
Lecture 01 (December 22, 2015)

1 Modules and exactness

Suppose that R is an associative ring with 1.

In most commutative cases, R is either the integers

Z or some field k.

Example: Suppose that k is a field and G is a

group. The group-algebra k(G) over k is the direct

sum

k(G) =
⊕
g∈G

k,

with elements written as finite sums
∑

g∈G λg · g,

with λg ∈ k and all but finitely many λg = 0. The

“rule”

(λg · g)(λh · h) = (λgλh) · (gh)

defines the algebra structure on k(G), with multi-

plicative identity 1 = 1 · e, where e is the identity

element of G.

A k(G)-module M is a k-vector space M , with

bilinear map

∗ : k(G)×M →M
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with (r,m) 7→ r∗m, such that r∗(s∗m) = (r ·s)∗
m and 1∗m = m, or equivalently M is a k-vector

space equipped with a group homomorphism

G→ Autk(M).

k(G)-modules are often called G-modules for that

reason.

Not even that is the most enlightened way to de-

scribe a k(G)-module. A group G can be thought

of as a category (actually a groupoid) with one

object ∗ and a morphism ∗ g−→ ∗ for every g ∈
G. Then a k(G)-module is a functor M : G →
k −Mod which takes values in the category of

k-vector spaces.

NB: I’ve only based these notions on fields k and

their vector spaces to make them seem real. The

object k could be a ring; then k(G) is a k-algebra

still and a k(G)-module is a k-module M equipped

with a group homomorphism G→ Autk(M).

Now we recall some basic definitions and facts about

R-modules.

Suppose that f : M → N is an R-module homo-

morphism. Then the kernel ker(f ) of f is defined

by

ker(f ) = {all x ∈M such that f (x) = 0}.

2



ker(f ) is plainly a submodule of M . The image

im(f ) of f is the submodule of N consisting of all

y ∈ N such that y = f (x) for some x ∈ M . The

cokernel of f cok(f ) is defined to be the quotient

cok(f ) = N/ im(f ).

A sequence

M
f−→M ′ g−→M ′′

of R-module homomorphisms is said to be exact

if ker(g) = im(f ). Equivalently, the sequence is

exact if g · f = 0 and for all y ∈M ′ with g(y) = 0

there is an x ∈M such that f (x) = y.

A sequence

M1 →M2 → · · · →Mn

of R-module homomorphisms is said to be exact if

ker = im everywhere.

Example 1.1. The sequence

0→ ker(f )→M
f−→ N → cok(f )→ 0

is exact for all R-module homomorphisms f .

Note that

0→M
f−→ N
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is exact if and only if f is a monomorphism (injec-

tive), and that

M
f−→ N → 0

is exact if and only if f is an epimorphism (surjec-

tive).

A short exact sequence always means an exact

sequence of the form

0→M →M ′ →M ′′ → 0.

All of these definitions for a map f : M → N can

be summarized in the following diagram of exact

sequences

0

""

0

ker(f )

##

cok(f )

;;

M

##

f //N

;;

im(f )

##{{

;;

0

;;

0
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Exercise: The diagram

M
f //

p ##

N

im(f )
i

;;

is usually called an epi-monic factorization of f :

M → N , meaning that p is surjective, i is injective

and f = i · p.

Show that if there is another factorization

M
f //

q !!

N

K
j

>>

of f with q an epimorphism and j a monomor-

phism, then there is a unique R-module isomor-

phism θ : im(f )
∼=−→ K which makes the diagram

im(f )
i

##
θ∼=

��

M

p ;;

q $$

N

K
j

;;

commute.
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Here are some fundamental exactness results:

Lemma 1.2 (Snake Lemma). Suppose given

a diagram of R-module homomorphisms

A1
//

f1
��

A2
p //

f2
��

A3
//

f3
��

0

0 //B1 i
//B2

//B3

Then there is an induced exact sequence

ker(f1)→ ker(f2)→ ker(f3)
∂−→ cok(f1)→ cok(f2)→ cok(f3).

Proof. The boundary homomorphism ∂ is defined

by ∂(y) = [z] for y ∈ ker(f3), where y = p(x),

and f2(x) = i(z).

To see that ∂ is well defined, if y = p(x′) (and

f2(x′) = i(z′)), then p(x−x′) = 0 so x−x′ = i(v)

for some v ∈ A1. Then z − z′ = f1(v) in B1 so

that [z] = [z′] in cok(f1).

