
Lecture 02 (September 28, 2009)

4 Ordinary chain complexes: homotopy theory

Definition 4.1. Say that a map f : C → D in

Ch+(R) is a

• weak equivalence if f is a homology isomor-

phism,

• fibration if f : Cn → Dn is surjective for n >

0,

• cofibration if f has the left lifting property

(LLP) with respect to all morphisms ofCh+(R)

which are simultaneously fibrations and weak

equivalences.

In different words, a map i : A → B of chain

complexes is a cofibration if given any solid arrow

commutative diagram

A //

i
��

C
p
��

B //

>>

D

with p : C → D a fibration and a weak equiva-

lence, the dotted arrow exists making the diagram

commute.
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Remark 4.2. Morphisms which are simultane-

ously fibrations and weak equivalences are called

trivial fibrations. Similarly, morphisms which are

simultaneously cofibrations and weak equivalences

are trivial cofibrations. This terminology appears

throughout homotopy theory.

All trivial fibrations p have the right lifting prop-

erty with respect to all cofibrations i.

Here are some special chain complexes and chain

maps:

• R(n) is the chain complex consisting of a copy

of the free R-module R, concentrated in degree

n:

· · · → 0→ 0→
n
R→ 0→ 0→ . . .

There is a natural R-module isomorphism

homCh+(R)(R(n), C) ∼= Zn(C).

• R〈n + 1〉 is the chain complex

· · · → 0→
n+1
R 1−→

n
R→ 0→ . . .

• There is a natural R-modules isomorphism

homCh+(R)(R〈n + 1〉, C) ∼= Cn+1.
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• There is a morphism α : R(n) → R〈n + 1〉
given by the diagram

. . . // 0 //

��

0 //

��

R
1
��

// 0

��

// . . .

. . . // 0 //R 1
//R // 0 // . . .

Equivalently, α classifies the cycle

1 ∈ R〈n + 1〉n.

Lemma 4.3. Suppose that p : A → B is a

fibration and that i : K → A is the inclusion

of the kernel of p. Then there is a long exact

sequence

. . .
p∗−→Hn+1(B) ∂−→ Hn(K)

i∗−→ Hn(A)
p∗−→ Hn(B) ∂−→ . . .

. . . ∂−→ H0(K)
i∗−→ H0(A)

p∗−→ H0(B).

Proof. Suppose that j : im(p) ⊂ B is the inclusion

of the image of p in B, and write π : A → im(p)

for the induced epimorphism. Then Hn(im(p)) =

Hn(B) for n > 0, and there is a commutative

diagram

H0(A)
p∗ //

π∗ &&NNNNNNNNNNN
H0(B)

H0(im(p))
i∗

88ppppppppppp
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in which π∗ is an epimorphism and i∗ is a monomor-

phism (exercise). Then the desired long exact se-

quence is constructed from the long exact sequence

in homology for the short exact sequence

0→ K i−→ A π−→ im(p)→ 0

by composing with the monomorphism

i∗ : H0(im(p))→ H0(B)

in degree 0.

Observation: The map p : A→ B is a fibration

if and only if p has the right lifting property with

respect to all maps 0→ R〈n + 1〉, n ≥ 0.

This means that the dotted arrow exists, making

the diagram commute, in all solid arrow diagrams

0 //

��

A
p
��

R〈n + 1〉 //

99

B

Consequence: The map 0→ R〈n+1〉 is a trivial

cofibration for all n ≥ 0.

In effect, this map has the left lifting property with

respect to all fibrations, hence with respect to all

trivial fibrations.
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Lemma 4.4. The map 0 → R(n) is a cofibra-

tion.

Proof. We want to show that every trivial fibration

p : A → B induces an epimorphism Zn(A) →
Zn(B) for all n ≥ 0. If x ∈ Bn is a cycle, then

there is a cycle z ∈ An and a chain w ∈ Bn+1 such

that p(z) = x + ∂w. There is a chain v ∈ An+1

such that p(v) = w since p is surjective in non-zero

degrees. Thus p(z − ∂(v)) = x.

