
Lecture 005 (October 30, 2009)

10 Tensor products of chain complexes

Suppose that C is a chain complex of right R-

modules and thatD is a complex of leftR-modules.

The tensor product C⊗RD of these complexes is

the chain complex with

(C ⊗R D)n =
⊕

p+q=n
(Cp ⊗R Dq),

The boundary

∂ : (C ⊗R D)n → (C ⊗R D)n−1

is defined on x⊗y ∈ Cp⊗RDq (in bidegree (p, q))

by

∂(x⊗ y) = (∂(x)⊗ y) + (−1)p(x⊗ ∂y).

One often sees |x| = p if x ∈ Cp for the degree of

x, and so the boundary formula can be written

∂(x⊗ y) = (∂(x)⊗ y) + (−1)|x|(x⊗ ∂y).

It is a simple exercise to show that ∂2(x ⊗ y), so

that C ⊗R D is a chain complex.

Something bigger lurks behind this definition: a

bicomplex E is an array of abelian groups Ep.q,
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p, q ≥ 0, together with abelian group homomor-

phisms

∂h : Ep,q → Ep−1,q and ∂v : Ep,q → Ep,q−1,

such that the following hold:

• ∂2
h = 0 and ∂2

v = 0, so that E consists of chain

complexes in both the horizontal and vertical

directions, and

• ∂v∂h = ∂h∂v, so that the horizontal bound-

aries ∂h and the vertical boundaries ∂h define

maps of chain complexes.

The total complex Tot(E) of a bicomplex E is the

chain complex with

Tot(E)n =
⊕

p+q=n
Ep,q,

and with boundary

∂x = ∂h(x) + (−1)p∂v(x)

for x ∈ Ep,q.

For x ∈ Ep,q, we would say that x has bidegree

(p, q). I’m also inclined to say that x has horizon-

tal degree p and vertical degree q, but “horizontal”

and “vertical” are both in the eyes of the beholder.
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The same calculation as for the tensor product

C ⊗R D which was displayed above shows that

∂2 = 0, so that Tot(E) is a chain complex. This

is no accident: we can make a bicomplex C⊗̃RD
with

(C⊗̃RD)p,q = Cp ⊗R Dq

in an obvious way, and then

C ⊗R D = Tot(C⊗̃RD).

The notation is awkward: I often write C ⊗R D
for the tensor product of C and D as well as for

the underlying bicomplex.

Example 10.1. Suppose that C is a chain com-

plex of right R-modules and that N is a left R-

module. Then

C ⊗R N = Tot(C ⊗R N [0]).

Similarly if M is a right R-module and D is a

complex of left R-modules, then

M ⊗R D = Tot(M [0]⊗R D).

The thing that one usually wants to do with bi-

complexes is break them up.

You can already do this with a chain complex C in

a trivial way: suppose that FnC is the subcomplex

C0
∂←− . . . ∂←− Cn ← 0← 0← . . .
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For the record, this functor FnC is sometimes called

the bad truncation of C, because it doesn’t pre-

serve homology groups. Then there is a ascending

sequence of inclusion homomorphisms

0 = F−1C → F0C → F1C → F2C → · · · → C,

and

C = ∪n FnC = lim−→n
Fn(C).

This is an elementary example of a filtration of the

complex C. Observe that

Hp(FnC) =



Hp(C) if p < n,

Zn(C) if p = n, and

0 if p > n.

There is extra fun that you can have with the short

exact sequences

0→ Fn−1C → FnC → FnC/Fn−1C → 0.

Specifically (exercise), there is a natural isomor-

phism

FnC/Fn−1C ∼= Cn[−n]

where Cn[−n] is the chain complex which consists

of Cn in degree n and is 0 otherwise.

This last (awkward) notation is meant to be con-

sistent with the shift operator. Suppose that D
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is a chain complex and m ∈ Z. Then the shifted

complex D[m] is the chain complex with

D[m]p =


0 if p + m < 0, and

Dp+m if p + m ≥ 0.

The notation can be confusing: if m ≥ 0 then

D 7→ D[−m] shifts up (“suspends”) m times,

while D 7→ D[m] shifts down (almost “loops”)

m times.

Observe also that D[m][n] = D[m+n] if m and n

have the same parity (ie. m,n ≥ 0 or m,n ≤ 0),

and that M [0][−n] = M [−n] for a module M .

