicial
spectrum Z(Vn), and so by the usual technology of cosimplicial spaces there is
a spectral sequence with

Es,t
2 = HsπtZ(V )

which “converges” to πt−sF (T ). This is the “finite” descent spectral sequence
for Z(T ) associated to the hypercover V → T .

The most well known particular case of this general story arises when L/k
is a finite Galois extension with Galois group G, and S = Sp(k). In that case
Sp(L)→ Sp(k) is an étale covering,

L⊗k L ∼=
∏
g∈G

L

by Galois theory and the Čech resolution for the covering Sp(L) → Sp(k) can
be identified up to isomorphism with the Borel construction EG×G Sp(L). In
that case the finite descent spectral sequence for the stable homotopy groups
π∗Z(k) takes the form

Es,t
2 = Hs(G, πtZ(L))

and “converges” to πt−sZ(k). One often says that the weak equivalence

Z(k) ' hom(EG×G Sp(L), Z) = holim←−−−GZ(L)

identifies Z(k) with the homotopy fixed points for the action of G on Z(L).

The finite descent spectral sequence is not “the” descent spectral sequence,
although there’s been some wishful thinking about that over the years.
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In the most general setting, recall that if A is an abelian sheaf and if
K(A,n) → FK(A,n) is a globally fibrant model of the Eilenberg-Mac Lane
object K(A,n), then there is a natural isomorphism

πjΓ∗FK(A,n) =

{
Hn−j(C, A) 0 ≤ j ≤ n

0 j > n.

Here, Γ∗ is the global sections functor, aka. inverse limit. To see this, one can
use a cocycle argument to show that

π0Γ∗FK(A,n) ∼= [∗,K(A,n)] ∼= Hn(C, A),

and then one picks up the other homotopy groups through the identifications

FK(A,n− 1) ' ΩFK(A,n).

It follows that if H(A)→ LH(A) is a stably fibrant model of the Eilenberg-Mac
Lane spectrum H(A), then there is a natural isomorphism

πtΓ∗LH(A) ∼=

{
H−t(C, A) t ≤ 0
0 t > 0.

To go further, we need the Postnikov tower construction for a presheaf of
spectra F . In general outline, the Postnikov tower for F consists of maps F →
PnF , n ∈ Z together with compatible maps PnF → Pn−1F , such that π̃sPnF =
0 for s > n and the maps F → PnF induce isomorphisms π̃sF → π̃sPnF for
s ≤ n. The homotopy fibre of the map PnF → Pn−1F can therefore be identified
up to (local) stable equivalence with the shifted Eilenberg-Mac Lane spectrum
H(π̃nF )[−n].

The construction of the spectra PnE for a spectrum E (which construction
is natural) rests on the existence of the string of maps

S1 ∧ PnS|Em| →ΣPnS|Em| Ψ∗−−→ Pn+1ΣS|Em|
→ Pn+1S|Em+1|.

Here, ΣY is the Kan suspension of Y , which is defined by collapsing of
Y inside a cone which is built by gluing together simplices ∆n+1, one for each
simplex ∆n → Y of Y . The Kan suspension and smashing with S1 are related in
canonical ways, and in particular there is a natural isomorphism |ΣY | ∼= |S1∧Y |.

Every spectrum determines a Kan spectrum (suitably defined) through the
singular functor and realization. Finally the combinatorial cone construction
respects the Postnikov decomposition for a simplicial set, as displayed by the
map Ψ∗.

The overall point is that the natural Postnikov tower is defined for Kan spec-
tra, and the construction is transported to ordinary spectra through standard
equivalences. See [7] for details.
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Now suppose that E is a presheaf of spectra which is connective in the sense
that π̃sF = 0 for s < 0. Form the Postnikov tower

· · · → P2E → P1E → P0E,

and then replace the tower by a fibrant tower, meaning that one inductively
forms a picture

. . . // P2E //

j

��

P1E //

j

��

P0E

j

��
. . . // LP2E p

// LP1E p
// LP0E

such that each map j is a stably fibrant model and each p is a stable fibration.
Note that the fibre of the map

LPnE → LPn−1E

is a fibrant model for the shifted Eilenberg-Mac Lane spectrum H(π̃nE)[n] by
properness. Then applying global sections gives an induced tower of stable
fibrations of spectra

. . .Γ∗LP2E → Γ∗LP1E → Γ∗LP0E

with fibres given by the objects Γ∗LH(π̃nF )[n]. Then the Bousfield-Kan tech-
nology for this tower of fibrations (with a suitable reindexing) gives a spectral
sequence with

Es,t
2 = Hs(C, π̃tE)

“converging” to
πt−s lim←−

n

Γ∗LPnE.

There are two problems:

• convergence, and

• the map E → lim←−n
LPnE might not be a weak equivalence, so that the

inverse limit, even though it is stably fibrant, might not be a stably fibrant
model of E.

Both of these problems are solved in practical situations [18] by the assumption
of a uniform bound on cohomological dimension, such as one sees for the étale
topology for schemes of finite type over something decent.

Examples:
1) Suppose that ` is a prime bigger than 3, and that k is a field which contains
a primitive `th root of unity. Suppose that ksep/k has a finite (“Tate-Tsen”)
filtration

k = L0 ⊂ L1 ⊂ · · · ⊂ Lr = ksep
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by Galois subextensions such that cd`(Li+1/Li) ≤ 1. Suppose finally that
cdl(k) ≤ d. Let j : K/` → LK/` be a stably fibrant model for the mod `
K-theory presheaf of spectra on the étale site (Sch|k)et of the field k.

Then under these assumptions the Lichtenbaum-Quillen Conjecture asserts
that the stable homotopy groups πsF of the fibre F (k) of the global sections
map j : K/`(k)→ LK/`(k) satisfy

πsF (k) = 0 for s ≥ d− 2.

Equivalently the map πsK/`(k)→ πsFK/`(k) is an isomorphism for i ≥ d− 1
and is monic if i = d− 2.

In particular, the K-theory with torsion coefficients of the field k is computed
with Galois cohomology in sufficiently high degrees.
2) Suppose that ` is a prime bigger than 3, and that X is a scheme such that
all residue fields k(x) satisfy the assumptions of Example 1, and that there is a
uniform bound d on cd`(k(x) for all x ∈ X. Let j : K/` → LK/` be a stably
fibrant model for K/` on (Sch|k)et. If the Lichtenbaum-Quillen conjecture holds
for fields, then the map

j : πsK/`(X)→ πsLK/`(X)

is an isomorphism for s ≤ d − 1 and is a monomorphism for s ≤ d − 2, where
cd`(X) ≤ d.

In effect, let j : K/`→ LK/` be a stably fibrant model for K/` on (Sch|k)et.
Then the restriction to et|X is a stably fibrant model for K/` on the étale site for
X (restriction is exact, and has a left adjoint which preserves cofibrations and
local weak equivalences). Now change topologies to the Nisnevich site Nis|X
by direct image. Then LK/` is stably fibrant for the Nisnevich topology (direct
image always preserves stable fibrations), while K/` satisfies Nisnevich descent
(Nisnevich descent theorem), so the homotopy fibre F of the map K/`→ LK/`
also satisfies Nisnevich descent. The presheaves of spectra K/` and LK/` also
both satisfy Gabber rigidity; for K/`, this means that there are isomorphisms

πsK/`(Oh
x)

∼=−→ πsK/`(k(x))

for all points x ∈ X. There is a corresponding isomorphism for π∗LK/`, essen-
tially because the étale sheaves π̃∗K/` are constant (see [7]), again by Gabber
rigidity. But then πsF (Oh

x) = 0 for t ≥ d− 2 so that π̃tF = 0 for t ≥ d− 2 (Nis-
nevich topology), whence πtF (X) = 0 for t ≥ d − 2 since F satisfies Nisnevich
descent.

This argument (essentially due to Thomason) was the earliest serious appli-
cation of Nisnevich descent.

6 T -spectra and localization

I want to show you how to do several things at once.
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Suppose that T is a pointed simplicial presheaf on a small site C.
A T -spectrum X is a collection of pointed simplicial presheaves Xn, n ≥ 0,

with pointed maps σ : T ∧Xn → Xn+1. A map f : X → Y of T -spectra consists
of pointed simplicial presheaf maps f : Xn → Y n which respect structure in the
obvious way. Write SptT (C) for the category of T -spectra.

Example 6.1. • The sphere spectrum ST for the category of T -spectra con-
sists of the pointed simplicial presheaves

S0, T, T∧2, T∧3, . . .

with the associativity isomorphisms T ∧ T∧n ∼= T∧n+1 as bonding maps.

• Given a pointed simplicial presheaf K, Σ∞T K is the T -spectrum

K, T ∧K, T 2 ∧K, . . .

The functor K 7→ Σ∞T K is left adjoint to the 0-level functor X 7→ X0.

• Given a T -spectrum X, n ∈ Z, the shifted T -spectrum X[n] is defined by

X[n]k =

{
Xn+k n + k ≥ 0
∗ n + k < 0

• If K is a pointed simplicial presheaf and X is a T -spectrum, then X ∧K
has the obvious meaning:

(X ∧K)n = Xn ∧K.

The function complex hom(X, Y ) for T -spectra X and Y is the simplicial
set with

hom(X, Y )n = all maps X ∧∆n
+ → Y.

Say that a map f : X → Y of T -spectra is a strict weak equivalence (resp.
strict fibration) if all maps f : Xn → Y n are local weak equivalences (resp.
global fibrations) of pointed simplicial presheaves on C.

A cofibration of T -spectra is a map i : A→ B such that

• i : A0 → B0 is a cofibration of simplicial presheaves, and

• all maps
(T ∧Bn) ∪(T∧An) An+1 → Bn+1

are cofibrations of simplicial presheaves.

