Lecture 006 (November 9, 2009)

11 Cohomology

Suppose that C' is a chain complex of R-modules.

1) There is an isomorphism
hom(R[—n],C) = Z,(C)

which is defined by the assigment f +— f(1), where
1 € R = R[—n], is the multiplicative identity of
the ring R.

2) A chain homotopy between chain morphisms
f,g : R[—n] — C can be identified with a R-
module homomorphisms ¢ : R — C),41 such that
do = f — g. Equivalently, f(1) — g(1) = do(1)
for some element (1) € C, 1.

It follows that there is a commutative diagram of
abelian group homomorphisms

hom(R[—n],C)—~ Z,(C)

l |

7(R[—n], C) =~ H,(C)
which is natural in chain complexes C. Here,
7T<R[_n]7 C)
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denotes chain homotopy classes of maps R[—n] —
C. Recall that the group w(R[—n],C) can be
identified with the group [R|—n], C| of morphisms
from R|—n] to C in the derived category Ho(Ch, (R)).

We have therefore proved the following

Lemma 11.1. The assignment [f] — [f(1)] de-
fines a natural tsomorphism

[R[-n],C] = n(R[-n],C) = Hu(C).

Cohomology can also be defined in the derived cat-
egory. Suppose that C' is a complex of R-modules
and that A is an R-module. The cohomology
group H™(C A) is defined by

H™(C, A) == [C, A|[-m]].

A cochain complex E of R-modules is a chain
complex which is concentrated in negative degrees.
In other words, £, = 0 for p > 0. One often
(in fact, almost universally) writes E" = E_,, for
n > 0.

Example: If C'is an ordinary chain complex and
A is amodule, then hom(C| A) is the cochain com-
plex with

hom(C, A)" = hom(C, A)_,, = hom(C,,, A)
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for n > 0.

It 1s standard to write
H"hom(C, A) := H_, hom(C, A)
for n > 0.

Lemma 11.2. Suppose that C' is an ordinary
chain complex and that A is a module. Then
there 1s an 1somorphism

H"hom(C,A) = H_,hom(C, A) = n(C, A|—n]).

Proof. A cycle f of hom(C, A) can be identified
with a chain map f : C — A|—n], and the cycle
f is a boundary if and only if the chain map f is
chain homotopic to 0. ]

Corollary 11.3. Suppose that C' is an ordinary
complex and that A is a module. Choose a cofi-
brant replacement € : P = C. Then there is an
1somorphism

H"(C, A) = 1(P, A[—n]) = H" hom(P, A).

Remark 11.4. The choice of cofibrant replace-
ment P — C in Corollary 11.3 does not matter,
and can be made functorial, all by a familiar argu-
ment.



In effect, choose a functorial fibrant replacement
m . Po — C as in Lecture 04. Then the lifting 6
exists in the diagram

Fe

0. iﬂ

P—-C
since 7 is a trivial fibration and P is cofibrant.
The map 6 is a weak equivalence between cofibrant
(and fibrant) objects is a weak equivalence, and is
necessarily a chain homotopy equivalence by the
Whitehead Theorem (Theorem 7.13). Finally, the
functor hom( , A) preserves chain homotopy equiv-

alences (exercise).

[ could have written
Ext”(C, A) = H"(C, A) = [C, A[-n]]

and called these cohomology groups Ext groups,
although these groups are really hyper Ext invari-
ants.

If B is a module, it is standard to write
Ext"(B, A) = H"(B|0], A) = [B[0], A[—n]],

and call these the Ext-groups of B with coefficients
in A. The terminology will be explained later.
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The Ext groups are the derived functors of homo-
morphisms:

Lemma 11.5. 1) Suppose that P is a projec-
tive module. Then

Ext"(P,A) =0
forn > 0.