Some language: A chain complexA is said to be

cofibrant if the map 0→ A is a cofibration. Thus,

the objects R〈n + 1〉 and R(n) are cofibrant.

Dually, all chain complexes are fibrant, because all

chain maps C → 0 are fibrations.

Proposition 4.5. A map p : A → B is a fi-

bration and a weak equivalence if and only if

p : A0 → B0 is a surjection and p has the

right lifting property with respect to all maps

α : R(n)→ R〈n + 1〉.

Corollary 4.6. The map α : R(n)→ R〈n + 1〉
is a cofibration.

Proof of Proposition 4.5. Suppose that p : A →
B is a trivial fibration.
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Chase the comparison of exact sequences

A1
∂ //

p
��

A0
//

p
��

H0(A)
∼=
��

// 0

B1 ∂
//B0

//H0(B) // 0

keeping in mind that p : A1 → B1 is surjective to

show that p : A0 → B0 is surjective.

Suppose given a commutative diagram

R(n) x //

α
��

A
p
��

R〈n + 1〉 y
//B

Choose z ∈ An+1 such that p(z) = y. Then x −
∂(z) is a cycle of K, and K is acyclic by a long

exact sequence argument so there is a v ∈ Kn+1

such that ∂(v) = x−∂(z). But then ∂(z+v) = x

and p(v + z) = p(v) = y, so the chain v + z is the

desired lift.

Suppose that p : A0 → B0 is surjective and that

p has the right lifting property with respect to all

R(n)→ R〈n + 1〉.
The solutions of the lifting problems

R(n) 0 //

��

A
p
��

R〈n + 1〉 x
//

::

B
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show that p is surjective on all cycles, while the

solutions of the lifting problems

R(n) x //

��

A
p
��

R〈n + 1〉 y
//

::

B

show that p induces a monomorphism in all homol-

ogy groups. It follows that p is a weak equivalence.

Now look at the diagram

Zn+1(A) //

p
��

An+1
∂ //

p
��

Zn(A)
p
��

Zn+1(B) //Bn+1 ∂
//Zn(B)

and take x ∈ Bn+1. Then ∂(x) = p(v) for some

v ∈ Zn(A) since p is surjective on cycles, and

[∂(x)] = 0 inHn(B) implies that [v] = 0 ∈ Hn(A),

so that v = ∂(w) for some w ∈ An+1. But then

∂(x−p(w)) = 0, so there is z ∈ Zn+1(A) such that

p(z) = x− p(w), and so x = p(z −w). In partic-

ular, p is surjective in all degrees and is therefore

a fibration.

Proposition 4.7. Every chain map f : C → D
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has two factorizations

E
p

  A
AA

AA
AA

C
f //

i
>>~~~~~~~

j   @
@@

@@
@@

D

F
q

>>}}}}}}}

where

1) p is a fibration and i is a monomorphism,

a weak equivalence and has the left lifting

property with respect to all fibrations, and

2) q is a trivial fibration and j is a monomor-

phism and a cofibration.

Proof. For 1) form the factorization

C ⊕ (
⊕
x∈Dn+1,n≥0R〈n + 1〉)

p

**TTTTTTTTTTTTTTTTTTT

C f
//

i
44jjjjjjjjjjjjjjjjjjj

D

The map p is the sum of the map f and all classify-

ing maps for chains x in all non-zero degrees. It is

therefore surjective in non-zero degrees and is thus

a fibration. The map i is the inclusion of a direct

summand with acyclic cokernel, and is therefore a

monomorphism and a weak equivalence. It is also

a direct sum of maps which have the left lifting
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property with respect to all fibrations, and there-

fore has that same lifting property.

For 2), recall that a map q : A → B is a triv-

ial fibration if and only if it has the right lifting

property with respect to all cofibrations R(n) →
R〈n + 1〉, n ≥ −1 (where R(−1) → R〈0〉 is no-

tation for the map 0→ R(0)).