Note that i : A → B is a cofibration if and only if all maps An → Bn and
all maps T ∧ (Bn/An)→ Bn+1/An+1 are cofibrations.
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Example 6.2. The sphere spectrum ST is cofibrant, as are all of its shifts
(cofibrations are preserved by shifts).

There is a distinguished map

ω : Σ∞T T [−1]→ ST

which is a levelwise cofibration but is not a cofibration: it is easily seen that
the cofibre of this map consists of a copy of S0 concentrated in level 0, and this
spectrum is not cofibrant.

This map ω is also the canonical example of a stable equivalence.

Lemma 6.3. Suppose given the diagram

A ∩X //

j∗

��

X

j

��
A

i
// Y

in spectra, where j is a cofibration and i is a levelwise cofibration. Then the
induced map j∗ : A ∩X → A is a cofibration.

Proof. The proof is the same as for Lemma 3.5.

Lemma 6.4. With these definitions, the category of SptT (C) of T -spectra on C
satisfies the definitions for a proper closed simplicial model category.

The proof is the usual thing.

There are various names out there for this structure: this is a strict model
structure in the sense of Bousfield and Friedlander [1], while Hovey [3] calls it a
projective structure.

Basic Assumptions: Suppose that S is a set of cofibrations such that

• A is cofibrant for all i : A→ B in S.

• S includes the set I of generating maps

Σ∞T C[−n]→ Σ∞T D[−n], n ≥ 0,

for the strict trivial cofibrations of SptT (C), which are induced by the
α-bounded trivial cofibrations C → D of pointed simplicial presheaves.

• If i : A→ B is a member of S, then all cofibrations

(A ∧D) ∪ (B ∧ C)→ B ∧D

induced by i and all α-bounded cofibrations C → D of pointed simplicial
presheaves are in S.
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Recall that α is a cardinal such that |Mor(C)| < α, and that the α-bounded
cofibrations generate the cofibrations for pointed simplicial presheaves.

A map p : Z → W is said to be injective (or S-injective) if it has the right
lifting property with respect to all maps of S. An object Z is injective if the
map X → ∗ is injective.

Note that every injective object is strictly fibrant.
Because S is a set, we can make a functorial injective model j : X → LX

by a transfinite small object construction: solve the lifting problem sufficiently
many times and you get LX.

Say that a map f : X → Y of Spt(C) is an L-equivalence if it induces a
bijection

f∗ : [Y, Z]
∼=−→ [X, Z]

in morphisms in the strict homotopy category for every injective object Z.

Examples:
• Every strict equivalence X → Y is an L-equivalence.
• A map f : Z →W between injective objects is an L-equivalence if and only if
it is a strict equivalence. In effect, f is an isomorphism in the strict homotopy
category, and hence a strict equivalence.
• All cofibrations appearing in the set S are L-equivalences, because we’ve rigged
our definition of S so that any such map A→ B induces a trivial fibration

hom(B,Z)→ hom(A,Z)

for all injective Z.
What’s more interesting is the following:

Lemma 6.5. All cofibrations in the saturation of the set S are L-equivalences.

The proof boils down to showing that the inductive method for constructing
the saturation preserves L-equivalences; one uses cofibrant replacements to see
this.

Corollary 6.6. 1) The natural map j : X → LX is an L-equivalence.

2) A map f : X → Y is an L-equivalence if and only if the induced map
Lf : LX → LY is a strict equivalence.

Say that a cofibration is L-trivial if it is an L-equivalence.

Lemma 6.7. There is a cardinal κ for which the set of κ-bounded L-trivial
cofibrations is a generating set for the class of L-trivial cofibrations.

Specifically take κ ≥ 2λ, where λ ≥ 2α, and α is an infinite cardinal such
that α > |Mor(C)|.

Proof. Run the solution set argument of Lemma 3.7 for the set of κ-bounded
cofibrations. Recall that the κ-bounded cofibrations generate the class of cofi-
brations.
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Say that a map p : X → Y is an L-fibration if it has the right lifting property
with respect to all L-trivial cofibrations.

Observe that every L-fibration is a strict fibration, since S contains a gen-
erating set for the class of strict trivial cofibrations.

Lemma 6.8. A map p : X → Y is an L-fibration and an L-equivalence if and
only if p is a trivial strict fibration.

Proof. The proof is the same as for Lemma 3.4.

Theorem 6.9. Suppose that S is a set of cofibrations which satisfies the list
of Basic Assumptions above. Let the L-equivalences and L-fibrations be defined
relative to the set S as above. Then with these definitions the category SptT (C)
satisfies the axioms for a closed simplicial model category.

Proof. The factorization axiom CM5 follows from Lemmas 6.5, 6.7 and 6.8.
The rest of the closed model axioms are trivial to verify.

For the simplicial model structure, we need to show that if i : A → B is a
cofibration and an L-equivalence, then all maps

i ∧ ∂∆n
+ : A ∧ ∂∆n

+ → B ∧ ∂∆n
+

are L-equivalences. By replacing by a cofibrant model if necessary, it is enough
to assume that A is cofibrant. Then one uses the usual patching argument
for the category of cofibrant objects in the L-model structure for SptT (C) to
compare pushouts of the form

A ∧ ∂∆n−1
+

//

��

A ∧ Λn
k+

��
A ∧∆n−1

+
// A ∧ ∂∆n

+

to show inductively that the question reduces to showing that the map

i ∧ i : A ∧A→ B ∧B

is an L-equivalence. But i ∧ i has the left lifting property with respect to all
L-fibrations, and must therefore be an L-trivial cofibration.

Lemma 6.10. The L-structure on SptT (C) is left proper: given a pushout dia-
gram

A
f //

i

��

C

��
B

f∗

// D

in which i is a cofibration, if f is an L-equivalence then f∗ is an L-equivalence.
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Proof. The original diagram may be replaced up to strict weak equivalence by
a pushout diagram

A
f ′ //

i

��

C ′

��
B

f ′∗

// D′

in which f ′ is a cofibration and an L-equivalence. But then f ′∗ is also an L-trivial
cofibration and is in particular an L-equivalence.

We also have the following, which is a standard result in localization theory,
with a standard proof:

Lemma 6.11. Every injective object is L-fibrant, so that the L-fibrant T -spectra
coincide with the injective T -spectra.

Proof. Suppose that X is injective, and suppose given a diagram

A
α //

i

��

X

B

where the morphism i is a cofibration and an L-equivalence. Then α = α′ · j for
some map α′ : LA→ X since X is injective, and so there is a diagram

A
j //

i

��

LA
α′ //

Li

��

X

B
j
// LB

which factorizes the original. The map Li is a strict equivalence by Corollary
6.6, and one finishes the proof in the obvious way.

Here’s something else that follows from the general theory:

Lemma 6.12. Suppose that p : X → Y is a strict fibration and that the maps
j : X → LX and j : Y → LY are strict equivalences. Then p is an L-fibration.

The proof is the same as that given for Lemma 3.9.

7 Stable homotopy theory of T -spectra

Here is how the basic applications of the localization result Theorem 6.9 arise.
Write J for the set of maps

Σ∞T C[−n]→ Σ∞T D[−n], n ≥ 0,
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which are induced by a set of cofibrations containing the α-bounded trivial
cofibrations C → D of pointed simplicial presheaves.

Suppose that the set S of cofibrations is generated over J by the set of
cofibrant replacements of the maps

Σ∞T T [−1− n]→ ST [−n].

In general such a set of cofibrations S gives a stable model structure for some
localization of the category of pointed simplicial presheaves. For example, the
maps in J could be induced by a set of generating trivial cofibrations for some
f -local theory for some cofibration f . If J consists of nothing but the maps
induced by the α-bounded trivial cofibrations of pointed simplicial presheaves,
we are producing a “bare” stable model structure on SptT (C).

In all such cases, the L-equivalences and L-fibrations will be called stable
equivalences and stable fibrations, respectively.

The examples to keep in mind are the T -spectrum objects SptT (Sm|S)Nis on
the smooth Nisnevich site for a decent scheme S, where T is either the simplicial
circle S1 or the Tate object S1 ∧Gm, and f is a choice of rational point ∗ → A1

on the affine line over S.

• The “bare” theory for T = S1 is the stable structure for presheaves of spectra
on (Sm|S)Nis that we’ve already discussed.

• The f -local theory on SptT (Sm|S)Nis for T = S1∧Gm is the Morel-Voevodsky
motivic stable model structure [17]. The f -local theory on the ordinary category
SptS1(Sm|S)Nis (aka. motivic S1-spectra) is also important, in that it is a major
technical device fore analyzing the former. By the same techniques, there is a
motivic stable model structure for T -spectrum objects, for all pointed simplicial
presheaves T (compare with [8]).

Here’s the first thing that’s special about these stable homotopy theories:

Lemma 7.1. A map p : X → Y is an injective fibration if and only if p is a
strict fibration and all diagrams of pointed simplicial presheaf maps

Xn
σ∗ //

��

ΩT Xn+1

��
Y n

σ∗
// ΩT Y n+1

are homotopy cartesian.

Proof. This follows from the fact that the map p is an injective fibration if and
only if p induces trivial fibrations of simplicial presheaves

Hom(D,X)→ Hom(C,X)×Hom(C,Y ) Hom(C,X)

(internal function complexes) for all generators C → D of the set S. Apply this
criterion to the two classes of generators for S.
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Corollary 7.2. A T -spectrum X is stably fibrant if and only if all simplicial
presheaves Xn are globally fibrant and all maps Xn → ΩT Xn+1 are local weak
equivalences.

