Lecture 003 (September 30, 2009)

6 Example: Chain homotopy

Suppose that C'is an ordinary chain complex. Let
C! be the complex with

Cl=C,®C,®Cpri
for n > 0, and with
Cy = {(z,y,2) € Co®Cy®C, | (z—y)+0(2) =0 }.
The boundary map @ : CL — C! | is defined by
O(z,y,2) = (0(x),0(y), (=1)"(x — y) + (2)).

Here’s another construction: C' is the chain com-

plex with
Cn - Cn S Cn—i—l

for n > 0 and
Co={(v,2)€Co@Cy |2 +0(2)=0}.
The boundary 9 : C,, — C,,_1 of C' is defined by
Az, z) = (0(x), (—1)"z + d(2)).

Lemma 6.1. The complez C is acyclic.



Proof. If O(z,z) = 0 then 0(z) = 0 and 0(z) =
(=1)"*1z. Tt follows that

O((=1)""2,0) = (=, 2)
if (x, z) is a cycle, so that (z, z) is a boundary. [
There is a pullback diagram of chain complex maps
cl——C

S

in which the vertical maps p and p’ are projections
defined in each degree by p(x,y, z) = (z,y) and
P (x,z) = x, respectively. The map « is defined
by a(x,y,z) = (x —y, z), while B(x,y) =z —y.
The map p' is a fibration, and fibrations are closed
under pullback, so p is also a fibration. The chain
maps « and 3 are surjective in all degrees, and the
diagram above expands to a comparison of short
exact sequences

cl——=C—0
I
0—C—H5CoC—5-C—0

where A is the diagonal map. Lemma 6.1 and a
long exact sequence argument together imply that
the map s is a weak equivalence.
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We have therefore constructed a functorial dia-
gram

c! (1)

b
CxrCal

in which p is a fibration and s is a weak equiv-
alence. In the terminology around closed model
categories, this is called a path object.

In that same language, one also says that any com-
mutative diagram of chain maps

ol (2)
h J/p
D—~CaC

(f.9)

is a right homotopy between the chain maps f, g :

D—C
The map h, if it exists, is defined by

hz) = (f(2), g(z), s(x))
for a collection of R-module maps s : D,, — C,11,
and the fact that h is a chain map forces

s(0(z)) = (=1)"(f(z) — g(x)) + O(s(z))
for x € D,,. Thus
(=1)"s(0(x)) = (f(z) — g(x)) + I((—1)"s(x)),
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so that
(—1)"s(0(z)) + d((—1)""s(z) = f(x) — g().

Thus the maps = — (—1)""s(z), z € D,, asso-
ciated to the right homotopy h define a chain ho-
motopy between the chain maps f and g. Further,
all chain homotopies arise in this way.

Exercise: Show that there is a functorial diagram
of the form (1) for unbounded chain complexes C,
such that the corresponding right homotopies (2)
define chain homotopies between maps f,g : D —
C' of unbounded chain complexes.

7 Homotopical algebra

Suppose, thoughout this section, that M is a closed
model category.

Here’s the meaning of the word “closed”:

Lemma 7.1. 1) A map i : A — B is a cofi-
bration if and only if it has the left lifting
property with respect to all trivial fibrations.

2) The map i is a trivial cofibration if and only
iof 1t has the left lifting property with respect
to all fibrations.



3) A map p: X — Y is a fibration if and only
iof 1t has the right lifting property with respect
to all trivial cofibrations.

4) The map p is a trivial fibration if and only if
it has the right Lifting property with respect
to all cofibrations.

Proof. I'll prove statement 2). The rest are similar.

First of all, if ¢ is a trivial cofibration, then it has
the left lifting property with respect to all fibra-
tions by CM4.

Suppose that ¢ has the advertised lifting property.
The map ¢ has a factorization

A—X

N

B
where 7 is a trivial cofibration and p is a fibration.
By the assumption on ¢ the lifting exists in the

diagram

A--X
e

B—-B
It follows that 7 is a retract of j and is therefore a
trivial cofibration by CMA4. O
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Corollary 7.2. 1) The classes of cofibrations
and trivial cofibrations are closed under com-
positions and pushout. Any isomorphism s
a trivial cofibration.