2) Suppose that C is a chain complex and that
A is a module. Then there is a natural iso-
morphism

H"hom(C, A) = hom(Hy(C), A).
Proof. For statement 1), P[0] — P is a projective
resolution of P, and P[0]; = 0 for k > 0. It follows

that
hom(P[0], A)r =0

for k < 0, so that
H"hom(P[0], A) =0
in the same range.

For statement 2), choose a cofibrant replacement
P = C for C. The sequence

P % Py — Hy(C)— 0



so that the sequence
0 — hom(Hy(C), A) — hom(Py, A) L hom(Py, A)

is exact, since hom( , A) is right exact (exercise).
[]

Lemma 11.6. 1) Suppose that
0>FLELB0

1s a short exact sequence of chain complezes
and that A is some module. Then there is a
long exact sequence

0 — HB,A) 5 HYE, A) L HO(F, A)
9 HY(B,A) S HY(E, A) — ...
2) Suppose that
0—A—-A —A"—=0

15 a short exact sequence of modules and that
C' is a chain complex. Then there is a long
exact sequence

0— HYC,A) — H(C,A) — H(C, A"
9 HY(C, A) — HY(C, A) — ...

Proof. For statement 1), use the method of proof
of Lemma 9.10 to find a weakly equivalent short
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exact sequence
0— F' — Py — Pg— 0

with all objects cofibrant. Then the sequence is
split exact in all degrees since all modules Pg,, are
projective, so that the sequence of cochain com-
plexes

0 — hom(Pg, A) — hom(Pg, A) — hom(F', A) — 0

is short exact. The desired long exact sequence
is the long exact sequence in homology which is
associated to this sequence.

For statement 2), the functor A +— hom(P, A) is
exact if P is projective (exercise). Thus, if P = C
is a cofibrant model for C, then the sequence of
cochain complexes

0 — hom(P, A) — hom(P, A") — hom(P, A") — 0

is exact. The resulting long exact sequence in ho-
mology is the one we want. ]

Corollary 11.7. 1) Suppose that B and A are
modules. Then there is a natural 1somor-
phism

Ext’(B, A) 2 hom(B, A).



2) Suppose that
0—-BLB LB -0

15 a short exact sequence of modules and that
A 1s a. Then there is a long exact sequence

0 — Ext’(B", A) L Ext"(B’, A) L5 Ext’(B, A)
9 Ext!(B”, A) 5 ExtY(B, A) — ...
3) Suppose that
0—-A—-A—A"—=0

18 a short exact sequence of modules and that
B is a module. Then there 1s a long exact
Sequence

0 — Ext’(B, A) — Ext’(B, A") — Ext’(B, A”)
9, Ext'(B, A) — Ext'(B, A') — ...
Examples:

1) Suppose that A is an abelian group, and let
0—=Z"%7Z—7Z/n—0

be the standard free resolution of Z/n. The groups
Ext*(Z/n, A) are the homology groups of the cochain
complex

(xn)*

hom(Z, A) —— hom(Z,A) - 0 — ...
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which complex is isomorphic to
AN A—0— ...

It follows that
Ext’(Z/n, A) = ,A = Tor(Z/n, A),
Ext!(Z/n, A) = A/nA = A® Z/n,
Ext®(Z/n, A) = 0if k > 1.

2) Exercise: Show that Ext*(B, A) = 0 for k > 1
for all abelian groups A and B.

3) Suppose that Z is the trivial module over the
cyclic group Z/m, and suppose that A is an abelian
group, again with the trivial Z/m-module struc-
ture.

The sequence
(1-)"

hom(Z(Z/m), A) 2 hom(Z(Z/m), A) 25 hom(Z(Z/m), A)

is isomorphic to the sequence
AL A A
It follows that
Ext’(Z, A) = A
Ext®*t(Z, A) = Tor(Z/m, A) if k > 0,
Ext®(Z,A) 2 A® Z/m if k > 0.
in the category of Z/m-modules.
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12 Injective resolutions

An injective R-module I is a module for which the
functor hom( , I') is exact. This means that, given
an exact sequence

ML L
the sequence
hom(M", T) ZAN hom(M', I) 7, hom(M", T)
should be exact.