To go further, we need to make assumptions on the suspending object T .
In all that follows, ΩT Y will be shorthand for the pointed simplicial presheaf

Hom(T, Y ) defined by

Hom(T, Y )(U) = hom(T |U , Y |U )

for U ∈ C. This is tbe internal pointed function complex, also defined by the
adjunction isomorphism

hom(A ∧ T, Y ) ∼= hom(A,Hom(T, Y )).

Note that if K is a pointed simplicial set, then

Hom(Γ∗K, Y )(U) = hom(K, Y (U))

by adjointness. Similarly, if V is an S-scheme, then

Hom(V+, Y )(U) ∼= Y (V × U)

on Sch|S for all S-schemes U .

Say that T is compact up to equivalence if for any filtered diagram i 7→ Xi

of globally fibrant pointed simplical presheaves the map

lim−→
i

ΩT Xi → ΩT F (lim−→
i

Xi)

is a local weak equivalence.

Examples

1) Suppose that K is a pointed finite simplicial set. Then K is compact up to
equivalence. In effect, the functor ΩK commutes with filtered colimits, so one
only has to show that ΩK preserves local weak equivalences between presheaves
of Kan complexes. But it’s easy to see that ΩK preserves local trivial fibrations,
so a standard trick gives it.

2) Suppose that S is a decent scheme and that the category Sch|S has the
Nisnevich topology. Then the pointed simplicial presheaf V+ on (Sch|S)Nis

associated to every S-scheme V is compact up to equivalence. All Yi take
distinguished squares to homotopy cartesian diagrams, so that lim−→i

Yi also has
this property. The Nisnevich descent theorem [17] implies that the globally
fibrant model map

lim−→
i

Xi → F (lim−→
i

Xi)

is a weak equivalence in each section, so that all maps

lim−→
i

Xi(V × U)→ F (lim−→
i

Xi)(V × U)
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are weak equivalences. In particular, the map

lim−→
i

ΩV+Xi → ΩV+F (lim−→
i

Xi)

is a sectionwise weak equivalence.

3) The same arguments imply that all finite simplicial sets K and all schemes
V are compact up to equivalence in the motivic model structure on Sch|S .

4) If T and T ′ are compact up to equivalence, then T ∧ T ′ is compact up to
equivalence.

It follows that the Tate object S1 ∧ Gm is compact up to equivalence for
both the Nisnevich local and motivic model structures on Sch|S .

Exercise: Gm is pointed by the identity here, ie. it does not have a disjoint base
point, so there’s something extra to do to verify this last claim.

Starting with a T -spectrum X, define functors X 7→ QkX for k ≥ 0 by
specifying that

Q0X = FX

and
Qk+1X = ΩT QkX[1]

(ΩT = fake T -loops). The map QkX → Qk+1X is the canonical map

QkX
σ∗−→ ΩT QkX[1].

Set
QX = F (lim−→

k

QkX).

Write η : X → QX for the natural composite

X → FX = Q0X → lim−→
k

QkX → F (lim−→
k

QkX) = QX.

Lemma 7.3. Suppose that T is compact up to equivalence. Then QX is stably
fibrant.

Proof. All objects QkX are strictly fibrant. In the diagram

lim−→k
QkX

∼=
��

σ∗

((QQQQQQQQQQQQQ

j // F (lim−→k
QkX)

σ∗

��
lim−→k

ΩT QkX[1] // ΩT (lim−→k
QkX)[1] // ΩT F (lim−→k

QkX)[1]

the indicated vertical map is an isomorphism by cofinality, and the bottom
horizontal composite is a strict equivalence since T is compact up to equivalence.
It follows that the vertical map σ∗ is a strict equivalence.
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Now here’s the theorem:

Theorem 7.4. Suppose that T is compact up to equivalence. Then QX is stably
fibrant, and the map η : X → QX is a stable equivalence.

Proof. QX is stably fibrant. In the diagram

X //

j

��

QX

j∗

��
LX // QLX

(1)

the map j∗ is a strict equivalence because all pushouts C → D of generators
A→ B of S (remember S?) induces strict equivalences QC → QD (since each
map C → D is an equivalence above a certain level). The map η : LX → QLX
is a strict equivalence because LX is stably fibrant. It follows that η : X → QX
is a stable equivalence.

Corollary 7.5. Suppose that T is compact up to equivalence. Then the stable
model structure on the category of T -spectra is proper.

Proof. Suppose given a pullback diagram

Z ×Y X
f∗ //

��

X

p

��
Z

f
// Y

of T -spectra such that p is a strict fibration and f is a stable equivalence. The
induced diagram

Q(Z ×Y X) //

��

QX

��
QZ // QY

is strictly homotopy cartesian, and the map QZ → QY is a strict equivalence.

Here’s the recognition principle for stable fibrations. It is the analog of
Theorem 3.8.

Theorem 7.6. Suppose that T is compact up to equivalence, and suppose that
p : X → Y is a strict fibration. Then p is a stable fibration if and only if the
diagram

X
j //

p

��

LX

Lp

��
Y

j
// LY

(2)
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is strictly homotopy cartesian.

Proof. Suppose that the diagram (2) is strictly homotopy cartesian. There is a
factorization

LX
i //

Lp ""E
EE

EE
EE

E Z

q

��
LY

of Lp such that i is a stable equivalence and q is an injective fibration. But
then Z is injective, hence stably fibrant, so that i is a strict equivalence. It also
follows from Lemma 6.12 that q is a stable fibration. By pulling back q along
j, we see from the hypothesis that the induced map

X → Y ×LY Z

is a strict equivalence. Every trivial strict fibration is an stable fibration, and
it follows that p is a retract of an stable fibration, and hence is itself a stable
fibration.

Suppose that p : X → Y is a stable fibration. Find a factorization

LX
i //

Lp ""E
EE

EE
EE

E Z

q

��
LY

such that i is a trivial stable cofibration and q is a stable fibration. Then i
is a stable equivalence between stably fibrant objects, and is therefore a strict
equivalence. In the pullback diagram

Y ×LY Z
pr //

q∗

��

Z

q

��
Y // LY

the projection map pr is a stable equivalence since the stable model structure
is proper by Corollary 7.5. It follows that the comparison

X
θ //

p
��4

44
44

4 Y ×LY Z

q∗~~}}
}}

}}
}}

Y

is a stable equivalence between stable fibrations, and θ is therefore a strict
equivalence by a standard argument.

Remark 7.7. The assumption that T is compact up to equivalence in the
statement of Theorem 7.6, is only required for showing that the diagram (2) is
strictly homotopy cartesian if p is a stable fibration.

33



It is a basic property of ordinary stable homotopy theory that the suspension
and loop are inverse to each other in that they form a Quillen equivalence
Spt � Spt. There are various proofs of this in the literature, but secretly it
depends on the fact that the cyclic permutation (3, 2, 1) induces a map

(3, 2, 1) : S3 → S3

(3-fold smash products) by permuting smash factors, and that this map is
pointed homotopic to the identity. The latter is so because the map has de-
gree 2.

Here’s the general theorem:

Theorem 7.8. Suppose that T is compact up to equivalence. Suppose that X is
a T -spectrum, and let j : X ∧ T → L(X ∧ T ) be the natural stable fibrant model
for X ∧ T . Suppose that the map

(3, 2, 1) : T 3 → T 3

represents the identity in the (f-local) pointed homotopy category. Then the
composite

X
η−→ ΩT (X ∧ T )

ΩT j−−−→ ΩT L(X ∧ T )

is a stable equivalence.

The proof [8, Theorem 3.11] is a somewhat delicate layer filtration argument,
which reduces to the case X = Σ∞T K for a pointed simplicial presheaf K.

In global sections, the homotopy groups πrLY n are computed as the filtered
colimit

[Sr, Y n] Σ−→ [T ∧ Sr, Y n+1] Σ−→ . . . ,

where Σ takes a map θ : Sr → Y n to the composite

T ∧ Sr T∧θ−−−→ T ∧ Y n σ−→ Y n+1.

This follows from Theorem 7.4.
When Y = Σ∞T K, the map Σ is smashing with T on the left. The composite

[T k ∧ Sr, Y n+k]→ [T k ∧ Sr,ΩT L(Y ∧ T )n+k] ∼= [T k ∧ Sr ∧ T, Y n+k ∧ T ]

is smashing with T on the right. The proof is finished by using the comparison
diagram

[T k ∧ Sr, Tn+k ∧K] T 2∧ //

∧T

��

[T 2+k ∧ Sr, T 2+n+k ∧K] //

∧T

��

. . .

[T k ∧ Sr ∧ T, Tn+k ∧K ∧ T ] T 2∧ //

ct ∼=
��

[T 2+k ∧ Sr ∧ T, T 2+n+k ∧K ∧ T ] //

ct∼=
��

. . .

[T 1+k ∧ Sr, T 1+n+k ∧K]
T 2∧

// [T 3+k ∧ Sr, T 3+n+k ∧K] // . . .
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Here, ct is a conjugation isomorphism defined by twisting, and the bottom
square commutes by the hypotheses on T 3, and the vertical composites are
instances of T∧.

Corollary 7.9. Under the hypotheses of Theorem 7.8, if Y is stably fibrant,
then the canonical (evaluation) map ε : ΩT Y ∧ T → Y is a stable equivalence.

Proof. Let j : ΩT Y ∧ T → L(ΩT Y ∧ T ) be a stably fibrant model, and extend
ε to a map ε∗ : L(ΩT Y ∧ T )→ Y . Form the diagram

ΩT Y
η //

1 &&MMMMMMMMMMM ΩT (ΩT Y ∧ T )
ΩT j //

ΩT ε

��

ΩT L(ΩT Y ∧ T )

ΩT ε∗vvllllllllllllll

ΩT Y

Then ΩT ε∗ is a stable equivalence by Theorem 7.8, and so ε∗ is a stable equiv-
alence by a calculation.