Exercise 10.2. Show that the formulaD[m][n] =

D[m+ n] can fail if m and n have opposite signs.

Lemma 10.3. 1) Suppose that m ≤ 0. Show

that there are natural isomorphisms

Hp(D[m]) ∼=


0 if p + m < 0,

Hp+m(D) if p + m ≥ 0.

2) If m > 0, show that

Hp(D[m]) ∼=


cok(Dm+1
∂−→ Dm) if p = 0,

Hp+m(D) if p > 0.

The proof of this result is an exercise.
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The inclusions Fn−1C → FnC consist of inclu-

sions of split summands (ie. all or nothing) in

all degrees, and are therefore preserved by tensor

products. Thus if D is a chain complex of left

R-modules, then there are short exact sequences

0→ Fn−1C⊗RD → FnC⊗RD → Cn[−n]⊗RD → 0

of bicomplexes. The total complex functor Tot is

exact (exercise), so there are short exact sequences

0→ Fn−1C⊗RD → FnC⊗RD → Tot(Cn[−n]⊗RD)→ 0

of chain complexes. It’s easiest just to say what

Tot(Cn[−n]⊗R D) is:

Tot(Cn[−n]⊗RD)p =


0 if p < n, and

Cn ⊗R Dp−n if p ≥ n,

with boundary map (−1)n(1⊗ ∂). It follows that

there is a canonical isomorphism

Tot(Cn[−n]⊗R D) ∼= (Cn ⊗R D)[−n],

by an exercise in fiddling with signs. We have

proved the following:

Lemma 10.4. Suppose that C is a complex of

right R-modules and that D is a complex of left

R-modules, and let {FnC} and {FnD} be the
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natural filtrations of C and D respectively, as

defined above. Suppose that n ≥ 0.

1) There is a natural isomorphism

Hp((FnC/Fn−1C)⊗RD) ∼=

Hp−n(Cn ⊗R D) if p− n ≥ 0,

0 if p− n < 0.

2) There is a natural isomorphism

Hp(C⊗R(FnD/Fn−1D)) ∼=

Hp−n(C ⊗R Dn) if p− n ≥ 0,

0 if p− n < 0.

Lemma 10.5. 1) Suppose that P is a cofibrant

complex of right R-modules and that the map

g : D → D′ is a weak equivalence of chain

complexes of left R-modules. Then the in-

duced map of tensor product complexes

1⊗ g : P ⊗R D → P ⊗R D′

is a weak equivalence.

2) Suppose that Q is a cofibrant complex of

left R-modules and that f : C → C ′ is a

weak equivalence of complexes of right R-

modules. Then the induced map of tensor

products

f ⊗ 1 : C ⊗R Q→ C ′ ⊗R Q
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is a weak equivalence.

Proof. We’ll prove statement 1). The proof of the

second statement is similar.

Let {FnP} be the natural filtration of the complex

P which is discussed above. The map g : D → D′

induces a morphism

1⊗ g : FnP ⊗R D → FnP ⊗R D′

as well as maps

1⊗g : (FnP/Fn−1P )⊗RD → (FnP/Fn−1P )⊗RD′

These last maps can be identified up to isomor-

phism with the morphisms

1⊗ g : (Pn ⊗R D)[−n]→ (Pn ⊗R D′)[−n],

which morphisms are weak equivalences by Lemma

9.14, together with the fact that negative shifts

(suspensions) preserve weak equivalences by Lemma

10.3.

An inductive argument (in n) which is based on

the comparisons of exact sequences

0 //Fn−1P ⊗R D //

1⊗g
��

FnP ⊗R D //

1⊗g
��

(FnP/Fn−1P )⊗R D //

1⊗g
��

0

0 //Fn−1P ⊗R D′ //FnP ⊗R D′ // (FnP/Fn−1P )⊗R D′ // 0

finishes the proof.
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Suppose that C is a complex of right R-modules

and thatD is a complex of leftR-modules. Choose

natural cofibrant models πC : PC → C and πD :

QD → D. The derived tensor product C⊗̂RD is

defined by

C⊗̂RD = PC ⊗R QD.

This construction is functorial in C and D. Here

are some salient features:

Corollary 10.6. 1) Any weak equivalence f :

C → C ′ induces a weak equivalence

f⊗̂1 : C⊗̂RD → C ′⊗̂RD.