Consider the set of all diagrams

D : R(nD)
αD //

��

C
f=q0
��

R〈nD + 1〉
βD

//D

and form the pushout

⊕
DR(nD)

(αD)
//

��

C0

j1
��⊕

DR〈nD + 1〉
(θD)

//C1

where C = C0. Then j1 is a monomorphism and

cofibration, because the collection of all such maps

is closed under direct sum and pushout. Then the

maps βD induce a map q1 : C1 → D which makes

the diagram

C0
j1 //

q0 !!C
CC

CC
CC

C
C1

q1
��

D
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commute.

Note that every lifting problemD as above is solved

in C1, in the sense that the diagram

R(nD)
αD //

��

C0
j1 //C1

q1
��

R〈nD + 1〉
βD

//
θD

55kkkkkkkkkkkkkkkkkk

D

commutes.

Repeat this process inductively for the maps qi to

produce a string of factorizations

C0
j1 //

q0
��

C1
q1

}}{{
{{

{{
{{

j2 //C2

q2
vvmmmmmmmmmmmmmmmmm

j3 // . . .

D

Let F = lim−→i
Ci, so that f has an induced factor-

ization

C
j //

f   A
AA

AA
AA

F
q
��

D

Then the map j is a cofibration and a monomor-

phism, because all maps jk have these properties

and the collection of all such maps is closed under

infinite composition.
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Finally, given a diagram

R(n) α //

��

F
q
��

R〈n + 1〉
β
//D

The map α factors through some stage of the fil-

tered colimit defining F , so that α is a composite

R(n) α′−→ Ck → F

for some k. But then the lifting problem

R(n) α′ //

��

Ck
qk
��

R〈n + 1〉
β
//D

is solved in Ck+1, and hence in F .

Remark 4.8. This last proof is a “small object

argument”. Basically, the idea is that the objects

R(n) are small in the sense that hom(R(n), ) com-

mutes with filtered colimits.

Corollary 4.9. 1) Every cofibration is a monomor-

phism.

2) Suppose that j : C → D is a cofibration and

a weak equivalence. Then j has the left lifting

property with respect to all fibrations.
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Proof. 2) The map j has a factorization

C
i //

j   A
AA

AA
AA

F
p
��

D

where i has the left lifting property with respect

to all fibrations, and p is a fibration. The map p is

also a trivial fibration, so the lifting exists in the

diagram

C
i //

j
��

F
p
��

D 1
//

>>

D

since j is a cofibration. It follows that j is a retract

of a map (namely i) which has the left lifting prop-

erty with respect to all fibrations, and so j has the

same property.

1) is an exercise.

Suppose that P is an ordinary chain complex. Then

Proposition 4.7 says that the map 0 → P has a

factorization

0
j //

��>
>>

>>
>>

> F
q
��

P

where j is a cofibration (so that F is cofibrant) and

q is a trivial fibration, hence a weak equivalence. In
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the proof of Proposition 4.7 for the corresponding

factorization of a chain map f : C → D, Ck+1 is

constructed from Ck degreewise by taking a direct

sum with some (large) free R-module. It follows

that each R-module Fn in the “resolution” F of P

is free, so that F is a free resolution of P .

If the chain complex P happens to be cofibrant,

then the lifting exists in the diagram

0 //

��

F
q
��

P 1
//

>>

P

since 0 → P is a cofibration and q is a trivial

fibration. It follows that all chain modules Pn are

direct summands of free modules and are therefore

projective. This result has a converse, giving the

following:

Lemma 4.10. An ordinary chain complex P is

cofibrant if and only if all modules of chains Pn
are projective.

Proof. We have to show that P is cofibrant if all

Pn are projective.

Suppose that p : A → B is a trivial fibration.

Then p : An → Bn is surjective for all n ≥ 0
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by Proposition 4.5, and has acyclic kernel by a

long exact sequence argument (Lemma 4.3) Let

i : K → A be the kernel of p. Suppose given a

diagram

0 //

��

A
p
��

P f
//B

where P is a complex of projectives. We need to

find a chain map θ : P → A such that pθ = f .