The Tate object T in motivic homotopy theory is the most prominent ex-
ample of an object satisfying the conditions of Theorem 7.8.

Lemma 7.10 (Voevodsky). The cyclic permutation (3, 2, 1) ∈ Σ3 acts as the
identity on T 3 in the pointed motivic homotopy category, where T is the Tate
object T = S1 ∧Gm.

Proof. There is an identification

T 3 ' A3/(A3 − 0)

in the motivic model category, and the action of Σ3 is the restriction of a pointed
algebraic group action

Gl3 × T 3 → T 3.

The permutation matrix (3, 2, 1) is a product of elementary transformation ma-
trices, and so there is an algebraic path

ω : A1 → Gl3

from the identity matrix to (3, 2, 1). The composite

A1 × T 3 → Gl3 × T 3 → T 3

gives a pointed homotopy from (3, 2, 1) : T 3 → T 3 to the identity.

8 (S1 ∧K)-spectra

Suppose that the pointed simplicial presheaf K is compact up to equivalence.
The class of pointed simplicial presheaves which are compact up to equivalence
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is closed under finite smash products and includes all finite pointed simplicial
sets. It follows that S1 ∧K is compact up to equivalence, so all results of the
previous section apply to (S1 ∧K)-spectra. I shall assume that K is compact
up to equivalence throughout this section.

In what follows it’s best to think of the bonding maps for an (S1 ∧ K)-
spectrum X as maps of the form

σ : S1 ∧Xn ∧K → Xn+1.

These morphisms induce maps

σ∗ :Sk ∧Xn ∧Kr =

Sk−1 ∧ S1 ∧Xn ∧K ∧Kr−1 Sk−1∧σ∧Kr−1

−−−−−−−−−−→ Sk−1 ∧Xn+1 ∧Kr−1

in the obvious way.
An (S1 ∧K)-spectrum X determines a K-spectrum object X∗,∗ in spectra,

which at K-level n is the spectrum

Xn,∗ : X0 ∧Kn,X1 ∧Kn−1, . . . ,

Xn−1 ∧K, Xn, S1 ∧Xn, S2 ∧Xn, . . .

The bonding maps for Xn,∗ are the maps

σ∗ : S1 ∧Xj ∧Kn−j → Xj+1 ∧Kn−j−1

up to level n− 1, and are identities defined by smashing with S1 beyond. The
K-bonding maps

Xn,∗ ∧K → Xn+1,∗

are identity maps defined by smashing with K up to level n and are instances
of σ∗ in levels n + 1 and above. The fact that one actually does get a map of
S1-spectra this way is essentially a consequence of the fact that the morphisms
σ∗ respect smashing with S1 and K.

An (S1∧K)-spectrum X has bigraded presheaves of stable homotopy groups
πs,tX, defined by

πs,tX(U) = lim−→
n≥0

[Sn+s ∧Kn+t|U , Xn|U ]

where the homotopy classes of maps are computed for pointed simplicial pre-
sheaves on C/U (= Sch |U usually), and the transition maps are defined by
suspension in the “obvious” way: a representing map

α : Sn+s ∧Kn+t → Xn

is sent to the composite

Sn+1+s ∧Kn+1+t S1∧α∧K−−−−−−→ S1 ∧Xn ∧K
σ−→ Xn+1.
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In πs,tX, the index s is often called the degree, while t is the weight.
These stable homotopy group presheaves are specializations of bigraded sta-

ble homotopy groups πs,tY which are defined for K-spectrum objects Y in
spectra by

πs,tY (U) = lim−→
k,l

[Sk+s ∧Kl+t, Y k,l]U ,

where the notation indicates that the homotopy classes are computed over U ∈
C. This means that there are natural isomorphisms

πs,tY ∼= πs,tdY

of presheaves for all K-spectrum objects Y by a cofinality argument. Here, dY
is the (S1 ∧ K)-spectrum with dY n = Y n,n and with bonding maps given by
the composites

S1 ∧ Y n,n ∧K → S1 ∧ Y n+1,n → Y n+1,n+1.

It follows that there are natural isomorphisms

πs,tX
∗,∗ ∼= πs,tX

for all (S1 ∧K)-spectra X.
The bonding maps Y n ∧ K → Y n+1 in a K-spectrum object Y induce

homomorphisms of stable homotopy classes of maps

[S[s] ∧Kn+t, Y n]U → [S[s] ∧Kn+t+1, Y n+1]U
→ [S[s] ∧Kn+t+2, Y n+2]U → . . .

for all U ∈ C, and the filtered colimit of the system is πs,tY (U).

Note that there are isomorphisms of presheaves

πkQXn(U) ∼= πk−n,−nX(U).

Then we have the following:

Lemma 8.1. A map f : X → Y is a stable equivalence of (S1 ∧K)-spectra if
and only if it induces isomorphisms of presheaves

πs,tX ∼= πs,tY

for all integers s and t.

Suppose that
F

i−→ X
p−→ Y

is a strict fibre sequence of (S1 ∧ K)-spectra. Every map f : Z → W of K-
spectrum objects has a factorization

Z
j //

f   A
AA

AA
AA

A V

q

��
W
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where q is a strict fibration in each K-level and j is a cofibration and a strict
weak equivalence in each K-level. Take such a factorization

X∗,∗ j //

p
##G

GG
GG

GG
GG

V

q

��
Y ∗,∗

for the map induced by the T -spectrum map p : X → Y , and let F be the
fibre of q. Then there are induced comparisons of fibre sequences of simplicial
presheaves

Fn i //

��

Xn
p //

'
��

Y n

∼=
��

F
n,n // V n,n // Y n,n

(3)

for each n ≥ 0, and it follows (by properness for pointed simplicial presheaves)
that the induced map F → dF is a strict weak equivalence.

Suppose that
F

i−→ X
p−→ Y

is a level strict fibre sequence of K-spectrum objects and that Y is strictly
fibrant in all K-levels. Then all induced sequences

Ωt+n
K Fn → Ωt+n

K Xn → Ωt+n
K Y n

are strict fibre sequences of presheaves of spectra, and all spectra Ωt+n
K Y n are

strictly fibrant. It follows that there is a long exact sequence in presheaves of
stable homotopy groups of the form

· · · → πsΩt+n
K Fn → πsΩt+n

K Xn → πsΩt+n
K Y n

∂−→ πs−1Ωt+n
K Fn → . . .

There are, as well, comparisons of fibre sequences

Ωt+n
K Fn //

��

Ωt+n
K Xn //

��

Ωt+n
K Y n

��
Ωt+n+1

K Fn+1 // Ωt+n+1
K Xn+1 // Ωt+n+1

K Y n+1

induced by the respective K-spectrum object structures. Thus taking a filtered
colimit in n gives a long exact sequence

· · · → πs,tF
i∗−→ πs,tX

p∗−→ πs,tY
∂−→ πs−1,tF → . . . (4)
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in presheaves of bigraded stable homotopy groups. Note that the degree s
changes while the weight t does not.

It follows from the remarks above (specifically, the existence of diagram (3))
that there is a natural long exact sequence of the form (4) for any strict fibre
sequence

F → X → Y

of (S1 ∧K)-spectra.

Strict fibre and cofibre sequences coincide up to natural stable equivalence
in (S1 ∧K)-spectra. The proof comes in three parts:

Lemma 8.2. Suppose that p : X → Y is a strict fibration of (S1 ∧K)-spectra,
with fibre F . Then the canonical map

X/F → Y

is a stable equivalence.

Proof. The Lemma follows from the corresponding result for presheaves of spec-
tra, by replacing the given fibre sequence by a fibre sequence of K-spectrum
objects in spectra.

Lemma 8.3. Suppose that

A1
//

f1

��

A2
//

f2

��

A3

f3

��
B1

// B2
// B3

is a comparison of level cofibre sequences of (S1 ∧K)-spectra. If any two of the
maps f1, f2 and f3 are stable equivalences, then so is the third.

Proof. It suffices to assume that all objects are cofibrant.
The comparison diagram in the statement induces a comparison of fibre

sequences

hom(B3, Z) //

f∗3
��

hom(B2, Z)

f∗2
��

// hom(B1, Z)

f∗1
��

hom(A3, Z) // hom(A2, Z) // hom(A1, Z)

for all stably fibrant objects Z. There are stable equivalences

ΩT LB ∧K ∧ S1 ∼= ΩT LB ∧ T
ε−→ LB

(Corollary 7.9) so that the comparison of fibre sequences is a comparison of
fibre sequences of infinite loop spaces. Thus if any two of the vertical maps are
(stable) equivalences, then so is the third.
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Lemma 8.4. Suppose that i : A→ B is a level cofibration of (S1 ∧ T )-spectra,
and take a factorization

B
j //

π !!C
CC

CC
CC

C Z

p

��
B/A

of the quotient map π : B → B/A, where j is a strict trivial cofibration and p
is a fibration. Let F be the fibre of p. Then the induced map A→ F is a stable
equivalence.

Proof. The canonical map p∗ : Z/F → B/A associated to the fibration p : Z →
B/A is a stable equivalence by Lemma 8.2. There is also a commutative diagram

A //

��

B //

j'
��

B/A

j∗

��
F // Z // Z/F

But p∗j∗ = 1 so that j∗ is a stable equivalence. It follows that the map A→ F
in the diagram (which is the map of interest) is a stable equivalence, by Lemma
8.3.

Corollary 8.5. Every level cofibre sequence

A→ B → B/A

has a naturally associated long exact sequence

. . . πs,tA→ πs,tB → πs,t(B/A) ∂−→ πs−1,tA→ . . . .

of presheaves of stable homotopy groups.

