
Lecture 003 (September 30, 2009)

6 Example: Chain homotopy

Suppose that C is an ordinary chain complex. Let

CI be the complex with

CI
n = Cn ⊕ Cn ⊕ Cn+1

for n > 0, and with

CI
0 = {(x, y, z) ∈ C0⊕C0⊕C1 | (x−y)+∂(z) = 0 }.

The boundary map ∂ : CI
n → CI

n−1 is defined by

∂(x, y, z) = (∂(x), ∂(y), (−1)n(x− y) + ∂(z)).

Here’s another construction: C̃ is the chain com-

plex with

C̃n = Cn ⊕ Cn+1

for n > 0 and

C̃0 = {(x, z) ∈ C0 ⊕ C1 | x + ∂(z) = 0 }.

The boundary ∂ : C̃n → C̃n−1 of C̃ is defined by

∂(x, z) = (∂(x), (−1)nx + ∂(z)).

Lemma 6.1. The complex C̃ is acyclic.
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Proof. If ∂(x, z) = 0 then ∂(x) = 0 and ∂(z) =

(−1)n+1x. It follows that

∂((−1)n+1z, 0) = (x, z)

if (x, z) is a cycle, so that (x, z) is a boundary.

There is a pullback diagram of chain complex maps

CI α //

p
��

C̃
p′
��

C ⊕ C
β
//C

in which the vertical maps p and p′ are projections

defined in each degree by p(x, y, z) = (x, y) and

p′(x, z) = x, respectively. The map α is defined

by α(x, y, z) = (x− y, z), while β(x, y) = x− y.

The map p′ is a fibration, and fibrations are closed

under pullback, so p is also a fibration. The chain

maps α and β are surjective in all degrees, and the

diagram above expands to a comparison of short

exact sequences

CI α //

p
��

C̃ //

p′
��

0

0 //C ∆
//

s
;;wwwwwwwwww
C ⊕ C

β
//C // 0

where ∆ is the diagonal map. Lemma 6.1 and a

long exact sequence argument together imply that

the map s is a weak equivalence.

2



We have therefore constructed a functorial dia-

gram

CI

p
��

C ∆
//

s
;;vvvvvvvvvv
C ⊕ C

(1)

in which p is a fibration and s is a weak equiv-

alence. In the terminology around closed model

categories, this is called a path object.

In that same language, one also says that any com-

mutative diagram of chain maps

CI

p
��

D
(f,g)

//

h
::vvvvvvvvvv
C ⊕ C

(2)

is a right homotopy between the chain maps f, g :

D → C

The map h, if it exists, is defined by

h(x) = (f (x), g(x), s(x))

for a collection of R-module maps s : Dn → Cn+1,

and the fact that h is a chain map forces

s(∂(x)) = (−1)n(f (x)− g(x)) + ∂(s(x))

for x ∈ Dn. Thus

(−1)ns(∂(x)) = (f (x)− g(x)) + ∂((−1)ns(x)),
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so that

(−1)ns(∂(x)) + ∂((−1)n+1s(x) = f (x)− g(x).

Thus the maps x 7→ (−1)n+1s(x), x ∈ Dn asso-

ciated to the right homotopy h define a chain ho-

motopy between the chain maps f and g. Further,

all chain homotopies arise in this way.

Exercise: Show that there is a functorial diagram

of the form (1) for unbounded chain complexes C,

such that the corresponding right homotopies (2)

define chain homotopies between maps f, g : D →
C of unbounded chain complexes.

7 Homotopical algebra

Suppose, thoughout this section, thatM is a closed

model category.

Here’s the meaning of the word “closed”:

Lemma 7.1. 1) A map i : A → B is a cofi-

bration if and only if it has the left lifting

property with respect to all trivial fibrations.

2) The map i is a trivial cofibration if and only

if it has the left lifting property with respect

to all fibrations.
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3) A map p : X → Y is a fibration if and only

if it has the right lifting property with respect

to all trivial cofibrations.

4) The map p is a trivial fibration if and only if

it has the right lifting property with respect

to all cofibrations.

Proof. I’ll prove statement 2). The rest are similar.

First of all, if i is a trivial cofibration, then it has

the left lifting property with respect to all fibra-

tions by CM4.

Suppose that i has the advertised lifting property.

The map i has a factorization

A
j //

i   A
AA

AA
AA

X
p
��

B
where j is a trivial cofibration and p is a fibration.

