
Lecture 004 (October 19, 2009)

9 Torsion products: basic theory

Suppose that M is a right R-module and that N

is a left R-module. The tensor product M ⊗R N
is the abelian group freely generated by the pairs

(m,n) ∈M ×N , subject to the relations

• (m + m′, n) ∼ (m,n) + (m′, n)

• (m,n + n′) ∼ (m,n) + (m,n′)

• (mr, n) = (m, rn) for r ∈ R.

The class of a generator (m,n) in M⊗RN is writ-

ten m⊗n. The elements m⊗n generate the group

M ⊗R N .

Suppose that f : M×N → K is a function taking

values in an abelian group K which satisfies the

following identities:

• f (m + m′, n) ∼ f (m,n) + f (m′, n)

• f (m,n + n′) ∼ f (m,n) + f (m,n′)

• f (mr, n) = f (m, rn) for r ∈ R.

Such a function is said to be R-bilinear.
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Every R-bilinear function f extends to a unique

abelian group homomorphism f∗ : M ⊗RN → K

such that

f∗(m⊗ n) = f (m,n).

It follows that the R-bilinear map

M ×N →M ⊗R N

defined by (m,n) 7→ m⊗n is the initial R-bilinear

map which is defined on M ×N .

Every right R-module map f : M → M ′ and

every left R-module map g : N → N ′ together

induce a homomorphism

f ⊗ g : M ⊗R N →M ′ ⊗R N ′

which is defined by

(f ⊗ g)(m⊗ n) = f (m)⊗ g(n).

The assigment (M,N) 7→M⊗RN uniquely spec-

ifies M ⊗R N as an abelian group, and the tensor

product construction is functorial in M and N .

Lemma 9.1. 1) The module structure maps M×
R → M and R ×N → N induce canonical

isomorphisms

M ⊗R R
∼=−→M, R⊗R N

∼=−→ N.
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2) Suppose that M ′ and N ′ are second choices

of left and right R-modules. Then there are

canonical isomorphisms

(M ⊕M ′)⊗R N
∼=−→ (M ⊗R N)⊕ (M ′ ⊗R N),

M ⊗R (N ⊕N ′) ∼=−→ (M ⊗R N)⊕ (M ⊗R N ′)
which are induced by projections.

The proof of this Lemma is an exercise.

Lemma 9.2. 1) Suppose that

M
f−→M ′ π−→M ′′ → 0

is an exact sequence of right R-modules. Then

the induced sequence of abelian group homo-

morphisms

M ⊗R N
f⊗1−−→M ′ ⊗R N

p⊗1−−→M ′′ ⊗R N → 0

is exact.

2) Suppose that

N → N ′ → N ′′ → 0

is an exact sequence of left R-modules. Then

the induced sequence

M ⊗R N →M ⊗R N ′ →M ⊗R N ′′ → 0

is exact.
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Proof. We’ll prove statement 1). The proof of

statement 2) is similar.

Form the exact sequence

M ⊗R N
f⊗1−−→M ′ ⊗R N π−→ C → 0,

so that π is the cokernel of f ⊗ 1. Then

(p⊗ 1) · (f ⊗ 1) = 0

so there is a unique homomorphism p∗ which makes

the diagram

M ′ ⊗R N π //

p⊗1 ((PPPPPPPPPPPP C
p∗

��

M ′′ ⊗R N
commute. The function

M ′′ ×N σ−→ C

which is given by ([m], n) 7→ π(m,n) (here [m] =

p(m)) is well defined and and R-bilinear, and in-

duces a unique abelian group homomorphism σ∗ :

M ′′⊗RN → C. Use universal properties to show

that σ∗ is the inverse abelian group homomorphism

of p∗.

Lemma 9.2 says that the tensor product functor is

right exact, in both variables. This functor does
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not preserve monomorphisms in general, so it fails

to be left exact, and is therefore not exact: it does

not preserve exact sequences.

Example 9.3. Suppose that n > 1 is an integer.