Let’s show that the sequence

ker(f2)
p∗−→ ker(f3)

∂−→ cok(f1)

is exact.

First of all, if y = p(x) for some x ∈ ker(f2), then

f2(x) = 0 and ∂(y) = 0 by definition.

If ∂(y) = 0 then z = f1(w) for some w ∈ A1, so

that p(x− i(w)) = p(x) = y while f2(x− i(w)) =
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0, so that y is in the image of p∗ : ker(f2) →
ker(f3).

The other three exactness statements have similar

proofs.

Remark: The proof of the Snake Lemma is a

classic example of an “element chasing” argument.

Many proofs in classical homological algebra have

this flavour, and it’s the method of last resort.

Lemma 1.3 ((3× 3)-Lemma). Suppose given

a commutative diagram of R-module homomor-

phisms

0

��

0

��

0

��

0 //A1
//

��

A2
//

��

A3
//

��

0

0 //B1
i //

��

B2
p //

��

B3
//

��

0

0 //C1
//

��

C2
//

��

C3
//

��

0

0 0 0

in which all columns are exact. Then

1) if the A and B rows are exact, then the C

row is exact,
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2) if the C and C rows are exact, then the A

row is exact,

3) if the A and C rows are exact and if p · i = 0

in the B row, then the B row is exact.

Proof. The Snake Lemma implies directly that

• if the A-row and B-row are both exact then

the C-row is exact,

• if the B-row and C-row are both exact then

the A-row is exact.

Thus, suppose that the A-row and C-row are both

exact.

The Snake Lemma applied to the vertical columns

implies that i is a monomorphism and p is an epi-

morphism. Thus, it suffices to show that im(i) =

ker(p).

Since p · i = 0, there is a comparison of exact

sequences

0 //A3
//

1
��

cok(i) //

��

C3
//

1
��

0

0 //A3
//B3

//C3
// 0

and it follows that the induced map cok(i) → B3

is an isomorphism.

8



Lemma 1.4 (5-Lemma). Suppose given a com-

mutative diagram of R-module homomorphisms

A1
f1 //

h1
��

A2
//

h2
��

A3
//

h3
��

A4
g1 //

h4
��

A5

h5
��

B1 f2
//B2

//B3
//B4 g2

//B5

with exact rows and such that h1, h2, h4, h5 are

isomorphisms. Then h3 is an isomorphism.

Proof. Use the Snake Lemma and the observation

that there is an induced diagram

0 // cok(f1) //

∼=
��

A3
//

h3
��

ker(g1) //

∼=
��

0

0 // cok(f2) //B3
// ker(g2) // 0

2 Chain complexes

Definition 2.1. A chain complexC inR-modules

is a sequence of R-module homomorphisms

. . .
∂−→ C2

∂−→ C1
∂−→ C0

∂−→ C−1
∂−→ . . .

such that ∂2 = 0 (or that im(∂) ⊂ ker(∂)) every-

where. In this case Cn is often called the module

of n-chains.
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A morphism f : C → D of chain complexes con-

sists of R-module maps fn : Cn → Dn, n ∈ Z
such that all diagrams

Cn
fn //

∂
��

Dn

∂
��

Cn−1 fn−1
//Dn−1

commute.

The chain complexes and their morphisms form a

category, denoted by Ch(R).

Remark 2.2. • If C is a chain complex such

that Cn = 0 for n < 0, then C is said to be an

ordinary chain complex. For such a thing, we

usually neglect the copies of 0, and write

→ C2
∂−→ C1

∂−→ C0

for the chain complex. The full subcategory of

Ch(R) whose objects are the ordinary chain

complexes is denoted by Ch+(R).

• Chain complexes indexed by the integers as de-

scribed above are often called unbounded com-

plexes. You are to think that ordinary chain

complexes are analogous to spaces, while un-

bounded complexes are analogous to spectra.

10



• Chain complexes with their non-trivial terms

concentrated in negative degrees, namely those

of the form

· · · → 0→ C0 → C−1 → . . .

are usually called cochain complexes in the lit-

erature, and are often written (classically) as

C0 → C1 → C2 → . . . .

Both notations are in common use, and a con-

tinuing need for translation between them af-

flicts us all.

