Lecture 004 (October 19, 2009)

9 Torsion products: basic theory

Suppose that M is a right R-module and that N
is a left R-module. The tensor product M ®r N
is the abelian group freely generated by the pairs
(m,n) € M x N, subject to the relations

e (m+m',n)~ (m,n)+ (m',n)
e (m,n+n')~(m,n)+ (m,n)
o (mr,n) = (m,rn) forr € R.

The class of a generator (m,n) in M @ N is writ-
ten m®mn. The elements m®n generate the group

M &®pr N.

Suppose that f: M x N — K is a function taking
values in an abelian group K which satisfies the
following identities:

o f(m+m',n)~ f(m,n)+ f(m',n)
o f(m,n+n')~ flm,n)+ flm,n)
e f(mr,n)= f(m,rn) forr € R.

Such a function is said to be R-bilinear.



Every R-bilinear function f extends to a unique
abelian group homomorphism f, : M g N — K
such that
film®n) = f(m,n).
[t follows that the R-bilinear map
MxN—M®@rN

defined by (m, n) — m®n is the initial R-bilinear
map which is defined on M x N.

Every right R-module map f : M — M’ and
every left R-module map g : N — N’ together
induce a homomorphism

f@g: M@r N — M @ N’
which is defined by

(f®@g)(m@n)= f(m)®g(n).

The assigment (M, N) — M ®@p N uniquely spec-
ifies M ®p N as an abelian group, and the tensor
product construction is functorial in M and N.

Lemma 9.1. 1) The module structure maps M X
R — M and R X N — N induce canonical
1somorphisms

M®rR= M, R®pN = N.
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2) Suppose that M' and N' are second choices
of left and right R-modules. Then there are
canonical isomorphisms

(M&M)®r N = (M e N)® (M @z N),
M®r(N®N') = (M e N)® (M N)
which are induced by projections.
The proof of this Lemma is an exercise.
Lemma 9.2. 1) Suppose that
ML M T M0

15 an exact sequence of right R-modules. Then
the induced sequence of abelian group homo-
morphisms

M NI M @p N 225 M" @ N — 0
18 exact.
2) Suppose that
N— N = N'—0

15 an exact sequence of left R-modules. Then
the induced sequence

M@RN%M®RN/—>M®RNH—>O

18 exact.



Proof. We'll prove statement 1). The proof of
statement 2) is similar,

Form the exact sequence
Me&r NI M @r N5 C -0,
so that 7 is the cokernel of f ® 1. Then
p®1)-(f®1)=0

so there is a unique homomorphism p, which makes
the diagram

M @r N———C

S b

M Qp N

commute. The function
M'x NS C

which is given by ([m],n) — m(m,n) (here [m] =
p(m)) is well defined and and R-bilinear, and in-
duces a unique abelian group homomorphism o, :
M" ®r N — C. Use universal properties to show
that o, is the inverse abelian group homomorphism
of ps. ]

Lemma 9.2 says that the tensor product functor is
right exact, in both variables. This functor does
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not preserve monomorphisms in general, so it fails
to be left exact, and is therefore not exact: it does
not preserve exact sequences.

Example 9.3. Suppose that n > 1 is an integer.
Then multiplication by n defines an abelian group
homomorphism

7 =% 7
which is injective. According to Lemma 9.1 there
is a commutative diagram

(xn)®1

7 ® ZL/n

!

Z/n

7 Q Z/n

|=

Z/n

Xn

and the map xn : Z/n — Z/n is the 0-map,
which is certainly not injective.

Example 9.4. Lemma 9.1 implies that the inclu-
sion of a direct summand

M—MaoM
of right R-modules induces a monomorphism
M®@rN — (M®M"QrN =2 (MRzrN)®B(M'@rN),

since the displayed composite is the inclusion of a
direct summand.



Similarly, if
N —-NagN’

is an inclusion of a direct summant of left R-modules,
then the induced map

MRrN — MQpr(NEN') = (MRrN)B(MrN')
is a monomorphism.

We also have the following;:

Lemma 9.5. 1) If P is a projective right R-
module, then the functor defined on left R-
modules by N — P ®pr N 1s exact.