Equivalently (exercise), I is injective if and only
if the dotted extension exists in every diagram of
R-module homomorphisms

Aﬁ]

B

where 72 is a monomorphism.

The following result is a special case of a theorem
of Grothendieck which first appeared in [2], and is
proved in many places:

Theorem 12.1. The category of R-modules has
enough injectives: for every R-module A there
18 monomorphism v : A — I such that I is in-
Jective.
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The quickest proof of Theorem 12.1 (as stated) is
an abstraction of a step of the proof in Lemma 12.3
below.

Example 12.2. Every vector space over a field k
is an injective module over k, because all monomor-
phisms of k-vector spaces split.

Lemma 12.3. An abelian group A is injective
(ie. an injective Z-module) if and only if A is
n-divisible for all n.

The group A is n-divisible if and only if for all
a € A thereis a b € A such that n-b = a (or,
multiplicatively, every element has an n' root).

Proof. An abelian group A is injective if and only if
the morphism A — 0 has the right lifting property
with respect to all monomorphisms B C B’ of
abelian groups. In particular, if A is injective, then
A — 0 has the right lifting property with respect
to the multiplication by n map xn : Z — 7Z, so A
is n-divisible, for all n.

Conversely, suppose that A is n-divisible for all n,
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and consider the poset of partial lifts

of a morphism f, where the morphisms
B—C—D

are injective with a fixed composition ¢ : B —
B’. This poset has maximal elements, by Zorn’s
Lemma.

Suppose that © € B' — C, and let C' = (C, x) be
the subgroup of B’ which is generated by C' and
x. Let ¢ : Z — B’ be the homomorphism which
sends 1 to . Then there is a pushout

7 1(C)—C

1)

ZTC’
where 7 is a monomorphism, and the subgroup
2~ 1(C) is either 0 or of the form nZ for some n.
In either case, there is a lift 8’ : ¢’ — A which
extends 6, since A is n-divisible for all n, and so

6 is not maximal. It follows that all maximal lifts
extend the homomorphism f to all of B’. []
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Example 12.4. Every Q-vector space is an injec-
tive abelian group. Lemma 12.3 also tells you how
to make an injective module containing an abelian
group A: just put in all the n'” roots for all n with
something like a small object argument. This is
also how the proof of Theorem 12.1 works.

Maps into injectives play the same role in homo-
logical algebra as do maps out of projectives.

Corollary 12.5. Fvery module A has an injec-
tive resolution, meaning an exact sequence

0—-AS =1 {—19— ...
for which all modules I, are injective.

[ like to write injective resolutions as maps of un-
bounded chain complexes o : A[0] — I, where [ is
a complex of injectives such that I, = 0 for p > 0,
and o is a weak equivalence.

Lemma 12.6. Suppose that f : C — D 1is a
weak equivalence of ordinary chain complexes
and that I 1s an injective module. Then the
induced map

f*hom(D, I) — hom(C,I)
18 a weak equivalence of cochain complezes.
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Proof. If K is an acyclic complex, then the se-
quence

LK S K S Ky —0
is exact, so that the sequence
0 — hom(Ky, I) &, hom(K7y, 1) a0 .
is exact. The cochain complex hom (K, I') is there-

fore acyclic.

Suppose that p : £ — D is a trivial fibration
with acyclic kernel K. The sequence of cochain
complexes

0 — hom(D, I) 5 hom(E, I) — hom(K, I) — 0
is exact and so hom (K, I) is acyclic, so that p* is
a homology isomorphism.

Similarly, if 2 : C' — FE is a trivial cofibration with
acyclic cokernel K’ then hom(K’, I) is acyclic, so
that 2* is a homology isomorphism.

Every weak equivalence f has a factorization f =
p - 1 where p is a trivial fibration and 7 is a trivial
cofibration, so f* is a homology isomorphism. [

Suppose that C' is an ordinary chain complex and
that K is a cochain complex. There is a (third
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quadrant) bicomplex hom(C, K') with
hom(C, K), , = hom(C_,, K,).