By the assumption on i the lifting exists in the

diagram

A
j //

i
��

X
p
��

B

>>

1
//B

It follows that i is a retract of j and is therefore a

trivial cofibration by CM4.
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Corollary 7.2. 1) The classes of cofibrations

and trivial cofibrations are closed under com-

positions and pushout. Any isomorphism is

a trivial cofibration.

2) The classes of fibrations and trivial fibra-

tions are closed under composition and pull-

back. Any isomorphism is a trivial fibration.

Remark 7.3. Another practical consequence of

Lemma 7.1 is that, in order to describe a closed

model structure, one needs only specify the weak

equivalences and either the cofibrations or fibra-

tions. We saw this in the descriptions of the model

structures for the chain complex categories and for

spaces.

Now let’s discuss the various notions of homotopy

that one has in a model structure.

Definition 7.4. 1) A path object for an object

Y ofM is a commutative diagram

Y I

p
��

Y

s
;;vvvvvvvvvv

∆
// Y × Y

such that ∆ is the diagonal map, s is a weak

equivalence and p is a fibration.

6



2) A right homotopy between maps f, g : X →
Y is a commutative diagram

Y I

p
��

X
(f,g)

//

h
::vvvvvvvvvv

Y × Y

where p is the fibration appearing in some path

object for Y . Say that f is right homotopic

to g if such a right homotopy exists and write

f ∼r g.

Example 7.5. 1) Path objects abound in nature,

since the diagonal map ∆ : Y → Y × Y factor-

izes as a fibration following a trivial cofibration, by

CM5.

2) Chain homotopy is a type of right homotopy in

both Ch+(R) and Ch(R).

Here’s the dual definition:

Definition 7.6. 1) A cylinder object for an ob-

ject X ∈M is a commutative diagram

X tX ∇ //

i
��

X

X ⊗ I
σ

::uuuuuuuuuu

where ∇ is the “fold” map, i is a cofibration

and σ is a weak equivalence.
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2) A left homotopy between maps f, g : X → Y

is a commutative diagram

X tX
(f,g)

//

i
��

Y

X ⊗ I
h

::uuuuuuuuuu

where the map i is the cofibration appearing in

some cylinder object for X . Say that f is left

homotopic to g if such a left homotopy exists,

and write f ∼l g.

Example 7.7. 1) Suppose thatX is aCW -complex

and I is the unit interval. Then the standard pic-

ture

X tX ∇ //

i
��

X

X × I
pr

::uuuuuuuuuu

is a cylinder object for X . Note that X × I is

obtained from X t X by attaching cells, and is

therefore a cofibration.

Actually, the standard sort of homotopy X× I →
Y for a more general space X is more properly

described as a right homotopy.

2) There are lots of cylinder objects, since the map

∇ : X tX → X has a factorization as a cofibra-

tion followed by a trivial fibration, by CM5.
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I’ve used the word “dual”, and here is what I mean

by that:

Lemma 7.8. Suppose thatM is a closed model

category. Say that a morphism f op : Y → X of

the opposite category Mop is a fibration (resp.

cofibration, weak equivalence) if and only if the

corresponding map f : X → Y is a cofibration

(resp. fibration, weak equivalence) ofM. Then

with these definitions, Mop satisfies the axioms

for a closed model category.

Proof. Exercise.

Thus, if you reverse the arrows in a cylinder object

you get a path object, and vice versa. Generally

all facts about the homotopical algebra of a model

category M have an equivalent dual assertion in

Mop.

Examples: In Lemma 7.1, statement 3) is the

dual of statement 1), and statement 4) is the dual

of statement 2).

Lemma 7.9. Right homotopy of maps X → Y

is an equivalence relation if Y is fibrant.

The dual of Lemma 7.9 is the following:
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Lemma 7.10. Left homotopy of maps X → Y

is an equivalence relation if X is cofibrant.

Proof. Lemma 7.10 is equivalent to Lemma 7.9 in

Mop.

Proof of Lemma 7.9. First of all, note that that

if Y if fibrant then any projection X × Y → X is

a fibration. It follows that if

Y I

(p0,p1)
��

Y ∆
//

s
;;vvvvvvvvvv

Y × Y

is a path object for a fibrant object Y , then the

maps p0 and p1 are trivial fibrations.