There is a morphism θ0 : P0 → A0 so that the

diagram

A0

p0
��

P0

θ0
>>||||||||

f0
//B0

commutes, since p0 is an epimorphism and P0 is

projective.

Suppose givenR-module homomorphisms θi : Pi →
Ai for i ≤ n such that piθi = fi for i ≤ n and

∂θi = θi−1∂ for 1 ≤ i ≤ n (in other words, the

morphisms θi form a chain map up to degree n).

There is a morphism θ′n+1 : Pn+1 → An+1 such

that pn+1θ
′
n+1 = fn+1. Then

pn(∂θ′n+1 − θn∂) = ∂pn+1θ
′
n+1 − fn∂ = 0,
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so there is a morphism v : Pn+1 → Kn such that

inv = ∂θ′n+1 − θn∂.
At the same time,

∂(∂θ′n+1 − θn∂) = 0

andK is acyclic, so there is a morphismw : Pn+1 →
Kn+1 such that

in∂w = ∂θ′n+1 − θn∂.
Then

∂(θ′n+1 − in+1w) = θn∂

and

pn+1(θ′n+1 − in+1w) = pn+1θ
′
n+1 = fn+1.

In other words the lifting {θi} up to degree n can

be extended to a lifting up to degree n+ 1, where

θn+1 = θ′n+1 − in+1w.

Remark 4.11. • Every chain complex C has

a cofibrant (or projective) model, meaning a

weak equivalence p : P → C with P cofibrant,

on account of Proposition 4.7.

• Suppose that M is an R-module, and form the

chain complex M(0). Then a cofibrant model

P → M(0) is a projective resolution of M in

the traditional sense by Lemma 4.10.
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• Cofibrant models P → C are also (more com-

monly) constructed with Cartan-Eilenberg res-

olutions [1, 5.7].

5 Closed model categories

A closed model category is a categoryM equipped

with three classes of maps, namely weak equiva-

lences, fibrations and cofibrations, such that the

following requirements are satisfied:

CM1 The category M has all finite limits and col-

imits.

CM2 Given a commutative triangle

X
g //

h   A
AA

AA
AA

Y

f~~~~
~~

~~
~

Z

of morphisms in M, if any two of f, g and h

are weak equivalences , then so is the third.

CM3 The classes of cofibrations, fibrations and weak

equivalences are closed under retraction.

CM4 Suppose given a commutative solid arrow dia-
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gram

A //

i
��

X
p
��

B //

>>

Y
such that i is a cofibration and p is a fibra-

tion. Then the lifting exists making the dia-

gram commute if either i or p is a weak equiv-

alence.

CM5 Any morphism f : X → Y of M has factor-

izations

Z
p

  B
BB

BB
BB

B

X
f //

i
==||||||||

j !!B
BB

BB
BB

B Y

W
q

>>||||||||

where p is a fibration and i is a trivial cofi-

bration, and q is a trivial fibration and j is a

cofibration.

Theorem 5.1. With the definition of weak equiv-

alence, fibration and cofibration given above,

Ch+(R) satisfies the axioms for a closed model

category.

Proof. CM1, CM2 and CM3 are trivial to ver-

ify. CM5 is Proposition 4.7, and CM4 is a Corol-

lary 4.9.
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We’ll see as time goes by that the general outline

of the argument for the closed model structure on

the category Ch+(R) of ordinary chain complexes

of R-modules is quite typical.

Exercise: Say that a map f : C → D of Ch(R)

(unbounded chain complexes) is a weak equiva-

lence if it is a homology isomorphism, and is a

fibration if all maps f : Cn → Dn, n ∈ Z are

surjective. A map of unbounded chain complexes

is a cofibration if and only if it has the left lift-

ing property with respect to all maps which are

fibrations and weak equivalences (aka. trivial fibra-

tions). Show that, with these definitions, Ch(R)

has the structure of a closed model category.
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