Corollary 8.6. There are natural isomorphisms

πs+1,t(Y ∧ S1) ∼= πs,tY

for all (S1 ∧K)-spectra Y .

Corollary 8.7 (additivity). Suppose that X and Y are (S1∧K)-spectra. Then
the canonical map

c : X ∨ Y → X × Y

is a stable equivalence.
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9 Symmetric T -spectra

For now, C will be an arbitrary small Grothendieck site.
A symmetric space X consists of pointed simplicial presheaves Xn, n ≥ 0 on

C with symmetric group actions

Σn ×Xn → Xn

A morphism f : X → Y consists of pointed simplicial presheaf morphisms
Xn → Y n, n ≥ 0, which respect the symmetric group actions. The category of
symmetric spaces will be denoted (following [4], see also [9]) by s∗ Pre(C)Σ.

Example 9.1. Suppose that T is a pointed simplicial presheaf. Then the
sequence

S0, T, T ∧ T, T 3, . . .

forms a symmetric space, which will be denoted by ST .
If K is a pointed simplicial presheaf, smashing ST with K gives the suspen-

sion object
Σ∞T K = ST ∧K.

Given symmetric spaces X and Y , their tensor product X ⊗Y is specified in
degree n by

(X ⊗ Y )n =
∨

r+s=n

Σn ⊗Σr×Σs (Xr ∧ Y s).

A map of symmetric spaces X ⊗Y → Z consists of (Σr ×Σs)-equivariant maps

Xr ∧ Y s → Zr+s

for all r, s ≥ 0.

Examples

1) The canonical map
⊗ : ST ⊗ ST → ST

consists of the canonical isomorphisms

Sr ∧ Ss ∼= Sr+s

2) Write cr,s ∈ Σr+s for the shuffle which is defined by

cr,s(i) =

{
s + i i ≤ r

i− r i > r

The twist automorphism
τ : X ⊗ Y → Y ⊗X
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is uniquely determined by the composites

Xr ∧ Y s τ−→ Y r ∧Xs → (Y ⊗X)r+s cs,r−−→ (Y ⊗X)r+s.

(we have to multiply by the shuffle cs,r to make the composite (Σr × Σs)-
equivariant). Then the composites

X ⊗ Y
τ−→ Y ⊗X

τ−→ X ⊗ Y

are identities.

The tensor product (X, Y ) 7→ X ⊗ Y is symmetric monoidal. The map
⊗ : ST ⊗ ST → ST gives ST the structure of an abelian monoid in the category
of symmetric spaces.

A symmetric T -spectrum X is a symmetric space with the structure

mX : ST ⊗X → X

of a module over ST . This means that X comes equipped with (bonding) maps

σ1,s : T ∧Xs → X1+s

such that all composite bonding maps

T r ∧Xs → Xr+s

are equivariant for the inclusion Σr ×Σs ⊂ Σr+s. There is an obvious category
of such things, which we denote by SptΣT (C).

Example 9.2. Certainly the symmetric spaces ST and Σ∞T K = ST ∧K have
the structure of symmetric spectra.

More generally, if Y is a symmetric space, then ST ⊗ Y is a symmetric
T -spectrum: it is the free symmetric T - spectrum on Y in an obvious sense.

Example 9.3. Write Γ for the category of finite pointed sets and pointed
functions between them. A Γ-space is a functor A : Γ → s∗ Pre(C) defined
on the category of finite pointed sets and taking values in pointed simplicial
presheaves. The finite pointed sets K, L determine a canonical map

K ∧A(L)→ A(K ∧ L)

so it follows that there are bisimplicial object maps

Sk ∧A(Sn)→ A(Sk+n),

which induce pointed simplicial presheaf maps

Sk ∧ dA(Sn)→ dA(Sk+n), (5)

where d is the diagonal functor. It follows that the sequence

dA(S0), dA(S1), dA(S2), . . .
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has the structure of a symmetric S1-spectrum (aka. symmetric spectrum).
Γ-spaces are a common source of symmetric spectra, since every symmetric

monoidal category determines a Γ-space, and hence a spectrum. The sphere
spectrum S and all algebraic K-theory spectra are examples. Note that spectra
which arise from Γ-spaces, according to the recipe given above are all connective
[1].

Example 9.4. If K is a pointed simplicial presheaf and n ≥ 0 there is a
symmetric space GnK with

(GnK)r =

{
∗ r 6= n

Σn ⊗K =
∨

Σn
K r = n.

If we then define FnK by

FnK = ST ⊗GnK,

then there is a natural bijection

homSptΣ
T

(C)(FnK, Z) ∼= homs∗ Pre(C)(K, Zn).

for all n ≥ 0, pointed simplicial presheaves K and symmetric T -spectra Z. Note
that F0K = Σ∞T K.

Here’s why we care about symmetric spectra: the category of symmetric T -
spectra has a symmetric monoidal smash product. Given symmetric T -spectra
X, Y , the smash product X ∧ Y is defined by the coequalizer

ST ⊗X ⊗ Y ⇒ X ⊗ Y → X ∧ Y.

where the arrows ST ⊗X ⊗ Y ⇒ X ⊗ Y are mX ⊗ Y and the composite

ST ⊗X ⊗ Y
τ⊗Y−−−→ X ⊗ ST ⊗ Y

X⊗mY−−−−−→ X ⊗ Y.

The relationship with T -spectra is mediated by a forgetful functor

U : SptΣT (C)→ SptT (C)

which forgets the symmetric group actions.
I claim that U has a left adjoint

V : SptT (C)→ SptΣT (C).

The functor V is constructed inductively, by using the layer filtration LnX of a
T -spectrum X. In effect, for shifted suspension spectra Σ∞T K[−n], it must be
the case that

homSptΣ
T

(C)(V Σ∞T K[−n], Z) ∼= homSptT (C)(Σ∞T K[−n], UZ)
∼= homs∗ Pre(C)(K, Zn)
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for V to be a left adjoint, so that there must be natural isomorphisms

V Σ∞T K[−n] ∼= FnK.

The layer filtration LnX ⊂ X of a T -spectrum X is constructed by a sequence
of pushouts

Σ∞T (T ∧Xn)[−n− 1] //

��

LnX

��
Σ∞T Xn+1[−n− 1] // Ln+1X

and so V Ln+1X can be inductively specified by the pushouts

Fn+1(T ∧Xn) //

��

V LnX

��
Fn+1X

n+1 // V Ln+1X

Write V X = lim−→n
V LnX.

10 Model structures for symmetric spectra

A map f : X → Y of symmetric T -spectra is said to be a level weak equiva-
lence if all component maps Xn → Y n are local weak equivalences of simplicial
presheaves. There are two basic model structures on the category of symmetric
T -spectra for which the level equivalences are the weak equivalences.

There is a projective structure for which the fibrations are the levelwise global
fibrations and the weak equivalences are the levelwise weak equivalences. This
is in fact a cofibrantly generated closed simplicial model structure in an essen-
tially obvious way, and the reader can produce it for an exercise. The function
complex hom(X, Y ) which is used to define the simplicial model structure has
the definition that you might expect: its n-simplices are the maps X∧∆n

+ → Y .
It is easy to see that the functor V takes cofibrations (respectively strictly

trivial cofibrations) of T -spectra to projective cofibrations (respectively trivial
projective cofibrations) of symmetric T -spectra.

“Dually”, an injective fibration is a map which has the right lifting property
with respect to all level trivial cofibrations (ie. maps which are level cofibrations
and level equivalences).

Proposition 10.1. The level equivalences, level cofibrations and injective fibra-
tions together give the category SptΣT (C) of symmetric T -spectra the structure of
a proper closed simplicial model category. This model structure is cofibrantly
generated, by the α-bounded level cofibrations and the α-bounded level trivial
cofibrations.
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The model structure for symmetric T -spectra of Proposition 10.1 is the in-
jective model structure. It’s a little trickier to put in place than the projective
structure (see also [9, Theorem 2], [8, Theorem 4.2]).

The major steps in a somewhat different proof involve the establishment of
a bounded cofibration condition

Lemma 10.2. Suppose that α is an infinite cardinal such that α > |C|. Suppose
given level cofibrations

X

i

��
A // Y

such that i is a level equivalence and the object A is α-bounded. Then there is an
α-bounded subobject B ⊂ Y with A ⊂ B such that the induced map B ∩X → B
is a level equivalence.

(the proof is essentially the same as that of the corresponding result for simplicial
presheaves), and an invocation of the solution set trick

Lemma 10.3. Suppose that p : X → Y has the right lifting property with respect
to all α-bounded level trivial cofibrations and that p is a level equivalence. Then
p has the right lifting property with respect to all cofibrations.

Then Lemma 10.3 implies that every map p : X → Y of symmetric T -spectra
which has the right lifting property with respect to all α-bounded level trivial
cofibrations must be an injective fibration.

It’s easy to see that if p : Z →W has the right lifting property with respect
to all cofibrations then it is a trivial fibration.

One uses a transfinite induction and the bounded cofibration condition to
show that a map π : Z →W has the right lifting property with respect to all level
cofibrations (respectively level trivial cofibrations) if and only if it has the right
lifting property with respect to all α-bounded level cofibrations (respectively
α-bounded level trivial cofibrations).

It then follows from Lemma 10.3 that π : Z →W is a trivial fibration if and
only if it has the right lifting property with respect to all α-bounded cofibrations.
Basic Assumptions: Suppose that S is a set of level cofibrations of symmet-
ric T -spectra which includes the set J of α-bounded level trivial cofibrations.
Suppose that all induced maps

(A ∧D) ∪ (B ∧ C)→ B ∧D

are in S for each α-bounded cofibration C → D of pointed simplicial presheaves.