Suppose given right homotopies

Y I

(p0,p1)
��

X //

h1
88qqqqqqqqqqqqq

(f1,f2)
// Y × Y

and Y J

(q0,q1)
��

X

h2
88qqqqqqqqqqqqq

(f2,f3)
// Y × Y

Form the pullback

Y I ×Y Y J p∗ //

q∗
��

Y J

q0
��

Y I
p1

// Y
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Then the diagram

Y I ×Y Y J p∗ //

(q∗,q1p∗)
��

Y J

(q0,q1)
��

Y I × Y p1×1
// Y × Y

is a pullback and p0 × 1 : Y I × Y → Y × Y is a

fibration, so that the composite

Y I ×Y Y J (p0q∗,q1p∗)−−−−−−→ Y × Y

is a fibration. The weak equivalences s, s′ from the

respective path objects determine a commutative

diagram

Y I ×Y Y J

(p0q∗,q1p∗)
��

Y ∆
//

(s,s′) 99sssssssssss
Y × Y

and the map (s, s′) is a weak equivalence since p0q∗
is a trivial fibration. It follows that the homotopies

h, h′ determine a right homotopy

Y I ×Y Y J

(p0q∗,q1p∗)
��

X
(f1,f3)

//

(h,h′) 99rrrrrrrrrrr
Y × Y

We have proved that the right homotopy relation

is transitive. It is symmetric since the twist iso-

morphism Y × Y → Y × Y is a fibration, and it
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is reflexive since the morphism s in a path object

is a right homotopy from the identity to itself.

Now here’s the result that ties the homotopical

room together:

Lemma 7.11. 1) Suppose that Y is fibrant and

that X ⊗ I is a fixed choice of cylinder ob-

ject for an object X. Suppose that the maps

f, g : X → Y are right homotopic. Then

there is a left homotopy

X tX
(f,g)

//

i
��

Y

X ⊗ I
h

::uuuuuuuuuu

2) Suppose that X is cofibrant and that Y I is

a fixed choice of path object for an object Y .

Suppose that the maps f, g : X → Y are left

homotopic. Then there is a right homotopy

Y I

p
��

X
(f,g)

//

h
::vvvvvvvvvv

Y × Y

Proof. Statement 2) is the dual of statement 1).

We’ll prove statement 1).
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Suppose that

X tX ∇ //

i
��

X

X ⊗ I
σ

::uuuuuuuuuu

and Y I

(p0,p1)
��

Y ∆
//

s
;;vvvvvvvvvv

Y × Y
are the fixed choice of cylinder and the path object

involved in the right homotopy f ∼r g, respec-

tively, and let h : X → Y I be the right homotopy.

Form the diagram

X tX
(sf,h)

//

i
��

Y I

p0
��

p1 // Y

X ⊗ I
fσ

//

θ
88

Y

The lift θ exists because p0 is a trivial fibration

since Y is fibrant. Then the composite p1θ is the

desired left homotopy.

Corollary 7.12. Suppose that f, g : X → Y

are morphisms of M, where X is cofibrant and

Y is fibrant. Suppose that

X tX ∇ //

i
��

X

X ⊗ I
σ

::uuuuuuuuuu

and Y I

p
��

Y ∆
//

s
;;vvvvvvvvvv

Y × Y
are fixed choices of cylinder and path objects for

X and Y respectively. Then the following are

equivalent:

13



• f is left homotopic to g.

• There is a right homotopy h : X → Y I from

f to g.

• f is right homotopic to g.

• There is a left homotopy H : X ⊗ I → Y

from f to g.

Thus, if X is cofibrant and Y is fibrant, all notions

of homotopy of maps X → Y collapse to the same

thing. I shall typically write f ∼ g to say that f is

homotopic to g (by whatever means) in this case.

Here’s the first big application:

Theorem 7.13 (Whitehead Theorem). Suppose

that f : X → Y is a weak equivalence, and

that the objects X and Y are both fibrant and

cofibrant. Then f is a homotopy equivalence.

Proof. It suffices to assume that f is a trivial fi-

bration: every weak equivalence can be factorized

as the composite of a trivial fibration with a trivial

cofibration, and the trivial cofibration case is dual.

The object Y is cofibrant, so the lifting exists in
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the diagram

∅ //

��

X
f
��

Y 1
//

j
>>

Y

Suppose that

X tX ∇ //

i
��

X

X ⊗ I
σ

::uuuuuuuuuu

is a cylinder object for X , and then form the dia-

gram

X tX
(jf,1)

//

i
��

X
f
��

X ⊗ I
fσ

//

h
::

Y

The indicated lift (and required homotopy) exists

because f is a trivial fibration.

Examples: 1) Every weak equivalence f : C →
D in Ch+(R) between complexes of projective R-

modules is a chain homotopy equivalence.