Then multiplication by n defines an abelian group

homomorphism

Z ×n−→ Z
which is injective. According to Lemma 9.1 there

is a commutative diagram

Z⊗ Z/n (×n)⊗1
//

∼=
��

Z⊗ Z/n
∼=

��

Z/n ×n
// Z/n

and the map ×n : Z/n → Z/n is the 0-map,

which is certainly not injective.

Example 9.4. Lemma 9.1 implies that the inclu-

sion of a direct summand

M →M ⊕M ′

of right R-modules induces a monomorphism

M⊗RN → (M⊕M ′)⊗RN ∼= (M⊗RN)⊕(M ′⊗RN),

since the displayed composite is the inclusion of a

direct summand.
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Similarly, if

N → N ⊕N ′

is an inclusion of a direct summant of leftR-modules,

then the induced map

M⊗RN →M⊗R(N⊕N ′) ∼= (M⊗RN)⊕(M⊗RN ′)
is a monomorphism.

We also have the following:

Lemma 9.5. 1) If P is a projective right R-

module, then the functor defined on left R-

modules by N 7→ P ⊗R N is exact.

2) If Q is a projective left R-module, then the

functor defined on right R-modules by M 7→
M ⊗R Q is exact.

Proof. Again, we’ll just prove statement 1), since

statement 2) is similar.

The functor

N 7→ R⊗R N ∼= N

is exact by Lemma 9.1. If F is a finitely generated

free module, then

F ∼= ⊕ni=1R

is a finite direct sum of copies of R, and finite di-

rect sums of exact functors are exact (exercise),
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so that tensoring with F is exact. Every free R-

module F is a filtered colimit of finitely generated

free modules (exercise) and filtered colimits of ex-

act functors are exact (exercise), so that tensoring

with an arbitrary free module F is exact. Every

projective right R-module P is a retract (aka. di-

rect summand) of a free module, and retracts of

exact functors are exact (exercise).

The failure of left exactness for the functor M 7→
M ⊗RN is encoded in the higher torsion products

Torn(M,N), n ≥ 0, which are the left derived

functors of the tensor product.

We can define these functors quite generally as fol-

lows. Suppose that C is an ordinary chain complex

of right R-modules and that N is a left R-module,

as above.

There is a functorial cofibrant model πC : PC → C

(πC is a weak equivalence, actually a trivial fi-

bration, with PC cofibrant) for the chain complex

C. The functoriality of the cofibrant model comes

from the small object argument for the model struc-

ture on the chain complex categoryCh+(R), which

argument is natural in chain complex maps. Recall

that the cofibrant model PC is a chain complex of
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projective right R-modules. We define the higher

torsion product functors Torn(C,N) by

Torn(C,N) = Hn(PC ⊗R N), n ≥ 0.

Any chain complex morphism f : C → D induces

a commutative diagram

PC
f∗ //

πC
��

PD
πD

��

C f
//D

and there is an induced chain complex map

f∗ ⊗ 1 : PC ⊗R N → PD ⊗N,

with corresponding induced morphisms

f∗ : Torn(C,N)→ Torn(D,N)

for all n ≥ 0. These last maps define the functors

Tor∗( , N). Observe (exercise) that a morphism

g : N → N ′ also induces chain maps

PC ⊗R N
1⊗g−−→ PC ⊗R N ′

and hence abelian group homomorphisms

g∗ : Torn(C,N)→ Torn(C,N ′), n ≥ 0.

The assignment

(C,N) 7→ Torn(C,N)
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is therefore functorial in both chain complexes C

and modules N . This pairing is actually a bifunc-

tor in the sense that the functors in C and N com-

mute with each other.

Remark 9.6. Here is a fundamental observation:

we have used a functorial cofibrant model for the

chain complex C, but we don’t need to if we are

only interested in specifying the functors Tor∗(C,N)

up to isomorphism.

Suppose that f : Q → C is a weak equivalence

with Q cofibrant, and find a factorization

Q
i

//

f ��@
@@

@@
@@

@ Q′

p
��

C

such that i is a trivial cofibration and p is a trivial

fibration. Then Q′ is cofibrant. Also, the lifting

exists in the diagram

0 //

��

Q′

p
��

PC πC
//

θ
>>}}}}}}}}

C

since p is a trivial fibration and PC is cofibrant.