Suppose that γ is a cardinal such that γ > |Mor(C)|, and that γ > |B| for
all morphisms i : A → B appearing in the set S. Suppose also that γ > |S|.
Choose a cardinal λ such that λ > 2γ .
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Suppose that f : X → Y is a morphism of symmetric T -spectra. Just as for
T -spectra, define a functorial system of factorizations

X
is //

f ##F
FFF

FFF
Es(f)

fs
��

Y

of the map f indexed on all ordinal numbers s < λ as follows:

1) Given the factorization (fs, is) define the factorization (fs+1, is+1) by re-
quiring that the diagram ∨

D A
(αD) //

∨i ��

Es(f)

��∨
D B // Es+1(f)

is a pushout, where the wedge is indexed over all diagrams D of the form

A
αD //

i
��

Es(f)
fs
��

B
βD

// Y

with i : A→ B in the set S. Then the map is+1 is the composite

X
is−→ Es(f)

g∗−→ Es+1(f)

2) If s is a limit ordinal, set Es(f) = lim−→t<s
Es(f).

Set Eλ(f) = lim−→s<λ
Es(f). Then there is an induced factorization

X
iλ //

f ##G
GGG

GGG
Eλ(f)

fλ
��

Y

of the map f . Then iλ is a level cofibration. The map fλ has the right lifting
property with respect to the cofibrations i : A → B in S, since any map α :
A→ Eλ(f) must factor through some Es(f) by the choice of cardinal λ.

Write L(X) = Eλ(c) for the result of this construction when applied to the
canonical map c : X → ∗. Then we have the following set theoretic result:

Lemma 10.4. 1) Suppose that t 7→ Xt is a diagram of level cofibrations
indexed by any cardinal γ > 2α. Then the natural map

lim−→
t<γ

L(Xt)→ L(lim−→
t<γ

Xt)

is an isomorphism.
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2) The functor X 7→ L(X) preserves level cofibrations.

3) Suppose that ζ is a cardinal with ζ > α, and let Fζ(X) denote the filtered
system of subobjects of X having cardinality less than ζ. Then the natural
map

lim−→
Y ∈Fζ(X)

L(Y )→ L(X)

is an isomorphism.

4) If |X| < 2ω where ω ≥ α then |L(X)| < 2ω.

5) Suppose that U, V are subobjects of a presheaf of spectra X. Then the
natural map

L(U ∩ V )→ L(U) ∩ L(V )

is an isomorphism.

A map is said to be injective if it has the right lifting property with respect
to all members of S, and an object X is injective if the map X → ∗ is injective.

Note that all injective objects are fibrant for the injective model structure
of Proposition 10.1. By construction, LX is injective.

Say that a morphism f : X → Y of SptΣT (C) is an L-equivalence if it induces
a weak equivalence

f∗ : hom(Y, Z)→ hom(X, Z)

of simplicial sets for all injective objects Z.
Every level equivalence (ie. equivalence for the injective structure) is an

L-equivalence, and one can show, by analogy with the case of T -spectra that a
map X → Y is an L-equivalence if and only if the induced map LX → LY is
a level equivalence. In fact, the whole localization argument that we used for
T -spectra just goes through for symmetric T -spectra as well, giving the general
localization theorem for symmetric T -spectra:

Theorem 10.5. The category SptΣT (C) of symmetric T -spectra, with the classes
of cofibrations, L-equivalences and L-fibrations, satisfies the axioms for a left
proper closed simplicial model category.

The proof is written up in Lecture 010 of [13].
There is also the formal consequence of the constructions that we constantly

exploit:

Lemma 10.6. A symmetric T -spectrum X is L-fibrant if and only if it is in-
jective.

The model structure of Theorem 10.5 is also left proper in general. As
one would have been led to expect from the corresponding construction for
T -spectra, right properness is more of an issue.
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11 Stable homotopy theory of symmetric
T -spectra

Suppose that f : A→ B is a member of a set of cofibrations of pointed simplicial
presheaves (which could be empty), and that I is a set of generating cofibrations
for the corresponding local model structure on s∗ Pre(C). By a standard abuse,
I shall call this the f -local structure. Suppose that I contains all α-bounded
locally trivial cofibrations. Let J be the set of all level cofibrations

FnC → FnD, n ≥ 0,

which are induced by maps C → D appearing in the set J .
The f -local stable model structure for symmetric T -spectra (and the cor-

responding stable homotopy category) arises via Theorem 10.5 by formally in-
verting the set S of level cofibrations which is generated over J by the set of
cofibrations obtained by applying the functor V to the cofibrant replacements
of the maps

Σ∞T T [−1− n]→ ST [−n],

where ST is the sphere spectrum for the T -spectrum category.
Say that an L-equivalence for this theory is a stable equivalence, and that

an L-fibration is a stable fibration. Recall that the cofibrations for this theory
are the level cofibrations.

Remark 11.1. There is a corresponding f -local model structure for the cate-
gory SptT (C) of T -spectra, by the methods of Section 6. The weak equivalences
and fibrations for that theory will be called stable equivalences and stable fibra-
tions, respectively.

Remark 11.2. Theorem 10.5 also implies that there is a model structure on
SptΣT (C) which arises by formally inverting the cofibrations in the set I. The
corresponding model structure will be called the f -injective structure. The
fibrant objects for this theory are the injective objects X such that all Xn are f -
local. The weak equivalences are level f -equivalences — one sees this by showing
that the functors Fn take f -local equivalences to level f -local equivalences.

By Lemma 10.6, a symmetric T -spectrum Z is stably fibrant if and only if
it is S-injective, which means precisely that

• Z is injective,

• the underlying T -spectrum UZ is stably fibrant, meaning that all Zn are
f -local and all maps Zn → ΩT Zn+1 are f -local (hence sectionwise) weak
equivalences — see Lemma 7.1.

A formal argument (see Lemma 3 of [9]) implies that V takes cofibrations
to level cofibrations. A left properness argument which starts with the layer
filtration implies that V preserves level equivalences. An adjunction argument
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then implies that every (f -local) stable equivalence A→ B of T -spectra induces
a stable equivalence V A→ V B of symmetric T -spectra.

Since the stable model structure for T -spectra is cofibrantly generated, every
map f : X → Y of symmetric T -spectra has a natural factorization

X
i //

f   B
BB

BB
BB

B Xs

ps

��
Y

where i is a stably trivial cofibration and Ups is a stable fibration. Applying this
construction to the map X → ∗ determines a natural stably trivial cofibration
i : X → Xs such that UXs is stably fibrant. Finally, consider the composite

X
i−→ Xs

j−→ IXs

where j : Xs → IXs is the natural f -injective model. Then IXs is injective and
the map j : Xs → IXs is a level equivalence so that UIXs is stably fibrant. The
composite ji is a stable equivalence, and therefore determines a natural stably
fibrant model construction the category of symmetric T -spectra.

It follows that a map f : X → Y of symmetric T -spectra is a stable equiv-
alence if and only if the induced map IXs → IYs is a level equivalence. This
is exactly what is meant by a stable equivalence of symmetric T -spectra in the
original sources [4], [8], [9].

Remark 11.3. The stable model structure for symmetric T -spectra given here,
f -local or not, does not coincide with any of those appearing in the literature.
In the original stable model structure for symmetric T -spectra — call it the
HSS stable model structure for Hovey-Shipley-Smith [4] — a map p : X → Y
is a fibration of symmetric T -spectra if and only if the underlying map Up
is a fibration of T -spectra. This is not quite true here: it can be shown (in
Lemma 11.11 below, subject to the assumption that T = S1 ∧ K where K is
compact up to equivalence) that a map p : X → Y of symmetric T -spectra is
a stable fibration if and only if it is an injective fibration and it restricts to a
stable fibration Up of T -spectra. The HSS stable model structure is derived in
Proposition 11.12.

Here are some constructions:

1) Suppose that K is a pointed simplicial presheaf and X is a symmetric T
spectrum. Then ΩKX = Hom(K, X) is the symmetric T -spectrum with

ΩKXn = Hom(K, Xn).

The symmetric group actions and the bonding maps are defined by their ad-
joints.

2) Suppose that X is a symmetric T -spectrum and that n > 0. The symmetric
spectrum X[n] has X[n]k = Xn+k, and α ∈ Σk acts on X[n]k as the element
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1⊕α ∈ Σn+k. The bonding map σ : Sp ∧X[n]k → X[n]p+k is defined to be the
composite

Sp ∧Xn+k σ−→ Xp+n+k c(p,n)⊕1−−−−−−→ Xn+p+k

3) The map σ̃ : Xn → ΩT X[1]n = ΩT X1+n is the adjoint of the bonding map
T ∧Xn → X1+n. One shows that the diagram

T p ∧Xn T p∧σ̃ //

σ

��

T p ∧ ΩT X1+n

σ

��
Xp+n

σ̃
// ΩT X1+p+n

commutes by checking adjoints. It follows that there is a natural map

σ̃ : X → ΩT X[1]

which is induced by the adjoint bonding maps.

Remark 11.4. The map σ̃ : X → ΩT X[1] has no analogue for ordinary spectra,
because the functor Y 7→ ΩT Y in use here is real (and not fake) loops.

4) Suppose that X is a symmetric T -spectrum. Define a system k 7→ Qk
ΣX,

k ≥ 0 by specifying that

Qk
ΣX = Ωk

T IX[k], k ≥ 0.

In particular, Q0
ΣX = IX, where jΣ : X → IX is the natural choice of injective

model for X. There is a natural map Qk
ΣX → Qk+1

Σ X given by the map

Ωk
T σ̃[k] : Ωk

T IX[k]→ Ωk
T ΩT IX[1][k].