2) Any weak equivalence g : D → D′ induces a

weak equivalence

1⊗̂g : C⊗̂D → C⊗̂D′

3) Suppose that p : P → C is a cofibrant model

of C (ie. weak equivalence with P cofibrant)

and that q : Q → D is a cofibrant model of

D. Then the complexes P ⊗RD and C⊗RQ
are weakly equivalent to C⊗̂RD.

Proof. For statement 1), if f is a weak equivalence

then the induced map f∗ : PC → PC ′ is a weak

equivalence, so the map

f⊗̂1 := f∗ ⊗ 1 : PC ⊗R QD → PC ′ ⊗R QD
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is a weak equivalence by Lemma 10.5. Statement

2) has a similar proof.

For statement 3), find liftings

PC
πC

��

P p
//

θ
>>

C

and QD

πD
��

Q q
//

γ
>>

D

Then the maps θ and γ are weak equivalences, and

there are induced weak equivalences

P ⊗R D
1⊗πD←−−− P ⊗R QD

θ⊗1−−→ PC ⊗R QD,

and

C ⊗R Q
πC⊗1←−−− PC ⊗R Q

1⊗γ−−→ PC ⊗R QD

by Lemma 10.5.

The higher torsion products Torn(C,D) are de-

fined to be the homology groups

Torn(C,D) = Hn(C⊗̂D)

of the derived tensor product. These groups are

functorial in both C and D.

Remark 10.7. 1) In view of Corollary 10.6, there

is quite a bit of flexibility in computing these higher

torsion product groups up to isomorphism, since

there are induced isomorphisms

Torn(C,D) ∼= Hn(P ⊗R D) ∼= Hn(C ⊗R Q),
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where p : P → C and q : Q → D are cofibrant

replacement of C and D.

2) Suppose that M is a right R-module and that

N is a left R-module. Then there is a natural

isomorphism

Torn(M,N) ∼= Hn(M [0]⊗̂RN [0]) = Torn(M [0], N [0]).

In effect, if p : P →M [0] is a cofibrant model (pro-

jective resolution) then there is an isomorphism

Torn(M [0], N [0]) ∼= Hn(P ⊗R N [0]),

and there is an isomorphism of complexes

P ⊗R N [0] ∼= P ⊗R N.
Similarly, if q : Q → N [0] is a cofibrant model

then there is an isomorphism

Torn(M [0], N [0]) ∼= Hn(M ⊗R Q).

Compare with Lemma 9.15.

The higher torsion products Torn(C,D) can be a

bit difficult to compute. Generally, they sit in a

spectral sequence, which is a computational gadget

that will be discussed later. In the interim, here’s

something that’s nice to know:

Lemma 10.8. Suppose that C is a complex of

right R-modules and that D is a complex of left
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R-modules and that m,n ≥ 0. Suppose that

Hi(C) = 0 for i ≤ m and Hj(D) = 0 for j ≤ n

then Tork(C,D) = 0 for k ≤ m + n + 1.

Proof. There is a exact sequence of chain com-

plexes

0→ fnC
i−→ C

p−→ PnC → 0

where PnCk = 0 for k ≥ n + 2, PnCk = Ck
for k ≤ n, and PnCn+1 = Bn(C) with bound-

ary ∂ : PnCn+1 → PnCn defined by the inclusion

Bn(C) → Cn. The map p induces homology iso-

morphisms

p∗ : Hk(C)
∼=−→ Hk(PnC)

for k ≤ n while the inclusion i of the kernel of p

induces isomorphisms

i∗ : Hk(fnC)→ Hk(C)

for k ≥ n + 1. Observe as well that fnCk = 0 for

k ≤ n.

Under the assumptions of the Lemma, the maps

i : fmC → C and i : fnD → D are weak equiva-

lences. The higher torsion products are invariants

of weak equivalences in C and D, so we can as-

sume that Ci = 0 for i ≤ m and that Dj = 0 for

j ≤ n.
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The complex C[m + 1] (with Cm+1 in degree 0)

has a cofibrant resolution π : P → C[m + 1], and

suspending the weak equivalence π gives a weak

equivalence π∗ : P [−m − 1] → C. All of the

modules making up the complex P [−m − 1] are

projective, so that P [−m − 1] is cofibrant. We

can therefore assume that C has a cofibrant model

p : P ′ → C such that Pi = 0 for i ≤ m.