Then also θ is a weak equivalence since πC and p
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are weak equivalences. The maps

PC
θ−→ P i←− Q

are weak equivalences of cofibrant (and fibrant)

chain complexes, and are therefore chain homotopy

equivalences. It follows that the induced maps

PC ⊗R N θ⊗1−−→ P ⊗R N i⊗1←−− Q⊗R N
are chain homotopy equivalences. These maps are

therefore homology isomorphisms (by Corollary 9.8

below), and so they induce isomorphisms

Torn(C,N) = Hn(PC⊗RN)
∼=−→ Hn(P⊗nN)

∼=←− Hn(Q⊗RN).

Lemma 9.7. Suppose that the chain maps f, g :

C → D are chain homotopic. Then the induced

maps f∗, g∗ : Hn(C)→ Hn(D) are equal.

Proof. Recall that a chain homotopy from f to g

consists of homomorphisms s : Cn → Dn+1 such

that

f − g = ∂s + s∂ : Cn → Dn, n ≥ 0.

Thus, if z is an n-cycle, then

f (z)− g(z) = ∂s(z) + s∂(z) = ∂s(z)

is a boundary, so that

[f (z)] = [g(z)] ∈ Hn(D).
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Corollary 9.8. Suppose that f : C → D is a

chain homotopy equivalence. Then f induces

isomorphisms

Hn(C)
∼=−→ Hn(D)

for all n ≥ 0.

Proof. When we say that f is a chain homotopy

equivalence, we mean that there is a chain map

g : D → C such that fg is chain homotopic to

1D and gf is chain homotopic to 1C . It follows

from Lemma 9.7 that the induced maps f∗ and g∗
in homology are inverse to each other.

The functors Torn(C,N), as defined here, are ac-

tually hypertor functors from a classical point of

view, but they specialize to the standard higher

derived functors of the tensor product.

In effect, suppose that M is a right R-module,

and identify it with the chain complex M [0] which

consists ofM concentrated in degree 0. A cofibrant

model P →M [0] is a projective resolution ofM in

the classical sense, and the higher torsion products

Torn(M [0], N) can be identified up to isomorphism

with the homology groups

Hn(P ⊗RM),
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on account of the observations in Remark 9.6. One

usually writes

Torn(M,N) := Torn(M [0], N).

Lemma 9.9. 1) There is a natural isomorphism

Tor0(C,N) ∼= H0(C)⊗R N.

2) There is a natural isomorphism

Tor0(M,N) ∼= M ⊗R N.

Proof. The second statement follows from the first

(exercise).

Suppose that π : P → C is a cofibrant model of

the complex C. Then the sequence

P1
∂−→ P0

π−→ H0(C)→ 0

is exact, so the sequence

P1 ⊗R N ∂⊗1−−→ P0 ⊗R N π⊗1−−→ H0(C)⊗R N → 0

is exact, by Lemma 9.2. It follows that there are

isomorphisms

Tor0(C,N) ∼= H0(P ⊗RM) ∼= H0(C)⊗R N.

Lemma 9.10. Suppose that

0→ F
j−→ E

p−→ B → 0
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is a short exact sequence of chain complexes.

Then there is an induced long exact sequence

. . . ∂−→ Torn(F,N)
i∗−→ Torn(E,N)

p∗−→ Torn(B,N) ∂−→
. . . ∂−→ Tor0(F,N)

i∗−→ Tor0(E,N)
p∗−→ Tor0(B,N)→ 0.

This long exact sequence is functorial in short

exact sequences of chain complexes.

Proof. Choose a functorial cofibrant model πB :

PB → B, and form the pullback diagram

E ′
p∗ //

π∗
��

PB
πB

��

E p
//B

Then p∗ is surjective in all degrees and π∗ is a triv-

ial fibration. Choose a functorial cofibrant model

πE′ : PE′ → E ′. Then the composite p∗πE′ :

PE′ → PB is surjective in all degrees, and the

composite π∗πE′ : PE′ → E is a trivial fibration.