Set QΣX = I(lim−→k
Qk

ΣX), and write η : X → QΣX for the natural composite

X
jΣ−→ IX = Q0

ΣX → lim−→
k

Qk
ΣX

jΣ−→ I(lim−→
k

Qk
ΣX).

Theorem 11.5. Suppose that T is compact up to equivalence. Suppose that f :
X → Y is a map of symmetric T -spectra such that the induced map UX → UY
is a stable equivalence of T -spectra. Then f is a stable equivalence.

Proof. There are induced natural weak equivalences

lim−→k
Ωk

T FUXn+k j

'
//

'
��

QUXn

lim−→k
Ωk

T UIXn+k

UjΣ

' // UQΣXn
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where j : Y → QY is the natural stably fibrant model of a T -spectrum Y
given by Theorem 7.4. Thus if f : X → Y induces a stable equivalence Uf ,
meaning a level equivalence QUX → QUY , then the map of symmetric T -
spectra f∗ : QΣX → QΣY is a level equivalence.

If a symmetric T -spectrum Z is stably fibrant then all objects Qk
ΣZ are

stably fibrant and all maps Z → Qk
ΣZ are level equivalences. It follows that

Qk
ΣZ is stably fibrant and that the natural map Z → QΣZ is a level equivalence.

Finally take a stably fibrant model X → LX for a symmetric T -spectrum
X and consider the diagram

X
' //

η

��

LX

' η

��
QΣX // QΣLX

The indicated maps are stable equivalences, so that X is a natural retract of
QΣX in the stable homotopy category. Thus, if f : X → Y induces a stable
equivalence UX → UY , then the induced map QΣX → QΣY is a level and
hence stable equivalence, so that f is a stable equivalence.

Overall, the meaning of Theorem 11.5 is that all of the standard properties
of spectra can be bootstrapped to symmetric spectra.

Corollary 11.6. Suppose that T = S1 ∧K where K is compact up to equiva-
lence, and suppose that

F
i−→ X

p−→ Y

is a level fibre sequence of symmetric T -spectra. Then the canonical map X/F →
Y is a stable equivalence.

Proof. The induced map U(X/F ) → UY is a stable equivalence of T -spectra
by Lemma 8.2.

Lemma 11.7. Suppose that T = S1∧K where K is compact up to equivalence.
Suppose given a comparison of cofibre sequences

A1
//

f1

��

B1
//

f2

��

B1/A1

f3

��
A2

// B2
// B2/A2

Then if any two of f1, f2, f3 are stable equivalences, then so is the third.

Proof. There is a natural isomorphism

ΩT Z[1] ∼= ΩS1ΩKZ[1]
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and the canonical map Z → ΩT Z[1] is a level equivalence if Z is stably fibrant.
It follows that the induced diagram

hom(B2/A2, Z) //

��

hom(B2, Z) //

��

hom(A2, Z)

��
hom(B1/A1, Z) // hom(B1, Z) // hom(A1, Z)

is a comparison of fibre sequences of infinite loop spaces for each stably fibrant
object Z, and so if any two of the vertical maps is a weak equivalence then so
is the third.

Corollary 11.8. Suppose that T = S1 ∧K where K is compact up to equiva-
lence. Suppose that i : A→ B is a cofibration of symmetric T -spectra, and take
a factorization

B
j //

π !!C
CC

CC
CC

C Z

p

��
B/A

such that j is a cofibration and a level equivalence and p is an injective fibration.
Let F be the fibre of p. Then the induced map A→ F is a stable equivalence.

Proof. It follows from Lemma 8.4 that the map UA→ UF is a stable fibration.

Corollary 11.9. Suppose that T = S1 ∧K where K is compact up to equiva-
lence. Then the stable structure for symmetric T -spectra is proper.

Proof. Suppose given a pullback diagram

W
f∗ //

p∗

��

X

p

��
Z

f
// Y

such that p is a level fibration with fibre F and f is a stable equivalence. Then
the diagram above may be replaced up to stable equivalence by the comparison
of cofibre sequences

F
1 //

��

F

��
W

f∗ //

��

X

��
W/F '

// X/F

by Corollary 11.6. But then f∗ is a stable equivalence by Lemma 11.7.
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Lemma 11.10. Suppose that T = S1∧K where K is compact up to equivalence.
Suppose that a map p : X → Y is a stable equivalence and that Up : UX → UY
is a stable fibration of T -spectra. Then p is a level weak equivalence.

Proof. The map p is a level fibration. Let F be the fibre of p and consider the
fibre sequence

F
i−→ X

p−→ Y.

The canonical map X/F → Y is a stable equivalence of symmetric T -spectra
by Corollary 11.6. The comparison of cofibre sequences

F //

��

X //

��

X/F

��
∗ // X/F

1
// X/F

implies that the map F → ∗ is a stable equivalence of symmetric T -spectra by
Lemma 11.7. The injective model IF of F is stably fibrant and stably equivalent
to ∗, so IF is levelwise contractible. The map F → IF is a levelwise equivalence,
so that F is levelwise contractible.

But then UX → U(X/F ) is a stable equivalence of T -spectra, so that Up :
UX → UY is a stable equivalence of T -spectra as well as a stable fibration. It
follows that Up : UX → UY is a level equivalence.

Lemma 11.11. Suppose that T = S1 ∧K, where K is compact up to equiva-
lence. Then an injective fibration p : X → Y of symmetric T -spectra is a stable
fibration if and only if Up : UX → UY is a stable fibration of T -spectra.

Proof. If p : X → Y is a stable fibration, then p is an injective fibration, and
Up : UX → UY is a stable fibration. The last claim follows from the observation
that the functor V preserves stable equivalences and cofibrations.

Suppose that i : A → B is a cofibration and a stable equivalence. Then i
has a factorization

A
j //

i ��@
@@

@@
@@

Z

q

��
B

where q is an injective fibration such that Uq is a stable fibration, and j is a
cofibration which is a stable equivalence and has the left lifting property with
respect to all such maps. In effect, there are two factorizations

A
js //

i
((PPPPPPPPPPPPPPPP As

ps

!!C
CC

CC
CC

C
ji // Asi

psi

��
B
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where ps is a map such that Ups is a stable fibration and js is a stably trivial
cofibration which has the LLP with respect to all maps q such that Uq is a
stable fibration. The map ji is a level trivial cofibration and psi is an injective
fibration. But then Upsi is a strict fibration which is strictly equivalent to a
stable fibration, so that Upsi is a stable fibration. Set q = psi and j = jijs.

But then q is also a stable equivalence, so it is a level weak equivalence by
Lemma 11.10. Thus, q is a trivial injective fibration, and therefore has the RLP
with respect to all cofibrations. It follows that i is a retract of j and therefore
has the LLP with respect to all injective fibrations p such that Up is a stable
fibration.

Say that p : X → Y is an HSS-fibration if Up : UX → UY is a stable
fibration. Say that the map i : A → B is an HSS-cofibration if it has the
left lifting property with respect to all maps which are stable equivalences and
HSS-fibrations.

Lemma 11.10 implies that every map p : X → Y which is both an HSS
fibration and a stable equivalence must be a level equivalence. It follows that
the class of HSS cofibrations includes all maps FnA→ FnB which are induced
by the set I generators A → B for the f -local structure for pointed simplicial
presheaves.

Proposition 11.12. Suppose that T = S1 ∧ K where K is compact up to
equivalence. Then the category SptΣT (C), with the classes of stable equivalences,
HSS-fibrations and HSS-cofibrations as defined above, satisfies the axioms for a
proper closed simplicial model category.

Proof. The stable model structure on T -spectra is cofibrantly generated. It
follows that every map f : X → Y of symmetric T -spectra has factorizations

Z
p

  A
AA

AA
AA

A

X
f //

j
>>}}}}}}}}

i   B
BB

BB
BB

B Y

W

q

>>}}}}}}}}

where p is an HHS stable fibration and j is a stable equivalence which has the left
lifting property with respect to all HHS fibrations, and i is an HSS cofibration
and q is an HSS fibration such that Uq is a level trivial stable fibration. It follows
in particular that j is an HSS cofibration and that q is a stable equivalence.

Suppose that the map i : A→ B is an HSS cofibration and a stable equiva-
lence. The i has a factorization

A
j //

i ��@
@@

@@
@@

Z

p

��
B
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such that j is an HSS cofibration which has the left lifting property with respect
to all HSS fibrations and is a stable equivalence, and p is an HSS fibration. Then
p is a stable equivalence, and it follows that i is a retract of j.

Lemma 11.13. A map p : X → Y is a stable equivalence and an HSS-fibration
if and only if p is a level trivial fibration.

Proof. One direction is Lemma 11.10.
Conversely, if p is a level trivial fibration, then Up is a trivial strict fibration

of T -spectra, and is therefore a stable fibration and a stable equivalence by
Lemma 6.8.

Corollary 11.14. The cofibrations of the HHS-structure are the projective cofi-
brations.

Finally, the functors U and V determine a Quillen equivalence of T -spectra
with symmetric T -spectra, under suitable conditions:

Theorem 11.15. Suppose that T is compact up to equivalence, and that the
cyclic permutation (3, 2, 1) acts trivially on T 3 in the f-local homotopy category.
Then the functors U and V form a Quillen equivalence.

V : SptT (C) � SptΣT (C) : U.

The proof of Theorem 11.15 essentially coincides with that of Theorem 4.31
of [8]. The idea is to show that if X is a cofibrant T -spectrum and j : V (X)→
LV (X) is a stably fibrant model of the symmetric T -spectrum X, then the
composite

X
η−→ UV (X)

Uj−−→ ULV (X) (6)

is a stable equivalence of T -spectra. Theorem 11.15 follows from this statement,
by the same formal argument as one sees in the proof of Corollary 7.9.