Morphisms of chain complexes have kernels and

cokernels, defined degreewise, and a sequence of

chain complex homomorphisms

C → D → E

is exact if and only if all sequences of R-module

homomorphisms

Cn → Dn → En

are exact.

Given a chain complex C :

· · · → Cn+1
∂−→ Cn

∂−→ Cn−1 → . . .
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write

Zn = Zn(C) = ker(∂ : Cn → Cn−1), and

Bn = Bn(C) = im(∂ : Cn+1 → Cn).

Here Zn is called the module of n-cycles, and Bn

is the group of n-boundaries of C. Then ∂2 = 0 so

that Bn ⊂ Zn and the nth homology group Hn(C)

of C is defined by

Hn(C) = Zn(C)/Bn(C).

Any chain map f : C → D induces R-module

homomorphisms

f∗ : Hn(C)→ Hn(D), n ∈ Z.

Definition 2.3. The chain map f : C → D

is said to be a homology isomorphism (equiva-

lently quasi-isomorphism, acyclic map, or weak

equivalence) if all induced maps f∗ : Hn(C) →
Hn(D), n ∈ Z are isomorphisms.

One often says that a complex C is acyclic if the

map 0→ C is a homology isomorphism, or equiv-

alently if Hn(C) ∼= 0 for all n.

Lemma 2.4. Any short exact sequence

0→ C → D → E → 0
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induces a natural long exact sequence

. . .
∂−→ Hn(C)→ Hn(D)→ Hn(E)

∂−→ Hn−1(C)→ . . .

in homology modules.

Proof. The short exact sequence induces compar-

isons of exact sequences

Cn/Bn(C) //

∂∗
��

Dn/Bn(D) //

∂∗
��

En/Bn(E) //

∂∗
��

0

0 //Zn−1(C) //Zn−1(D) //Zn−1(E)

There is a natural exact sequence

0→ Hn(C)→ Cn/Bn(C)
∂∗−→ Zn−1(C)→ Hn−1(C)→ 0

for each chain complex C. Now use the Snake

Lemma.

Here’s a sample application:

Corollary 2.5. Supppose given a comparison

0 //C //

fC ��

D //

fD��

E //

fE��

0

0 //C ′ //D′ //E ′ // 0

of exact sequences of chain complexes. If any

two of the maps fC, fD and fE are homology

isomorphisms, then so is the third.
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Proof. Let’s suppose that fC and fE are homol-

ogy isomorphisms. The comparison of short exact

sequences induces a comparison of exact sequences

Hn+1(E) ∂ //

∼=
��

Hn(C) //

∼=
��

Hn(D) //

��

Hn(E) ∂ //

∼=
��

Hn−1(C)
∼=
��

Hn+1(E ′)
∂
//Hn(C ′) //Hn(D′) //Hn(E ′)

∂
//Hn−1(C ′)

Use the 5-lemma to show that the induced map

Hn(D)→ Hn(D′) is an isomorphism.

3 Ordinary chain complexes, simplicial sets

Singular homology

Write |∆n| for the subspace of Rn+1 which is de-

fined by

|∆n| = {(t0, t1, . . . , tn) | ti ≥ 0,

n∑
i=0

ti = 1}.

Then

• |∆1| is the one-point space {1} ⊂ R,

• |∆1| is the line segment joining the points (0, 1)

and (1, 0) in the plane R2,

• |∆2| is the triangle with vertices (0, 0, 1), (0, 1, 0)

and (0, 0, 1) in R3,
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• |∆3| is a tetrahedron in real 4-space,

and so on. |∆n| is called the topological standard

n-simplex.

There are special continuous maps

di : |∆n−1| → |∆n|, 0 ≤ i ≤ n,

where

di(t0, t1, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

is defined by putting 0 in the ith place and shuf-

fling the other entries accordingly. One can check

(exercise) that there are relations

djdi = didj−1 : |∆n−2| → |∆n| (1)

for i < j.

Suppose that X is a topological space, and write

S(X)n = {|∆n| → X}

for the set of all continuous maps |∆n| → X , which

maps are called the n-simplices of X . The coface

maps di induce functions

di : S(X)n+1 → S(X)n, 0 ≤ i ≤ b,

which are defined, respectively, by precomposition

with di: if σ : |∆n| → X is an n-simplex of X ,

15



then the ith face di(σ) is the (n−1)-simplex which

is defined by the composite

|∆n−1| d
i

−→ |∆n| σ−→ X.