2) The classes of fibrations and trivial fibra-
tions are closed under composition and pull-
back. Anyisomorphism is a trivial fibration.

Remark 7.3. Another practical consequence of
Lemma 7.1 is that, in order to describe a closed
model structure, one needs only specify the weak
equivalences and either the cofibrations or fibra-
tions. We saw this in the descriptions of the model
structures for the chain complex categories and for
spaces.

Now let’s discuss the various notions of homotopy
that one has in a model structure.

Definition 7.4. 1) A path object for an object
Y of M is a commutative diagram

Y]
S
YTY XY
such that A is the diagonal map, s is a weak

equivalence and p is a fibration.
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2) A right homotopy between maps f,g : X —
Y is a commutative diagram

YI
h lp
X—-—=Y xY

(f.9)

where p is the fibration appearing in some path
object for Y. Say that f is right homotopic
to g if such a right homotopy exists and write

o~ g
Example 7.5. 1) Path objects abound in nature,

since the diagonal map A : Y — Y x Y factor-
izes as a fibration following a trivial cofibration, by

CMS5.

2) Chain homotopy is a type of right homotopy in
both Ch(R) and Ch(R).

Here’s the dual definition:

Definition 7.6. 1) A cylinder object for an ob-
ject X € M is a commutative diagram

XUX-YX

e

X®I

where V is the “fold” map, ¢ is a cofibration
and o is a weak equivalence.
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2) A left homotopy between maps f,g: X — Y
is a commutative diagram

xuxly

| A

X®I1
where the map ¢ is the cofibration appearing in
some cylinder object for X. Say that f is left
homotopic to g if such a left homotopy exists,
and write f ~; g.

Example 7.7. 1) Suppose that X is a CW-complex
and [ is the unit interval. Then the standard pic-
ture

XUX—-X

i

X x 1
is a cylinder object for X. Note that X x I is
obtained from X L X by attaching cells, and is
therefore a cofibration.

Actually, the standard sort of homotopy X x I —
Y for a more general space X is more properly
described as a right homotopy.

2) There are lots of cylinder objects, since the map
V : X U X — X has a factorization as a cofibra-
tion followed by a trivial fibration, by CM5.
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['ve used the word “dual”, and here is what I mean
by that:

Lemma 7.8. Suppose that M 1is a closed model
category. Say that a morphism f?:Y — X of
the opposite category M is a fibration (resp.
cofibration, weak equivalence) if and only if the
corresponding map f : X — Y is a cofibration
(resp. fibration, weak equivalence) of M. Then
with these definitions, M satisfies the arioms

for a closed model category.
Proof. Exercise. O

Thus, if you reverse the arrows in a cylinder object
you get a path object, and vice versa. Generally
all facts about the homotopical algebra of a model
category M have an equivalent dual assertion in
MeP.

Examples: In Lemma 7.1, statement 3) is the
dual of statement 1), and statement 4) is the dual
of statement 2).

Lemma 7.9. Right homotopy of maps X — Y
15 an equivalence relation of Y is fibrant.

The dual of Lemma 7.9 is the following:



Lemma 7.10. Left homotopy of maps X — Y
15 an equivalence relation if X s cofibrant.

Proof. Lemma 7.10 is equivalent to Lemma 7.9 in

MP. []

Proof of Lemma 7.9. First of all, note that that
if Y if fibrant then any projection X x Y — X is
a fibration. It follows that if

YI
l(po,pﬂ
YTY XY
is a path object for a fibrant object Y, then the

maps po and p; are trivial fibrations.