Suppose that j′ : F ′ → PE′ is the inclusion of

the kernel of the map p∗πE′. Then in the induced

comparison of short exact sequences

0 //F ′
j′ //

π′
��

PE′
p∗πE′//

π∗πE′'
��

PB //

πB'
��

0

0 //F j
//E p

//B // 0
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the induced map π′ is a weak equivalence. Fur-

thermore, the epimorphism p∗πE′ : PE′ → PB is

degreewise split since PB is a complex of projec-

tive modules. It follows that F is a complex of

projective modules, and is therefore cofibrant. It

also follows that the sequence of chain complex

morphisms

0→ F ′⊗RN → PE′⊗RN → PB⊗N → 0 (1)

is degreewise split, and is therefore exact. The de-

sired long exact sequence is the long exact sequence

in homology which is associated to the short exact

sequence (1).

Corollary 9.11. Suppose that

0→M
j−→M ′ p−→M ′′ → 0

is a short exact sequence of right R-modules,

and that N is a left R-module. Then there is

an induced functorial long exact sequence

. . . ∂−→ Torn(M,N)
i∗−→ Torn(M ′, N)

p∗−→ Torn(M ′′, N) ∂−→
. . . ∂−→M ⊗R N

i∗−→M ′ ⊗R N
p∗−→M ′′ ⊗R N → 0.

Lemma 9.12. Suppose that C is a chain com-

plex of right R-modules and that

0→ N i−→ N ′
p−→ N ′′ → 0
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is a short exact sequence of left R-modules. Then

there is an induced functorial long exact se-

quence

. . .
p∗−→ Torn+1(C,N ′′) ∂−→ Torn(C,N)

i∗−→ Torn(C,N ′)
p∗−→ . . .

. . . ∂−→ Tor0(C,N)
i∗−→ Tor0(C,N ′)

p∗−→ Tor0(C,N ′′)→ 0.

The proof of this result is an exercise. Use Lemma

9.5.

Corollary 9.13. Suppose that M is a right R-

module and that

0→ N i−→ N ′
p−→ N ′′ → 0

is a short exact sequence of left R-modules. Then

there is an induced functorial long exact se-

quence

. . .
p∗−→ Torn+1(M,N ′′) ∂−→ Torn(M,N)

i∗−→ Torn(M,N ′)
p∗−→ . . .

. . . ∂−→M ⊗R N
i∗−→M ⊗R N ′

p∗−→M ⊗R N ′′ → 0.

Examples:

1) Suppose that P is a projective right R-module,

and that N is an arbitrary left R-module. Then

the complex

· · · → 0→ 0→ P

is a projective resolution of P , so that the groups

Torn(P,N) are the homology groups of the com-
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plex

· · · → 0→ 0→ P ⊗R N.
It follows that

Torn(P,N) ∼=


0 if n > 0, and

P ⊗R N if n = 0.

Suppose that P →M [0] is a projective resolution

of M in right R-modules, and that Q is a projec-

tive left R-module. Then the sequence

· · · → P1 ⊗R Q→ P0 ⊗R Q→M ⊗R Q→ 0

is exact, so that

Torn(M,Q) ∼=


0 if n > 0, and

M ⊗R Q if n = 0.

2) The short exact sequence

0→ Z ×n−→ Z→ Z/n→ 0

defines a projective resolution

. . . // 0 //

��

Z ×n //

��

Z
��

. . . // 0 // 0 // Z/n

of the abelian group Z/n (aka. Z-module) in the

category of abelian groups. Suppose that A is an

arbitrary abelian group. Then the tensor product
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of the resolution above with A is isomorphic to the

chain complex

· · · → 0→ 0→ A ×n−→ A.

It follows that

Tor0(Z/n,A) ∼= Z/n⊗ A ∼= A/nA,

Tor1(Z/n,A) ∼= ker(A ×n−→ A),

Tori(Z/n,A) = 0, i > 1.

Here,

Tor1(Z/n,A) = Tor(Z/n,A) = nA

are standard notations for the same thing, which

is the subgroup of n-torsion elements of A.