The chain complex P ⊗R D satisfies

(P ⊗R D)k = 0

for k ≤ m + n + 1. In effect if i + j < m + n + 2

then i < m + 1 or j < n + 1. Thus,

Tork(C,D) ∼= Hk(P ⊗R D) = 0

if k ≤ m + n + 1.

Remark 10.9. The object PnC is called, vari-

ously, the nth Postnikov section of the complex

C, or the good truncation of C at level n. The

functor C 7→ PnC is a good truncation because it

preserves weak equivalences. The “Postnikov sec-

tion” term is a homotopy theory thing, and is con-

sistent with corresponding constructions for spaces

and spectra.
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Corollary 10.10. Suppose that C is a com-

plex of right R-modules and that D is a com-

plex of left R-modules. Then the natural maps

C → H0(C)[0] and D → H0(D)[0] induce an

isomorphism

Tor0(C,D) ∼= Tor0(H0(C)[0], H0(D)[0])
∼= H0C ⊗R H0D.

Proof. The chain complex morphismC → H0(C)[0]

is surjective in all degrees and has a kernel K such

that H0(K) = 0.

Suppose that q : Q → D is a cofibrant model of

D. Then the short exact sequence

0→ K ⊗R Q→ C ⊗R Q→ H0(C)[0]⊗R Q→ 0

induces an exact sequence

. . . ∂−→ Tor0(K,D)→ Tor0(C,D)→ Tor0(H0(C)[0], D)→ 0

and Tor0(K,D) = 0 by Lemma 10.8. It follows

that the canonical map C → H0(C)[0] induces an

isomorphism

Tor0(C,D)
∼=−→ Tor0(H0(C)[0], D)

for all complexes D. By a similar argument, the

map D → H0(D)[0] induces an isomorphism

Tor0(H0(C)[0], D)
∼=−→ Tor0(H0(C)[0], H0(D)[0])
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We have already seen in Remark 10.7 and Lemma

9.9 that are isomorphisms

Tor0(H0(C)[0], H0(D)[0]) ∼= Tor0(H0(C), H0(D))
∼= H0(C)⊗R H0(D).

Sometimes, you just get lucky:

Theorem 10.11 (Künneth). Suppose that C and

D are chain complexes of abelian groups. Then

there are short exact sequences

0 // (H∗(C)⊗H∗(D))n //Hn(C⊗̂D)

��

Tor(H∗(C), H∗(D))n−1
// 0

Here, for the sake of notational convenience, we set

(H∗(C)⊗H∗(D))n :=
⊕

p+q=n
Hp(C)⊗Hq(D)

and

Tor(H∗(C), H∗(D))n−1 :=
⊕

r+s=n−1
Tor(Hr(C), Hs(D)).

Proof. By the usual small object argument, there

is a natural cofibrant model F → C such that F

is a complex which is free abelian in all degrees.

We can therefore assume that C is a complex of

free abelian groups.
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The submodules Zn(C) and Bn(C) of Cn are free

abelian (since subgroups of free abelian groups are

free abelian), and the short exact sequence

0→ Bn(C)→ Zn(C)→ Hn(C)→ 0

gives a projective resolution P n → H0(C)[0] of

the homology group Hn(C). The lift exists in the

diagram

Bn(C)
θnn+1 //

��

Cn+1

∂
��

Zn(C)
θnn

//Cn

where θnn is the usual inclusion, and there is a chain

map θn : P n[−n] → C. The map θn induces an

isomorphism

Hn(P n[−n]) ∼= Hn(C)

in degree n. All maps θn together induce a weak

equivalence
∑
θn :

⊕
n≥0

Pn → C.

Suppose that Q → D is a cofibrant model for

D. Suppose that r ≤ n. Then there are weak

equivalences
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P r[−r]⊗D P r[−r]⊗Q'oo

'
��

Hr(C)[−r]⊗Q ∼=
// (Hr(C)⊗Q)[−r].

It therefore follows from the universal coefficients

theorem that there is a short exact sequence

0 //Hr(C)⊗Hn−r(D) //Hn(P r[−r]⊗D)

��

Tor(Hr(C), Hn−r−1(D)) // 0

form each r ≤ n. The direct sum of these exact

sequences, indexed over 0 ≤ r ≤ n is the exact

sequence in the statement of the Theorem.
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