Suppose given right homotopies

vy and Y/
///jzl////y l(po,p1) ///jEL///j (90.q1)
X (f1,f2) Yoy ‘)<.(Jbvf3)-}f x ¥

Form the pullback

Y1 xy Y 2y

q*i lqo

yl—5—Y
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Then the diagram

v % v yJ _ P '
(q*,qw*)i (90,q1)

YIixY——Y xY

p1><1

is a pullback and py x 1 : Y/ xY - Y x Y isa
fibration, so that the composite

v s,y sapd ooy

is a fibration. The weak equivalences s, s’ from the
respective path objects determine a commutative
diagram

Y xy Y7

y l(poq*,qw*)

YAYXY

and the map (s, §') is a weak equivalence since pyqs.
is a trivial fibration. It follows that the homotopies
h, h' determine a right homotopy
/Y[ Xy YJ
(h, 1) l(
P0G,q1D+)

Xy xY

We have proved that the right homotopy relation
is transitive. It is symmetric since the twist iso-
morphism Y X Y — Y X Y is a fibration, and it
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is reflexive since the morphism s in a path object
is a right homotopy from the identity to itself. [

Now here’s the result that ties the homotopical
room together:

Lemma 7.11. 1) Suppose thatY is fibrant and
that X ® I is a fized choice of cylinder ob-
ject for an object X. Suppose that the maps
f,g : X — Y are rght homotopic. Then
there is a left homotopy

xux¥y

| A

X®I

2) Suppose that X is cofibrant and that Y7 is
a fixed choice of path object for an object Y .
Suppose that the maps f,g: X — Y are left
homotopic. Then there 1s a right homotopy

YI
h lp
X—=Y xY

(f.9)

Proof. Statement 2) is the dual of statement 1).
We'll prove statement 1).
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Suppose that

XUX VX and v
Zi / / i(po,pl)
X®I1 Y Y XY

are the fixed choice of cylinder and the path object
involved in the right homotopy f ~, g, respec-
tively, and let b : X — Y be the right homotopy.
Form the diagram

X L] X (vah)7YI P1 Y
zl 9 - poi
X@I——Y

The lift 6 exists because pg is a trivial fibration
since Y is fibrant. Then the composite p0 is the
desired left homotopy. O

Corollary 7.12. Suppose that f,g : X — Y
are morphisms of M, where X 1is cofibrant and
Y s fibrant. Suppose that

XUXY-X and v
il / / lp
X®I1 YTYXY

are fized choices of cylinder and path objects for
X and Y respectively. Then the following are
equivalent:
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e f is left homotopic to g.
o There is a right homotopy h : X — Y from
f tog.
e f is right homotopic to g.
e There is a left homotopy H : X ® I — Y
from f to g.
Thus, if X is cofibrant and Y is fibrant, all notions
of homotopy of maps X — Y collapse to the same

thing. I shall typically write f ~ g to say that f is
homotopic to g (by whatever means) in this case.

Here’s the first big application:

Theorem 7.13 (Whitehead Theorem). Suppose
that f : X — Y 1is a weak equivalence, and
that the objects X and Y are both fibrant and
cofibrant. Then f is a homotopy equivalence.

Proof. Tt suffices to assume that f is a trivial fi-
bration: every weak equivalence can be factorized
as the composite of a trivial fibration with a trivial
cofibration, and the trivial cofibration case is dual.

The object Y is cofibrant, so the lifting exists in

14



the diagram

_—

—X
| 27
Y —Y

1
Suppose that
XUuX-—YX

| &

X®I

is a cylinder object for X, and then form the dia-

gram

xux“x

[

X®I—-Y
The indicated lift (and required homotopy) exists
because f is a trivial fibration. O

Examples: 1) Every weak equivalence f : C' —
D in Ch,(R) between complexes of projective R-
modules is a chain homotopy equivalence.

2) (traditional Whitehead Theorem) Every weak
equivalence f : X — Y between C'W-complexes
is a homotopy equivalence.
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8 The homotopy category

Here’s a construction. For all X € M find maps
X & 0x X Rox
such that

e px is a trivial fibration and QX is cofibrant,
and jx is a trivial cofibration and RQ)X is fi-
brant (and cofibrant),

e )X = X and pxy = 1x if X is cofibrant, and
RQX = QX and jx = 1gx it QX is fibrant.