2) (traditional Whitehead Theorem) Every weak

equivalence f : X → Y between CW -complexes

is a homotopy equivalence.
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8 The homotopy category

Here’s a construction. For all X ∈M find maps

X
pX←− QX

jX−→ RQX

such that

• pX is a trivial fibration and QX is cofibrant,

and jX is a trivial cofibration and RQX is fi-

brant (and cofibrant),

• QX = X and pX = 1X if X is cofibrant, and

RQX = QX and jX = 1QX if QX is fibrant.

Then any map f : X → Y determines a diagram

X
f
��

QX
pXoo

f1
��

jX //RQX
f2
��

Y QYpY
oo

jY
//RQY

since QX is cofibrant and RQY is fibrant.

Lemma 8.1. The map f2 is uniquely deter-

mined up to homotopy.

Proof. Suppose that f ′1 and f ′2 are different choices

for f1 and f2 respectively. Then there is a diagram

QX tQX (f1,f
′
1)

//

i
��

QY
pY
��

QX ⊗ I σ
//

44

QX
fpX

// Y
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for any choice of cylinder QX⊗ I for QX , so that

f1 and f ′1 are left homotopic.

The maps jY f1 and jY f
′
1 are left homotopic, hence

right homotopic becauseQX is cofibrant andRQY

is fibrant. Thus, there is a right homotopy

RQY I

p
��

QX
(jY f1,jY f

′
1)
//

h
44iiiiiiiiiiiiiiiiiiiiiii

RQY ×RQY

for some (actually any) path object RQY I . Form

the diagram

QX h //

jX
��

RQY I

p
��

RQX
(f2,f

′
2)

//

H
44

RQY ×RQY

Then f2 and f ′2 are homotopic.

Write π(M)cf for the category whose objects are

the cofibrant-fibrant objects ofM, and whose mor-

phisms are homotopy classes of maps. It is a con-

sequence of Lemma 8.1 that there is a well-defined

functor

M→ π(M)cf

defined by X 7→ RQX and f 7→ [RQf ], where

RQ(f ) = f2 in the diagram above “defines”RQ(f ).
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The homotopy category Ho(M) of M has the

same objects asM, and has

homHo(M)(X, Y ) = homπ(M)cf (RQX,RQY ).

There is a functor

γ :M→ Ho(M)

which is the identity on objects, and sends f :

X → Y to the homotopy class [RQ(f )].

NB: The functor γ takes weak equivalences to iso-

morphisms in Ho(M), by the Whitehead Theorem

(Theorem 7.13).

Lemma 8.2. Suppose that f : RQX → RQY

represents a morphism [f ] : X → Y of Ho(M).

Then there is a commutative diagram

X
[f ]
��

QX
γ(pX)
oo

[f ]
��

γ(jX)
//RQX

γ(f)
��

Y QY
γ(pY )
oo

γ(jY )
//RQY

in Ho(M).

Proof. The maps γ(pX) and γ(jX) are isomorphisms

defined by the class [1RQX ] in π(M)cf .
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Theorem 8.3. Suppose thatM is a closed model

category, and that a functor F :M→ D takes

weak equivalences to isomorphisms. Then there

is a unique functor F∗ : Ho(M)→ D such that

the diagram of functors

M γ //

F $$JJJJJJJJJJJ Ho(M)
F∗
��

D

commutes.

Proof. This result is a corollary of Lemma 8.2.

Remarks: 1) The category Ho(M) is a small

model for the categoryM[WE]−1 that is obtained

from M by formally inverting the weak equiva-

lences.

2) The functor γ : M → Ho(M) induces a fully

faithful functor γ∗ : π(Mcf) → Ho(M). Fur-

ther, every object of Ho(M) is isomorphic to a

(cofibrant fibrant) object in the image of γ∗. It fol-

lows that the functor γ∗ is an equivalence of cate-

gories. This observation specializes to well known

phenomena:

• The homotopy category of CGHaus is equiv-

alent to the category of CW -complexes and
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ordinary homotopy classes of maps between

them.

• The derived category of Ch+(R) is equivalent

to the category of chain complexes of projec-

tives and chain homotopy classes of maps be-

tween them.

One final thing: in general, the functor γ :M→
Ho(M) reflects weak equivalences:

Proposition 8.4. Suppose that M is a closed

model category, and that f : X → Y is a mor-

phism such that γ(f ) is an isomorphism in Ho(M).

Then f is a weak equivalence of M.

For the proof, it is enough to suppose that both

X and Y are fibrant and cofibrant and that f is

a fibration with a homotopy inverse g : Y → X .

Then the idea is to show that f is a weak equiva-

lence.

This claim is a triviality in almost all cases of inter-

est, but it is a bit tricky to prove in full generality.

This result appears in [1] as Proposition II.1.14.
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