One shows that the composite (6) is a stable filtration with a layer filtration
argument, which reduces to X = Σ∞T K, In this case, η is an isomorphism, and it
suffices to find a stably fibrant model j : ST ⊗K → L(ST ⊗K) whose underlying
map of spectra is a stable equivalence.

Form the T -spectrum object Σ∞T (ST ∧K) in symmetric spectra, which has
the object (ST ∧K)∧Tn in level n. This is, alternatively, a symmetric spectrum
object in T -spectra with the presheaf T s ∧K ∧ T r in bidegree (r, s). There is a
level stable equivalence

T s ∧K ∧ T ∗ → F (T s ∧K ∧ T ∗) = F ∗,s

in symmetric spectrum objects such that each object F (T s ∧K ∧ T ∗) is stably
fibrant. The map

F (T s ∧K ∧ T ∗)→ ΩT F (T s+1 ∧K ∧ T ∗)
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is a stable (hence level) equivalence by Theorem 7.8. It follows from some
bispectrum tricks that the map T ∗ ∧ K ∧ S0 → F ∗,0 is a map of symmetric
T -spectra such that the underlying map

U(T ∗ ∧K ∧ S0)→ U(F ∗,0)

is a stable equivalence of T -spectra with U(F ∗,0) stably fibrant. It follows that
any stably fibrant model j : ST ∧K → L(ST ∧K) induces a stable equivalence
of the underlying spectra.

12 The smash product

Recall that ST ⊗ X is the free symmetric spectrum associated to symmetric
space X.

Lemma 12.1. Suppose that Y is a symmetric spectrum. Then there is a canon-
ical isomorphism of symmetric spectra

Y ∧ (ST ⊗X) ∼= Y ⊗X.

Proof. The composite

Y ⊗ ST ⊗X
τ⊗X−−−→ ST ⊗ Y ⊗X

m−→ Y ⊗X

induces a natural map Y ∧ (ST ⊗X)→ Y ⊗X. The unit of ST induces a map
of symmetric spaces X → ST ⊗ X which then ineduces a map of symmetric
spectra Y ⊗X → Y ∧ (ST ⊗X). These two maps are inverse to each other.

Lemma 12.2. There is a natural bijection

hom(X ⊗Gn(S0), Y ) ∼= hom(X, Y [n])

for morphisms of symmetric T -spectra.

Proof. There is a natural bijection

hom(GnS0 ⊗X, Y ) ∼= hom(X, Y [n])

of maps of symmetric spaces. One checks that this adjunction respects sym-
metric spectrum structures.

Corollary 12.3. There is a natural isomorphism

Fn(A) ∧ Fm(B) ∼= Fn+m(A ∧B).

Proof. There are isomorphisms

FnA ∧ FmB ∼= (ST ⊗ (Gn(S0) ∧A)) ∧ (ST ⊗ (Gm(S0) ∧B))
∼= (ST ⊗Gn(S0)⊗Gm(S0)) ∧ (A ∧B)
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There are isomorphisms of maps of symmetric spectra

hom(ST ⊗Gn(S0)⊗Gm(S0), Y ) ∼= hom(ST ⊗Gn, Y [m])
∼= hom(ST , Y [m + n]).

It follows that

ST ⊗Gn(S0)⊗Gm(S0) ∼= ST ⊗Gm+n(S0)

as symmetric spectra, and the desired result follows.

Corollary 12.4. The functor X 7→ X[n] preserves injective fibrations and triv-
ial injective fibrations.

Proof. The functor Y 7→ Y ⊗Gn(S0) preserves level cofibrations and level equiv-
alences.

Theorem 12.5. Suppose that i : A → B is a projective cofibration and that
j : C → D is a level cofibration of symmetric T -spectra. Then the map

(i, j)∗ : (B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

is a level cofibration. If i and j are both projective cofibrations then (i, j)∗
is a projective cofibration. If j is a stable equivalence, then (i, j)∗ is a stable
equivalence.

Proof. For most of these statements, it suffices to assume that the projective
cofibration i is a map FnA′ → FnB′ which is induced by a cofibration i : A′ → B′

of pointed simplicial presheaves.
If p : X → Y is an injective fibration then the induced map

Hom(B′, X)[n]→ Hom(A′, X)[n]×Hom(A′,Y )[n] Hom(B′, Y )[n] (7)

is an injective fibration which is trivial if p is trivial. This statement in the case
when p is trivial implies that the map

(i, j)∗ : (FnB′ ∧ C) ∪(FnA′∧C) (FnA′ ∧D)→ FnB′ ∧D

is a level cofibration.
The fact that the map (7) is an injective fibration implies that the map (i, j)∗

is a level weak equivalence if j is a level weak equivalence.
If C → D is a projective cofibration, then it can be approximated by cofi-

brations of the form FmC ′ → FmD′, and then the map (i, j)∗ is the result of
applying the functor Fn+m to the cofibration

(B′ ∧ C ′) ∪(A′∧C′) (A′ ∧D′)→ B′ ∧D′

of pointed simplicial presheaves.
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If j is a stably trivial level cofibration, then it is in the saturation of the set
S of maps generated by all α-bounded level trivial cofibrations E → F and all
maps

F1T ∧ FnS0 → ST ∧ Fn(S0)

induced by the canonical map F1T → ST , subject to the requirement that the
map (the “tensor”)

(C ∧ F ) ∪ (D ∧ E)→ D ∧ F

is in S for all i : C → D in S and all α-bounded cofibrations E → F of pointed
simplicial sets. If the map i determines a stably trivial cofibration

(C ∧ FnB) ∪ (D ∧ FnA)→ D ∧ FnB,

for all cofibrations A → B of pointed simplicial presheaves, and if E → F is
an α-bounded cofibration of pointed simplicial presheaves then the cofibration
determined by

(C ∧ F ) ∪ (D ∧ E)→ D ∧ F

and the map FnA → FnB is the map determined by i : C → D and the map
determined by applying Fn to the inclusion

(F ∧A) ∪ (E ∧B)→ (F ∧B).

We therefore only have to show that “tensoring” the generators of S with maps
FnA→ FnB gives stable equivalences.

The tensor of FnA → FnB with a map F1T ∧ FmS0 → ST ∧ FmS0 is the
same as the tensor of the map F1T ∧Fn+m(S0)→ ST ∧Fn+m(S0) with the map
A→ B, and this is in S. We have already seen that tensoring with FnA→ FnB
does the right thing for level trivial cofibrations.

Lemma 12.6. Suppose that T = S1∧K where K is compact up to equivalence.
Suppose that i : A→ B is a projective cofibration and that j : C → D is a level
cofibration of symmetric T -spectra. Then the map (i, j)∗ is a stable equivalence
if i is a stable equivalence.

Proof. The cofibre of (i, j)∗ is the smash B/A ∧ D/C. The quotient B/A is
projective cofibrant, and so there is a level weak equivalence

B/A ∧K → B/A ∧D/C,

where K → D/C is a projective cofibrant model for D/C. Then the stably
trivial cofibration ∗ → B/A induces a stable equivalence

∗ ∼= ∗ ∧K → B/A ∧K.

Thus, the cofibre B/A∧D/C of (i, j)∗ is stably trivial, so that (i, j)∗ is a stable
equivalence by Lemma 11.7.

Corollary 12.7. If f : X → Y is a stable equivalence and A is projective
cofibrant, then the induced map f ∧A : X ∧A→ Y ∧A is a stable equivalence.
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Proof. Any stably trivial cofibration j : C → D induces a stable equivalence
A∧C → A∧D, by Theorem 12.5. The morphism f : X → Y has a factorization

X
j //

f   @
@@

@@
@@

Z

p

��
Y

such that j is a cofibration and p is a trivial injective fibration. The map p has
a section σ : Y → Z since all symmetric T -spectra are cofibrant for the injective
structure, but then σ is a stably trivial cofibration so that A∧σ : A∧Y → A∧X
is a stable equivalence, and so A ∧ p : A ∧ Z → A ∧ Y is a stable equivalence.
The map j is also a stably trivial cofibration, so that A ∧ j : A ∧X → A ∧ Z is
a stable equivalence.

Corollary 12.8. Suppose that i : A → B and j : C → D are projective
cofibrations. Then the induced map

(i, j)∗ : (B ∧ C) ∪(A∧C) (A ∧D)→ B ∧D

is a projective cofibration which is stably trivial if either i or j is a stable equiv-
alence.

Remark 12.9. Take away the adjective “projective” in the statement of Corol-
lary 12.8, and you have the description of what it means for a model structure
to be monoidal, subject to having a symmetric monoidal smash product. Ex-
ample: the pointed simplicial set (or presheaf) category with the obvious smash
product is monoidal.

Corollary 12.10. Suppose that T = S1 ∧K where K is compact up to equiv-
alence. Then the HSS-stucture on the category SptΣT (C) of symmetric T -spectra
is monoidal.

Proof. The cofibrations for the HSS-structure are the projective cofibrations.

Here’s an issue, perhaps: the HSS-structure on symmetric T -spectra is
monoidal when it exists, which is so far only in the case where T is a sus-
pension of an object which is compact up to equivalence. On the other hand,
the stable structure for symmetric T -spectra and Corollary 12.8 both obtain
in extreme generality, and there is a universal description of a derived tensor
project: set

X ∧Σ Y = X ′ ∧ Y ′

where πX : X ′ → X and πY : Y ′ → Y are projective cofibrant models for X
and Y respectively. The standard description of a monoidal model structure
may not be exactly the right thing.
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