2) If Q is a projective left R-module, then the
functor defined on right R-modules by M +—
M ®pr Q s exact.

Proof. Again, we'll just prove statement 1), since
statement 2) is similar,

The functor
N+— RrN=N

is exact by Lemma 9.1. If F'is a finitely generated
free module, then

F~a' R

is a finite direct sum of copies of R, and finite di-
rect sums of exact functors are exact (exercise),
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so that tensoring with F'is exact. Every free R-
module F'is a filtered colimit of finitely generated
free modules (exercise) and filtered colimits of ex-
act functors are exact (exercise), so that tensoring
with an arbitrary free module F' is exact. Every
projective right R-module P is a retract (aka. di-
rect summand) of a free module, and retracts of
exact functors are exact (exercise). (]

The failure of left exactness for the functor M —
M ®pr N is encoded in the higher torsion products

Tor, (M, N), n > 0, which are the left derived
functors of the tensor product.

We can define these functors quite generally as fol-
lows. Suppose that C'is an ordinary chain complex
of right R-modules and that NV is a left R-module,
as above.

There is a functorial cofibrant model m¢ : Po — C
(me is a weak equivalence, actually a trivial fi-
bration, with Pg cofibrant) for the chain complex
C. The functoriality of the cofibrant model comes
from the small object argument for the model struc-
ture on the chain complex category C'h (R), which
argument is natural in chain complex maps. Recall
that the cofibrant model Pp is a chain complex of



projective right R-modules. We define the higher
torsion product functors Tor,(C, N') by

Tor,(C,N) = H,(Pc ®r N), n > 0.

Any chain complex morphism f : C' — D induces
a commutative diagram

Py P,
e |7
C—-D
and there is an induced chain complex map
fi®1l: Po®r N — Pp® N,
with corresponding induced morphisms
fs« : Tor,(C), N) — Tor, (D, N)

for all n > 0. These last maps define the functors
Tor,( ,N). Observe (exercise) that a morphism
g : N — N’ also induces chain maps

Pr@p N 2% Prop N
and hence abelian group homomorphisms
g« : Tor,(C, N) — Tor,(C,N'), n > 0.
The assignment
(C,N) — Tor,(C,N)
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is therefore functorial in both chain complexes C'
and modules N. This pairing is actually a bifunc-
tor in the sense that the functors in C' and N com-
mute with each other.

Remark 9.6. Here is a fundamental observation:
we have used a functorial cofibrant model for the
chain complex C', but we don’t need to if we are
only interested in specifying the functors Tor,(C, N)
up to isomorphism.

Suppose that f : Q — C'is a weak equivalence
with () cofibrant, and find a factorization

Q—0Q

AN

C

such that ¢ is a trivial cofibration and p is a trivial
fibration. Then @' is cofibrant. Also, the lifting
exists in the diagram

/

)——
v
Po—.-C

since p is a trivial fibration and Py is cofibrant.
Then also € is a weak equivalence since mo and p



are weak equivalences. The maps
PeLPLqQ
are weak equivalences of cofibrant (and fibrant)

chain complexes, and are therefore chain homotopy

equivalences. It follows that the induced maps

Poopg N L PopNELQop N

are chain homotopy equivalences. These maps are
therefore homology isomorphisms (by Corollary 9.8
below), and so they induce isomorphisms

Tor,(C,N) = H,(Pec®pN) = H,(P®,N) — H,(QRxN).

Lemma 9.7. Suppose that the chain maps f, g :
C' — D are chain homotopic. Then the induced
maps fi, gs - Hy(C) — H,(D) are equal.

Proof. Recall that a chain homotopy from f to g
consists of homomorphisms s : C,, — D,y such
that

f—g=0s+s0:C,— D,, n>0.
Thus, if z is an n-cycle, then

f(z) = g(z) = 9s(z) + s0(z) = 0s(2)
is a boundary, so that

[(2)] = lg(2)] € Hu(D).
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Corollary 9.8. Suppose that f : C — D is a
chain homotopy equivalence. Then [ induces
1somorphisms

H,(C) = Hy(D)
for all n > 0.