The the “cosimplicial identities” (1) induce the

“simplicial identities”

didj = dj−1di : S(X)n → S(X)n−2 (2)

for i < j.

Write

ZS(X)n =
⊕

σ:|∆n|→X

Z

for the free abelian group on the set S(X)n of n-

simplices of X . The face maps di : S(X)n →
S(X)n−1 extend to unique abelian group homo-

morphisms

di : ZS(X)n → ZS(X)n−1

with

di(
∑
σ

nσ · σ) =
∑
σ

nσ · diσ.

By the uniqueness of the extensions, these abelian

group homomorphisms also satsify the simplicial

identites (2).
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Write:

∂ =

n∑
i=0

(−1)idi : ZS(X)n → ZS(X)n−1

for the alternating sum of the abelian group face

maps di. It is a basic consequence (exercise: ev-

erybody must do this) that the simplicial identities

(2) imply that the composite abelian group homo-

morphism

ZS(X)n
∂−→ ZS(X)n−1

∂−→ ZS(X)n−2

is the 0 homomorphism.

The resulting complex ZS(X)n, ∂, n ≥ 0, is called

the singular complex of the space X . There are

various notations, namely

ZS(X) = C∗(X,Z).

Its homology groups Hn(X,Z), n ≥ 0, are called

the integral singular homology groups of X .

2 comments:

1) The construction is functorial: any continuous

map f : X → Y induces functions f∗ : Sn(X) →
Sn(Y ) by composition with f . These functions re-
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spect the face maps, in the sense that the diagrams

Sn(X)
f∗ //

di
��

Sn(Y )

di
��

Sn−1(X)
f∗
//Sn−1(Y )

commute. It follows that f : X → Y induces a

chain map

f∗ : ZS(X)→ ZS(Y ),

and therefore induces homomorphisms

f∗ : Hn(X,Z)→ Hn(Y,Z), n ≥ 0.

2) Suppose that A is an abelian group. Then ten-

soring with A gives a chain complex

ZS(X)⊗ A =: C∗(X,A),

which is again functorial in spaces X . The corre-

sponding homology groups

Hn(X,A) := Hn(ZS(X)⊗ A), n ≥ 0,

are the singular homology groups of X with coef-

ficients in A. These chain complex and homology

constructions are again functorial in spaces X , and

are also functorial in abelian groups A (exercise).

If R is an associative ring with unit, then the chain

complex ZS(X)⊗R and the homology groups

Hn(X,R) := Hn(ZS(X)⊗R), n ≥ 0,
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are defined according to the prescription above.

Alternatively, one can take RS(X)n to be the free

R-module on the set S(X)n of simplices, for all

n ≥ 0, and then

Hn(X,R) = Hn(RS(X)), n ≥ 0,

are the homology groups of the resulting complex

RS(X).

Classifying spaces

Write

n = {0, 1, . . . , n}
for the collection of counting numbers from 0 to n,

with their natural ordering. This set n is a par-

tially ordered set, but it can also be identified with

a tiny category whose objects are the underlying

set, and with a unique morphism i→ j if and only

if i ≤ j in the ordering. The collection of all such

finite ordinal numbers n, n ≥ 0, with the collec-

tion of all order-preserving functions (aka. func-

tors) between them is called the ordinal number

category, denoted by ∆.

Suppose that C is some category. Then a func-

tor α : n → C is completely determined by the

objects α(i) ∈ C and the images

α(i)→ α(i + 1)
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of the morphisms i ≤ i + 1 of n. Every other

relation i ≤ j must be sent to the composition of

the string

α(i)→ α(i + 1)→ · · · → α(j − 1)→ α(j)

since α is a functor. It follows that the functors

n → C can be identified with composable strings

of morphisms

a0 → a1 → · · · → an

of length n in C.

An ordinal number map n− 1 → n which is a

monomorphism as order-preserving functions misses

exactly one element i ∈ n. We call this morphism

di and identify it with the string

0→ 1→ · · · → i− 1→ i + 1→ · · · → n

of length n − 1 in n. There is one of these for

every 0 ≤ i ≤ n, and this is a characterization of

all ordinal number monomorphisms n− 1 → n.

These maps are called cofaces.