There is a cochain complex Tot(hom(C, K)) asso-
ciated to this bicomplex, with

Tot(hom(C, K)), = & hom(C_,, K,),

pt+q=n
and with

o(f) =0 (f)+(=1)P0uf = [+ 0c +(=1)"0x - f
for f € hom(C_,, K,).

The following result is a generalization of Lemma
11.2 (see also [3]):

Lemma 12.7. There is an isomorphism
H_, Tot(hom(C, K)) = 7(C, K[—n]).

This isomorphism is natural in chain compleres
C' and cochain compleres K.

Proof. The group Tot(hom(C, K)),, is the direct
sum

hom(C,,, Ko)®hom(C,,—1, K_1)®- - -Ghom(Cy, K_,,).

Write (f,, fa-1, - - -, fo) for an element of this group.
Then

8(fn7fn—1a RIS fO)

— (fn86’7 frn—10c + (—1)n8[(fn, ce (—1)06Kf0).
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In particular the j-term in the (n42)-tuple 9(f,, - . . , fo)
1S

fi10c + (1) Ok f;
for0 <j<n+1.

Write .
J—
fj (— )El °'fj-
Then O(fu, fa-1,---, fo) = 0 if and only if the

maps fj define a chain map f : ¢ — K[-n]. In
effect,

j—2 . —2 . . ~ ~
(—1)%i ij—1(90+(—1)zg:° =10k f; = fi-10c—0K f;.
Suppose that

8(3n_1, e ooy 80) = (fn; ceey fo),

and write

for all 4, so the chain map defined by the maps f
is chain homotopic to 0.
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The maps f; and s; can be recovered from f;
and s;, respectively, by multiplying by the obvi-
ous powers of —1. O

Proposition 12.8. Suppose that J is a cochain
complex of injective modules, and that f : C —
D 1is a weak equivalence of ordinary chain com-
plexes. Then the induced map

n(D, J[=n]) £ w(C, J[-n])
15 an isomorphism for all n > 0.

Proof. Suppose that J has one non-trivial entry, so
that J = I|n], meaning that J consists of the in-
jective module I concentrated in degree —n. Then
there is a natural isomorphism

Tot(hom(C, I[n])) = hom(C, I)[n]
(exercise). The induced map
f*hom(D, I) — hom(C, I)

is a weak equivalence by Lemma 12.6, and so the
shifted map

f* hom(D, I)[n| — hom(C, I)[n]

is a weak equivalence.
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Suppose that J has only finitely many non-zero
modules. Suppose that k£ is the maximal degree
such that J; # 0. Then there is a short split exact

sequence
0— Fr1J — J — Jilk] — 0.

which sequence induces a natural short exact se-
quence

0 — Tot(hom(C, Fj_1J)) — Tot(hom(C, J))

|

Tot(hom(C, Ji[k])) —=0.

Then F}._1J is a cochain complex of injectives with
fewer non-zero modules, and we assume induc-
tively that the map

f*: Tot(hom(D, Fy_1J)) — Tot(hom(C, F_1J))

is a weak equivalence. It follows from the argument
above and a comparison of long exact sequences
that the map

f*: Tot(hom(D, J)) — Tot(hom(C, J))
is a weak equivalence.

In general, for k& < 0,
Tot(hom(C, FyJ)), =0
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for p > k, and so

H,(Tot(hom(C, FyJ))) =0
for p > k. It follows that the map
H,(Tot(hom(C, J))) — H,(Tot(hom(C, J/F;J)))
is an isomorphism for p > k + 1.
The complex J/FiJ of injectives has only finitely
many non-zero modules. Thus, given n < 0, choose
k such that n > k + 1. Then there is a commuta-
tive diagram
H,(Tot(hom(D, J))) — H,(Tot(hom(D, J/F}.J)))

7| |
H,(Tot(hom(C, J))) —= H,(Tot(hom(C, J/ F},J)))
Then it follows that f induces an isomorphism
f* Hy(Tot(hom(D, J))) = H,(Tot(hom(C, J))).
[l

One can form the Postnikov section P_1D for an
unbounded chain complex D just as for chain com-
plexes:
0 if p >0,
P_(D),=1ByD ifp=0,
D, itp<O.
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and there is a short exact sequence

0— f14D—D— P 1D — 0.