Proof. When we say that f is a chain homotopy
equivalence, we mean that there is a chain map
g . D — (C such that fg is chain homotopic to
1p and ¢gf is chain homotopic to 1¢. It follows
from Lemma 9.7 that the induced maps f, and g,
in homology are inverse to each other. ]

The functors Tor,(C, N), as defined here, are ac-
tually hypertor functors from a classical point of
view, but they specialize to the standard higher
derived functors of the tensor product.

In effect, suppose that M is a right R-module,
and identify it with the chain complex M [0] which
consists of M concentrated in degree 0. A cofibrant
model P — M 0] is a projective resolution of M in
the classical sense, and the higher torsion products
Tor, (M 0], N') can be identified up to isomorphism
with the homology groups

H,(P®pr M),
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on account of the observations in Remark 9.6. One
usually writes

Tor, (M, N) := Tor,(M][0], N).
Lemma 9.9. 1) There is a natural isomorphism
Torg(C, N) = Hy(C') ®r N.
2) There is a natural isomorphism
Torg(M,N) = M ®g N.

Proof. The second statement follows from the first
(exercise).

Suppose that m : P — C is a cofibrant model of
the complex C'. Then the sequence

PL Py Hy(C)— 0
is exact, so the sequence
Pror N 2L Pyor N I Hy(C)@r N — 0

is exact, by Lemma 9.2. It follows that there are
isomorphisms

Torg(C, N) = Ho(P ®r M) = Hy(C') @ N.
[]
Lemma 9.10. Suppose that
0-FLEL B0
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1s a short exact sequence of chain complexes.
Then there is an induced long exact sequence

.2 Tor,(F, N) % Tor,(E, N) 2 Tor, (B, N) %
L Torg(F, N) 2 Torg(E, N) £ Torg(B, N) — 0.

This long exact sequence is functorial in short
exact sequences of chain complezes.

Proof. Choose a functorial cofibrant model 7g
Pp — B, and form the pullback diagram

Elﬁ)PB

ml img

ETB

Then p, is surjective in all degrees and 7, is a triv-
ial fibration. Choose a functorial cofibrant model
7+ P — E’. Then the composite p,mp :
Pgp — Pp is surjective in all degrees, and the
composite m,mg : Py — FE is a trivial fibration.
Suppose that 7' : F' — Pg is the inclusion of
the kernel of the map p,mg. Then in the induced
comparison of short exact sequences

«T gt

0—p P, E P,
i

0—F—=E—5+B—0
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the induced map 7’ is a weak equivalence. Fur-
thermore, the epimorphism p,7wg : Ppr — Ppg is
degreewise split since Pp is a complex of projec-
tive modules. It follows that F' is a complex of
projective modules, and is therefore cofibrant. It
also follows that the sequence of chain complex
morphisms

0— F@pN — Pp@prN - PgQN — 0 (1)

is degreewise split, and is therefore exact. The de-
sired long exact sequence is the long exact sequence
in homology which is associated to the short exact
sequence (1). (]

Corollary 9.11. Suppose that
0— ML ME M —0

15 a short exact sequence of right R-modules,
and that N is a left R-module. Then there is
an tnduced functorial long exact sequence

-2 Tor, (M, N) % Tor,(M’, N) 2 Tor,(M", N) 2
L M@r NS M @p N2 M @z N — 0.

Lemma 9.12. Suppose that C' is a chain com-
plex of right R-modules and that

0—-NLNIZLN -0
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18 a short exact sequence of left R-modules. Then
there is an induced functorial long exact se-
quence

-2 Tor,1(C, N") 2 Tor, (C, N) 2 Tor, (C, N') 25 ..
. Torg(C, N) 25 Torg(C, N') £5 Tory(C, N") — 0.

The proof of this result is an exercise. Use Lemma
9.5.