Then any map f : X — Y determines a diagram
X PXx QX JX RQX

f| | |5

Y by QY Jy RQY
since QX is cofibrant and RQY is fibrant.

Lemma 8.1. The map fo is uniquely deter-

mined up to homotopy.

Proof. Suppose that f{ and f3 are different choices
for f1 and fs respectively. Then there is a diagram

QXl—IQX (flyfl) 7QY

zl e lpy

QX ®1——QX 7Y
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for any choice of cylinder QX ® I for QX so that
f1 and f{ are left homotopic.

The maps jy f1 and jy f] are left homotopic, hence
right homotopic because (Q X is cofibrant and RQY
is fibrant. Thus, there is a right homotopy

RQY!

i

Uy f1.v 1) RQY x RQY

QX

for some (actually any) path object RQY!. Form
the diagram

QX " RQY!
jxl ) Ao ip

ROX — RQY x RQY
(f2,f3)

Then fo and f3 are homotopic. []

Write m(M).s for the category whose objects are
the cofibrant-fibrant objects of M, and whose mor-
phisms are homotopy classes of maps. It is a con-
sequence of Lemma 8.1 that there is a well-defined
functor

./\/l — W(M)cf

defined by X — RQX and f — [RQf], where
RQ(f) = foin the diagram above “defines” RQ(f).
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The homotopy category Ho(M) of M has the
same objects as M, and has

hompea)(X,Y) = homW(M)cf(RQX, RQY).
There is a functor
v : M — Ho(M)
which is the identity on objects, and sends f
X — Y to the homotopy class [RQ(f)].

NB: The functor v takes weak equivalences to iso-
morphisms in Ho(M), by the Whitehead Theorem
(Theorem 7.13).

Lemma 8.2. Suppose that f : RQX — RQY
represents a morphism [f] : X — Y of Ho(M).
Then there is a commutative diagram

D% Y(px) OX Y(ix) ROX
gl |17 )
QY —— RQY

i)

v(py) ol

in Ho(M).

Proof. The maps vy(px) and (jx) are isomorphisms
defined by the class [1gox] in (M), ]
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Theorem 8.3. Suppose that M is a closed model
category, and that a functor F': M — D takes
weak equivalences to isomorphisms. Then there
is a unique functor F, : Ho(M) — D such that
the diagram of functors

M —"~Ho(M)
Rll;*

commautes.
Proof. This result is a corollary of Lemma 8.2. [

Remarks: 1) The category Ho(M) is a small
model for the category M[W E]~! that is obtained
from M by formally inverting the weak equiva-
lences.

2) The functor v : M — Ho(M) induces a fully
faithful functor v, : m(M.s) — Ho(M). Fur-
ther, every object of Ho(M) is isomorphic to a
(cofibrant fibrant) object in the image of 7,. It fol-
lows that the functor ~, is an equivalence of cate-
gories. This observation specializes to well known
phenomena:

e The homotopy category of CGHaus is equiv-
alent to the category of C'W-complexes and
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ordinary homotopy classes of maps between
them.

e The derived category of C'h,(R) is equivalent
to the category of chain complexes of projec-
tives and chain homotopy classes of maps be-
tween them.

One final thing: in general, the functor v : M —
Ho(M) reflects weak equivalences:

Proposition 8.4. Suppose that M is a closed
model category, and that f: X — Y 1is a mor-
phism such that v(f) is an isomorphism in Ho(M).
Then f is a weak equivalence of M.

For the proof, it is enough to suppose that both
X and Y are fibrant and cofibrant and that f is
a fibration with a homotopy inverse g : ¥ — X.
Then the idea is to show that f is a weak equiva-
lence.

This claim is a triviality in almost all cases of inter-
est, but it is a bit tricky to prove in full generality.
This result appears in [1] as Proposition 11.1.14.
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