Note that
D, itp>0,
f-1(D)p=32yD ifp=0
0 if p <.

Then f_1D is an ordinary chain complex, and the
functor D +— f_1 D is right adjoint to the inclusion
functor Ch,y (R) C Ch(R). This functor preserves

weak equivalences, and there is an isomorphism
W(Oa D) = 7T(C() f—lD)7

relating chain homotopy classes in the unbounded
category to chain homotopy classes in ordinary
chain complexes.

Corollary 12.9. Suppose that C' is a chain com-
plex and that A is a module. Choose an injec-
tive resolution A[0] — I of A. Then there is a
natural isomorphism

C, Al—n]] = H"(C, A) = =n(C, I[-n]).

Proof. Choose a cofibrant model € : P = C for
C'. The injective resolution A[0] — I induces a
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weak equivalence
Al=n] — fI[-n]
and so there is are isomorphisms
n(P, A[=n]) = (P, fI[-n]) = 7(P,I[-n]) < =(C, I[-n])

for all n, by the Whitehead Theorem and Propo-
sition 12.8. []

Corollary 12.10. Suppose that A and B are
modules and that B|0] — I is an injective res-
olution of B. Then there are natural isomor-
phisms

Ext"(A, B) = 7(A[0], I[-n]) & H" hom(A, I).
13 Eilenberg-Cartan resolutions

The following is a formalization of techniques that
we've already seen:

Lemma 13.1. Suppose that f : C — D s
a map of first (respectively third) quadrant bi-
compleres such that the chain complex maps
[ Cpi — D,. are weak equivalences for all
p. Then the chain complex map f, : Tot(C) —
Tot(D) is a weak equivalence.
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Proof. There is a natural filtration F,,C of a bi-
complex C' with
B.Cyy = Cpq itp<n,

0 ifp>n

In the short exact sequence of bicomplexes
0— F,1C— F,C— F,C/F, .C—0

the quotient F,,C/F,_1C consists of a copy of C, .,
in horizontal degree n, and is 0 in other horizontal
degrees. It follows that there is an isomorphism

Tot(F,C/F,—1C) = C,, [—n]

It follows from the assumptions of the Lemma that
all induced maps

f. : Tot(F,C/F,_1C) — Tot(F,D/F,_, D)

are weak equivalences.

If C' and D are first quadrant bicomplexes, then
by increasing induction on n, all maps

fe : Tot(F,C) — Tot(F,D)

are weak equivalences. There is a functorial iso-
morphism

Hi(Tot(C)) = Hi(Tot,(C)) (1)
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for n sufficiently large, for all &, so that
fv : Tot(C') — Tot(D)
is a homology isomorphism.

If C'and D are third quadrant bicomplexes, then
by decreasing induction on n all maps

f. : Tot(C/F,C) — Tot(D/F,D)

are weak equivalences. There is a functorial iso-
morphism

Hy(Tot(C)) 2 Hy(Tot(C/F,C)) (2
for n sufficiently small, for all k, so that

f« : Tot(C') — Tot(D)
is a homology isomorphism. O

Remark 13.2. The isomorphisms (1) and (2) are
convergence isomorphisms for the standard fil-
tration, for first and third quadrant bicomplexes
respectively.