3) Suppose that B is an abelian group, and let

p : F → B be a surjective homomorphism, where

F is a free abelian group. The kernel K of p is a

subgroup of a free abelian group, and is therefore

free (since Z is a principal ideal domain). It follows

that the short exact sequence

0→ K → F → B → 0

defines a projective resolution of B in the category

of abelian groups. Thus the groups Torn(B,A) are

the homology groups of the complex

· · · → 0→ K ⊗ A→ F ⊗ A,
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and so Torn(B,A) = 0 for n > 1, for all abelian

groups B and A.

4) Suppose that Z(Z/m) is the group algebra for

the cyclic group Z/m over the integers. Suppose

that t is the multiplicative generator of the group

Z/m, so that all elements of Z(Z/m) have the

form

a0 + a1t + a2t
2 + · · · + am−1t

m−1,

with ai ∈ Z. Write

N = 1 + t + t2 + · · · + tm−1

for the so-called norm element. Then

(1− t)N = (1− t)(1 + t + · · · + tm−1) = 0

in Z(Z/m) (exercise).

The sequence of Z(Z/m)-modules

Z(Z/m) N−→ Z(Z/m)
(1−t)−−−→ Z(Z/m) N−→ Z(Z/m)

is exact. To see this, observe that

N(a0+a1t+· · ·+am−1t
m−1) = (a0+· · ·+am−1)N

and that

(1− t)(b0 + b1t + · · · + bm−1t
m−1) = 0

if and only b0 = b1 = · · · = bm−1. Then
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• N(a0 + · · · + am−1t
m−1) = 0 if and only if

a0 + · · · + am−1 = 0, and in that case

(1− t)(a0 + (a0 + a1)t + · · · + (a0 + · · · + am−1)tm−1)

= a0 + a1t + · · · + am−1t
m−1.

• If b0 = b1 = . . . bm−1 = b then

N · b = b0 + b1t + · · · + bm−1t
m−1.

It follows that the sequence

. . .
(1−t)−−−→ Z(Z/m) N−→ Z(Z/m)

(1−t)−−−→ Z(Z/m) ε−→ Z→ 0

(2)

is a projective resolution of the trivial module Z
in the category of Z(Z/m)-modules. Here, ε is the

map defined by ε(ti) = 1.

Generally, a module M over the group ring Z(G)

is said to be trivial if g ·m = m for all g ∈ G and

m ∈M .

Tensor the resolution (2) with the trivial Z(Z/m)-

module Z. The result is isomorphic to the chain

complex

. . .
(1−t)−−−→ Z N−→ Z (1−t)−−−→ Z,

which is the chain complex

. . . 0−→ Z m−→ Z 0−→ Z.

19



It follows that

Tor0(Z,Z) ∼= Z⊗Z(Z/m) Z ∼= Z
Tor2i+1(Z,Z) ∼= Z/m, i ≥ 0,

Tor2i(Z,Z) = 0, i > 0,

in the category of Z(Z/m)-modules. One often

sees the notations

Hi(B(Z/m),Z) = Hi(Z/m,Z) = Tori(Z,Z)

for these higher torsion products.

In general, the ith homology group of the group G

with coefficients in the G-module A is defined by

Hi(G,A) = Tori(Z, A),

where Z has the trivial G-module structure.

Lemma 9.14. Suppose that f : C → D is a

weak equivalence of chain complexes of right

R-modules, and that Q is a projective left R-

module. Then the induced chain complex mor-

phism

f ⊗ 1 : C ⊗R Q→ D ⊗R Q

is a weak equivalence.

Proof. Suppose that f : C → D is a trivial fi-

bration. Then f is an epimorphism in all degrees,
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with acyclic kernel K. The sequence

0→ K ⊗R Q→ C ⊗R Q→ D ⊗R Q→ 0

is exact since Q is projective (Lemma 9.5), and

also the chain complex K ⊗R Q is acyclic since

Q is projective (exercise). It follows from Lemma

9.10 that f⊗1 is a weak equivalence if f is a trivial

fibration.