Corollary 9.13. Suppose that M s a right R-
module and that

0—>NLNELN -0
15 a short exact sequence of left R-modules. Then

there is an induced functorial long exact se-
quence

25 Tor, 1 (M, N") 2 Tor, (M, N) N Tor, (M, N') & ..
LA MR NS MesN 2 Moy N — 0.
Examples:

1) Suppose that P is a projective right R-module,
and that NN is an arbitrary left R-module. Then
the complex

+—>0—>0—P

is a projective resolution of P, so that the groups
Tor, (P, N) are the homology groups of the com-
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plex

+—=0—>0— P®rN.
[t follows that
0 if n > 0, and
Tor, (P, N) = pre Al
P@RN 1fn:0

Suppose that P — M|0] is a projective resolution
of M in right R-modules, and that @) is a projec-
tive left R-module. Then the sequence

= PLOrQ > P ®rQ - M®rpQ —0
is exact, so that

0 if n > 0, and

Tor, (M, Q) =
M, Q) M®@rQ ifn=0.

2) The short exact sequence
07257 — Z/n—0
defines a projective resolution

0—7Z 7

]

0—0—%Z/n
of the abelian group Z/n (aka. Z-module) in the

Xn

category of abelian groups. Suppose that A is an
arbitrary abelian group. Then the tensor product
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of the resolution above with A is isomorphic to the
chain complex

00— A2

It follows that
Torg(Z/n, A) = Z/n®@ A= A/nA,
Tory(Z/n, A) = ker(A =% A),
Tor;(Z/n, A) =0, © > 1.

Here,
Tori(Z/n, A) = Tor(Z/n, A) = , A

are standard notations for the same thing, which
is the subgroup of n-torsion elements of A.

3) Suppose that B is an abelian group, and let
p . F'— B be a surjective homomorphism, where
F'is a free abelian group. The kernel K of p is a
subgroup of a free abelian group, and is therefore
free (since Z is a principal ideal domain). It follows
that the short exact sequence

00— K —-F —B—0

defines a projective resolution of B in the category
of abelian groups. Thus the groups Tor,(B, A) are
the homology groups of the complex

=0 K®A—-F®A,
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and so Tor, (B, A) = 0 for n > 1, for all abelian
groups B and A.

4) Suppose that Z(Z/m) is the group algebra for
the cyclic group Z/m over the integers. Suppose
that ¢ is the multiplicative generator of the group
Z/m, so that all elements of Z(Z/m) have the
form

ag + ayt + agt* 4+ A apy i t"™ !

with a; € Z. Write

N=1+t+t+-+t""
for the so-called norm element. Then

I-t)N=(1-t)1+t+ ---+t"H =0
in Z(Z/m) (exercise).
The sequence of Z(Z/m)-modules
Z2(Z)m) % 2(Z/m) L 2(Z/m) X 2(Z)m)
is exact. To see this, observe that
N(ag+ayt+--+ay, 1" ") = (ag+- - +ay_1)N
and that
(1—t)(bg+bit+ -+ by 1t" ) =0

if and only by = b1 =--- = b,,_1. Then
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e N(ag + +++ + ap_1t™ ') = 0 if and only if
ayg+ -+ a,—1 =0, and in that case
(1—t)(ag+ (ag +ar)t + -+ (ag+ -+ + ap-)t" )
=ayg+at+ -+ am_ltm_l.

oIfbozblz...bm_lzbthen
N-b:b0+b1t—|—"'—|—bm_1tm_l.

It follows that the sequence

Az im) Xz im) L mzim) S 7o

(2)
is a projective resolution of the trivial module Z

in the category of Z(Z/m)-modules. Here, € is the
map defined by €(t') = 1.

Generally, a module M over the group ring Z(G)
is said to be trivial if g-m = m for all g € G and
m e M.

Tensor the resolution (2) with the trivial Z(Z/m)-
module Z. The result is isomorphic to the chain
complex

U, g N, U g
which is the chain complex
Lzrnztz
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It follows that
Tory(Z, Z) = Z @z z/m Z = T
Tore; 1(Z,7) = Z/m, i > 0,
Tory(Z,7Z) =0, i > 0,

in the category of Z(Z/m)-modules. One often
sees the notations

H,(B(Z/m),Z) = H,(Z/m,Z) = Tor;(Z,7)
for these higher torsion products.

In general, the i homology group of the group G
with coefficients in the G-module A is defined by

HZ(G, A) = TOI’Z'(Z7 A),
where 7Z has the trivial G-module structure.