Lemma 13.3. Suppose that the sequence of mod-
ule homomorphisms

0—A—B—-C—0 (3)

18 exact, and suppose given monomorphismsiz
A — I(A) and ic . C — I(C) with I1(A) and
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I(C) injective. Then there is a comparison of
ezact sequences

0——A——B—"—~C—0 (4
izA B iz’c

0—I(A)—I(B)—I(C)—0

in which the module I(B) is injective and ig is

a monomorphism.
Proof. Choose amap o : B — I(A) such that the
diagram

A—"—B

al g

I(A)

commutes. Form the diagram

0—A—"———B—————(C——0
iiA i(aﬂ'op) iic
0—I(A)—I1(A) I[(C)—1(C)—0
and set I(B) = I(A) @ I(C). The map ig =
(o, Ic-p) is a monomorphism by the Snake Lemma
(Lemma 1.2). (]

Corollary 13.4. Suppose given a short exact
sequence

0—-A—-B—-(C-=0
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of module homomorphisms and injective reso-
lutions na : A — I(A) and ne : C — I1(C) of A
and C' respectively. Then there is a comparison
of short exact sequences of cochain complexes

0— A2t -B-L oo

e e

0—I(A)—I(B)—I1(C)—0
in which the map n: B — I(B) is an injective
resolution of B.
Proof. Form the diagram
0——~A—>—~B—"-C—0

bl e

0—=1Io(A) —1o(B) —1p(C) —0
as in Lemma 13.3, and let the exact sequence

0—Z (A —-B —-Z1—-0

be the cokernel of the vertical map. Then by Lemma
13.3 there is a commutative diagram

0——1p(A) Iy(B) ——1)(C) ——0

) » v

0—Z_1(A) B Z_ 1(0 —0

0——=I4(A)—11(B)—14(C)—
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in which all vertical maps p are epimorphisms, all
maps ¢ are monomorphisms, and the composites
ip - In(A) — I 1(A) and ip : I)(C) — [41(C)
coincide with the boundary homomorphisms for
the chosen injective resolutions of A and C' respec-
tively.

Construct the resolution n : B — I(B) induc-
tively. The composite ip : Iy(B) — I_1(B) is the
first differential. ]

Lemma 13.5. Suppose that A is a chain com-
plex (unbounded). Then there is a bicomplex
morphism n : A, — I(A),, such that all in-
duced cochain complex maps

Ay — I(A)y.

B,A — Bp[(A)*O o B ](A)* .

H,(A) — H,J(A).g— HyI(A)u1 — ...
are injective resolutions.
Proof. Write B, = B,(A), Z, = Z,(A) and H, =

H, A for the boundaries, cycles and homology groups
of A, respectively.

Choose injective resolutions np, : B, — I(B,) and
nm, : Hy — I(H,) for all k.
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Use Corollary 13.4 to choose injective resolutions
Nz, Zy — 1(Z),) such that the diagrams

0By —"—Zy—"—Hy——0
|
OHHBp)jTI(Zp)W‘](Hp)HO

commute for all k. Use Corollary 13.4 again to
choose injective resolutions 7, : A, — I(A,) so
that the diagrams

0 Zp i Ap 1 Bp—l —0
lnzp Mp i”qu

OH[(ZNT](Ap)ﬁ](Bp—l)HO

commute for all k.

The commutative diagrams

Ap By 1 ———2Z) 1 —— A, (5)
npi ian—l \anp—l lﬁp—1
[(Ap) = I(By—1) 5~ 1(Zy—1) = 1(Ap-1)

imply that the lower composites define boundary
maps

0 =0.Jxqs - 1(Ay) — 1(A)-—1)
which give a bicomplex I(A), and that the maps
n, define a bicomplex map n: A — I(A).
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By construction, Z,1(A) = 1(Z,), ByI(A) = I(B,)
and H,I(A) = I(H,A). .

Remark 13.6. In the diagram (5) the chain maps
¢x are epimorphisms and the maps ¢, and j, are
monomorphisms. The short exact sequences

0 — I(By)q = [(Z,),; = I(H,); — 0
0 — I1(Z,), = (Ap)g = I(By-1)g — 0

are short exact sequences of injective modules, and
are therefore split.