If f is a trivial cofibration, then f is a monomor-

phism (Corollary 4.9) with acyclic cokernelE. The

sequence

0→ C ⊗R Q→ D ⊗R Q→ E ⊗R Q→ 0

is exact since Q is projective, and the complex

E⊗RQ is acyclic. Thus (Lemma 9.10) the map f⊗
1 is a weak equivalence if f is a trivial cofibration.

The general case follows from a factorization argu-

ment (ie. use CM5).

We have been resolving the right R-module M to

get a definition of the higher torsion products:

Torn(M,N) = Hn(P ⊗R N)

where P → M is a projective resolution of M .

The following result says that the same invariant
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can be computed by resolving the module N in-

stead.

Lemma 9.15. Suppose that Q → N is a pro-

jective resolution of the left R-module N , and

that M is a right R-module. Then there is an

isomorphism

Tori(M,N) ∼= Hi(M ⊗R Q)

for all i ≥ 0.

Proof. Suppose that

0→M ′ → P →M → 0

is an exact sequence of right R-modules with P

projective. Then

Tori(P,N) = 0 = Hi(P ⊗Q)

for i ≥ 1, and there are natural isomorphisms

Tor0(M,N)
∼=−→M ⊗R N

∼=←− H0(M ⊗R Q).

By comparing the bottom ends of the correspond-

ing long exact sequences, one sees that there is

an induced (dotted arrow) isomorphism θ1 which

makes the following diagram commute

0 // Tor1(M,N) ∂ //

∼=θ1
��

Tor0(M ′, N) //

∼=
��

Tor0(P,N)
∼=

��

0 //H1(M ⊗R Q)
∂

//H0(M ′ ⊗R Q) //H0(P ⊗R Q)
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In degrees n ≥ 2, isomorphisms θn are constructed

inductively so that the diagrams

Torn(M,N) ∂
∼=

//

θn
��

Torn−1(M ′, N)

θn−1∼=
��

Hn(M ⊗R Q)
∼=
∂

//Hn−1(M ′ ⊗R Q)

commute.

Remark 9.16. The proof of Lemma 9.15 is a bit

ad hoc, although it involves a standard technique

from homological algebra, which is essentially the

foundation of Grothendieck’s theory of δ-functors

— see [1]. A second proof of this result will appear

in the next section.

What follows is one of the fundamental applica-

tions of the theory of higher torsion products. There

are many others.

Theorem 9.17 (universal coefficients). Suppose

that X is a simplicial set and that A is an

abelian group. Then there is a short exact se-

quence

0→ Hn(X,Z)⊗A→ Hn(X,A)→ Tor(Hn−1(X,Z), A)→ 0.

This sequence is natural in simplicial sets X

and abelian groups A.
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Proof. Recall that Hn(X,A) is the nth homology

group of the complex Z(X) ⊗ A, where Z(X) is

the Moore complex of X , which complex consists

of free abelian groups in all degrees.

Suppose that the short exact sequence

0→ K i−→ F
p−→ A→ A

is a free resolution ofA as above. Then the induced

sequence of chain complex morphisms

0→ Z(X)⊗K 1⊗i−−→ Z(X)⊗F 1⊗p−−→ Z(X)⊗A→ 0

(3)

is short exact, since all groups Z(X)n are free

abelian (Lemma 9.5). There is a commutative di-

agram

Hn(Z(X)⊗K)
(1⊗i)∗//Hn(Z(X)⊗ F )

Hn(X,Z)⊗K
1⊗i

//

∼=
OO

Hn(X,Z)⊗ F
∼=

OO

since homology commutes with direct sums. The

long exact sequence associated to the short exact

sequence (3) induces short exact sequences

0→ cok(1⊗ i)∗ → Hn(X,A)→ ker(1⊗ i)∗ → 0,
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and there are isomorphisms

cok(1⊗ i)∗ ∼= Hn(X,Z)⊗ A,
ker(1⊗ i)∗ ∼= Tor(Hn−1(X,Z), A)

for the groups appearing in this sequence.
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