An ordinal number map n + 1→ n which is sur-

jective as a function takes two numbers j and j+1

to j ∈ n and shuffles the other numbers accord-

ingly. This map is called sj and is identified with
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the string

0→ · · · → j → j → j + 1→ · · · → n

of length n+1 in n. There is one of these maps for

every 0 ≤ j ≤ n, and this is a characterization of

all ordinal number surjections n + 1 → n. These

maps are called codegeneracies.

Remark 3.1. The cofaces di and the codegenera-

cies sj together satisfy the following list of relations

djdi = didj−1 if i < j,

sjdi =


disj−1 if i < j,

1 if i = j, j + 1,

di−1sj if i > j + 1,

sjsi = sisj+1 if i ≤ j.

(3)

The maps di, sj (in all degrees), together with

the cosimplicial identities above give a genera-

tors and relations description of the ordinal num-

ber category ∆ [1, p.178]. This means that a func-

tor ∆→ C is defined by definitions of the images

of the maps di and sj, so long as those images

satisfy the cosimplicial identities (3).

Suppose that C is a category which is small in

the sense that its morphisms form a set. Then the
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functors n→ C also form a set, which is denoted

BCn. Precomposing with any ordinal number map

θ : m→ n defines a function

θ∗ : BCn → BCm

which sends a functor (string of arrows of length

n) σ : n→ C to the composite

m
θ−→ n

σ−→ C.

In other words, the assignment

n 7→ BCn

defines a contravariant set-valued functor (ie. mor-

phism reversing functor)

BC : ∆op → Set

which is called the classifying space or nerve of

the category C.

The nerve BC of a category C is a simplicial set.

In general, a simplicial set X is a contravariant

functor X : ∆op → Set which is defined on the

ordinal number category, and takes values in sets.

Morphisms of simplicial sets are natural transfor-

mations: the resulting category is called the cat-

egory of simplicial sets and is denoted by sSet.
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One usually writes

Xn = X(n)

for a simplicial set X . The elements of the set Xn

are called the n-simplices of X . One also writes

di = di∗ : Xn → Xn−1

and calls them the face maps of X . The maps

sj = sj∗ : Xn → Xn+1

are called the degeneracies or degeneracy maps

of X .

The assignment C 7→ BC defines a functor on

small categories which takes values in the category

sSet of simplicial sets.

Here’s an observation. Suppose θ : m → n is

an ordinal number morphism. Then θ induces a

continuous map

θ∗ : |∆m| → |∆n|,

where

θ∗(s0, . . . , sm) = (t0, . . . , tn),

and

tj =
∑
θ(i)=j

si.
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In particular, if θ−1(j) = ∅, then tj = 0.

Example/exercise: Show that the map di∗ :

|∆n−1| → |∆n| which is induced by di : n− 1 →
n is the map

(s0, . . . , sn−1) 7→ (s0, . . . , si−1, 0, si, . . . , sn−1),

aka. the map di which was discussed above.

The singular complex S(X) for a space X as dis-

cussed above is a piece of a simplicial set with

S(X)n = { |∆n| → X } (continuous maps).

Precomposing with the maps θ∗ : |∆m| → |∆n|
gives the simplicial structure for the singular com-

plex S(X), exactly as for the nerve of a category

BC.

Now here’s a general construction: every simplicial

set Y has an associated simplicial abelian group

Z(Y ) defined by composing Y : ∆op → Set with

the free abelian group functor Z : Set → Ab.

There is a chain complex Z(Y ) with n-chains

Z(Y )n = Z(Y (n)),

and with boundary

∂ =

n∑
i=0

(di∗) =

n∑
i=0

di : Z(Y )n → Z(Y )n−1.
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The singular homology groups Hn(Y,Z) for the

simplicial set Y are defined by

Hn(Y,Z) = HnZS(Y ), n ≥ 0.

Similarly, if A is an abelian group, then the ho-

mology groups Hn(Y,A) with coefficients in A

are defined by

Hn(Y,A) = Hn(ZS(Y )⊗ A), n ≥ 0.

Example: Suppose that G is a group, and iden-

tify G with a category having one object. The

classifying space or nerve of G is the simplicial set

BG, and the homology groups

Hn(BG,Z), Hn(BG,A), n ≥ 0,

are homology groups of the group G (with trivial

co-efficients, meaning no group action).
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