Say that a chain complex C' is split if all exact
sequences

0— B,C— Z,C — H,C —0
0— 2,0 —C,— B,,C =0

are split exact. All (vertical) chain complexes I(A.),
in the bicomplex I(A) of Lemma 13.5 are split.

Lemma 13.7. Suppose that C' is a split chain
complex and that A s a module. Then

1) the complex C ® A is split and there is an
1somorphism

H,(C®A) ~H,(0)® A.
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2) the cochain complex hom(C| A) is split and
there 1s an isomorphism

H_, hom(C, A) = hom(H,C, A).

The proof is an exercise.

Remark 13.8. The bicomplex I(A) of Lemma
13.5, is called an Eilenberg-Cartan resolution of
the cochain complex A.

There is a subtle point at work here: we construct
the map of bicomplexes A — I(A) for unbounded
complexes A, but in that case the homotopy type
of Tot(I(A)) (which is defined on the chain level
by infinite direct sums) is hard to analyse. The
Eilenberg-Cartan construction is compatible with
the Postnikov tower construction, which construc-
tion produces shifted cochain complexes, and there
is a comparison of towers of fibrations

P,A — Tot(I(P,A))

which consists of weak equivalences. A homotopy
inverse limit argument (eg. [1, VI.1]) shows that
the induced map

A=lim P,A — lim Tot(I(P,A))

— —
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is a weak equivalence of unbounded complexes.
The thing on the right is the “correct” Eilenberg-
Cartan resolution for the unbounded complex A
— it is defined on the chain level by infinite direct
products.

Exercise 13.9. Show the projective resolution
analogs of Lemma 13.3, Corollary 13.4 and Lemma
13.5:

1) Show that every short exact sequence has a
projective cover, suitably defined.

2) Show that every short exact sequences of ordi-
nary chain complexes has a projective resolu-
tion.

3) Show that for every chain complex A there is
a bicomplex map P(A) — A with

P(A)pg = P(Ap)g — 4
such that the maps
Ay — P(A)y
ZyA — Z,P(A)wg «— ZyP(A)xq — ...
B,A «— B,P(A).o <« B,P(A)s1 — ...
H,A— H,P(A).g«— H,P(A)1 — ...
are projective resolutions.
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Show that all chain complexes P(A), , are split in
the sense described in Remark 13.6.

Corollary 13.10. 1) Filenberg-Cartan resolu-
tions A — I,(A) and P,(C') — C for cochain
complexes A and chain complexes C' induce
weak equivalences

A — Tot(1,(A)) and Tot(P,(C)) — C,
respectively.

2) For every cochain complex A there is a weak
equivalence A — J of cochain complezes
such that all J, are injective modules.

3) For every chain complex C' there is a weak
equivalence P — A such that all P, are pro-
jective modules.

Of course, we've already seen a better proof of
statement 3) — see Remark 4.11.

Corollary 13.11. Suppose that C is an ordi-
nary chain complex and A is a cochain complex.
Choose a weak equivalence A — J such that J
15 a cochain complex of injective modules. Then
there are isomorphisms

C, f1(Al=n])] = [C, Al=n]] = 7 (C, J|-n]).
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relating morphisms in (respectively) the derived
category of ordinary chain complexes, morphisms
in the full derived category, and chain homo-
topy classes of unbounded chain complexes.

We can make the choice of weak equivalence A —
J with all J" injective by Corollary 13.11.

Proof. Choose a projective resolution P — C.
Then P is a cofibrant unbounded chain complex,
by an adjunction argument (extending P to an un-
bounded complex by putting in zeros is left adjoint
to the truncation D — f_1D). There are isomor-
phisms

(P, f1(A[=n]))

m(P, f(J[=n]))

= (P, J[—n])

= n(C, J[-n])
since the truncation functor f_; preserves weak
equivalences, and by Proposition 12.8. ]
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