Lemma 9.14. Suppose that f : C — D is a
weak equivalence of chain complexes of right
R-modules, and that () is a projective left R-
module. Then the induced chain complex mor-
phism

fR1:CRRQ —D®rQ
18 a weak equivalence.

Proof. Suppose that f : C' — D is a trivial fi-
bration. Then f is an epimorphism in all degrees,
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with acyclic kernel /. The sequence
0> K®RpQ —-CRrQ—=DRpQ —0

is exact since @ is projective (Lemma 9.5), and
also the chain complex K ®pr () is acyclic since
Q) is projective (exercise). It follows from Lemma
9.10 that f®1 is a weak equivalence if f is a trivial
fibration.

If fis a trivial cofibration, then f is a monomor-
phism (Corollary 4.9) with acyclic cokernel E. The
sequence

0 —-CR®rQ —DRrQ— ERrQ —0

is exact since () is projective, and the complex
E®pQ is acyclic. Thus (Lemma 9.10) the map f®
1 is a weak equivalence if f is a trivial cofibration.

The general case follows from a factorization argu-
ment (ie. use CM5). (]

We have been resolving the right R-module M to
get a definition of the higher torsion products:

Tor, (M, N) = H,(P @ N)

where P — M is a projective resolution of M.
The following result says that the same invariant
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can be computed by resolving the module N in-
stead.

Lemma 9.15. Suppose that () — N s a pro-
jective resolution of the left R-module N, and
that M 1s a right R-module. Then there is an
1somorphism
TOI”l'(M, N) = HZ(M ®R Q)

for all i > 0.

Proof. Suppose that

0—-M —-P—M-—0

is an exact sequence of right R-modules with P
projective. Then

Tor,(P,N) =0= H;(P® Q)
for ¢ > 1, and there are natural isomorphisms
Torg(M,N) = M @p N — Hy(M Q5 Q).

By comparing the bottom ends of the correspond-
ing long exact sequences, one sees that there is
an induced (dotted arrow) isomorphism #; which
makes the following diagram commute

0— Tory (M, N)—2—~Tory(M', N)

0, ~ lg lg

Toro(P, N)

0— Hy(M 5 Q)—- Ho(M' ©r Q) — Hy(P 0 Q)

22



In degrees n > 2, isomorphisms 6,, are constructed
inductively so that the diagrams

Tor, (M, N)—Z2-Tor,_1(M’, N)
an glen—l
Hn(M ®R Q)% n—l(M/ ®R Q)

commute. ]

Remark 9.16. The proof of Lemma 9.15 is a bit
ad hoc, although it involves a standard technique
from homological algebra, which is essentially the
foundation of Grothendieck’s theory of d-functors
— see [1]. A second proof of this result will appear
in the next section.

What follows is one of the fundamental applica-
tions of the theory of higher torsion products. There
are many others.

Theorem 9.17 (universal coefficients). Suppose
that X 1is a simplicial set and that A is an
abelian group. Then there is a short exact se-
quence

0— H,(X,Z) A — H,(X,A) — Tor(H, 1(X,Z),A) — 0.

This sequence is natural in simplicial sets X
and abelian groups A.
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Proof. Recall that H,, (X, A) is the n'® homology
group of the complex Z(X) ® A, where Z(X) is
the Moore complex of X, which complex consists
of free abelian groups in all degrees.

Suppose that the short exact sequence
0—-KLFL A A

is a free resolution of A as above. Then the induced
sequence of chain complex morphisms

0 — Z(X)®K 12 2(X)@F 122 Z(X)®A — 0
(3)

is short exact, since all groups Z(X), are free

abelian (Lemma 9.5). There is a commutative di-
agram

Hy(Z(X) ® K\ Y H(Z(X) ® F)

=] E

Hy(X,Z)® K -~ H\(X,Z)® F

since homology commutes with direct sums. The
long exact sequence associated to the short exact
sequence (3) induces short exact sequences

0 — cok(l1®i), — Hy(X,A) = ker(1®1), — 0,
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and there are isomorphisms
cok(l1® i), = Hp(X,Z) ® A,
ker(1 ® 1), = Tor(H,_1(X,Z), A)

for the groups appearing in this sequence. ]
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