
Lecture 006 (November 9, 2009)

11 Cohomology

Suppose that C is a chain complex of R-modules.

1) There is an isomorphism

hom(R[−n], C)
∼=−→ Zn(C)

which is defined by the assigment f 7→ f (1), where

1 ∈ R = R[−n]n is the multiplicative identity of

the ring R.

2) A chain homotopy between chain morphisms

f, g : R[−n] → C can be identified with a R-

module homomorphisms σ : R → Cn+1 such that

∂σ = f − g. Equivalently, f (1) − g(1) = ∂σ(1)

for some element σ(1) ∈ Cn+1.

It follows that there is a commutative diagram of

abelian group homomorphisms

hom(R[−n], C)
∼= //

��

Zn(C)

��

π(R[−n], C) ∼=
//Hn(C)

which is natural in chain complexes C. Here,

π(R[−n], C)
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denotes chain homotopy classes of maps R[−n]→
C. Recall that the group π(R[−n], C) can be

identified with the group [R[−n], C] of morphisms

fromR[−n] toC in the derived category Ho(Ch+(R)).

We have therefore proved the following

Lemma 11.1. The assignment [f ] 7→ [f (1)] de-

fines a natural isomorphism

[R[−n], C] = π(R[−n], C)
∼=−→ Hn(C).

Cohomology can also be defined in the derived cat-

egory. Suppose that C is a complex of R-modules

and that A is an R-module. The cohomology

group Hm(C,A) is defined by

Hm(C,A) := [C,A[−m]].

A cochain complex E of R-modules is a chain

complex which is concentrated in negative degrees.

In other words, Ep = 0 for p > 0. One often

(in fact, almost universally) writes En = E−n for

n ≥ 0.

Example: If C is an ordinary chain complex and

A is a module, then hom(C,A) is the cochain com-

plex with

hom(C,A)n = hom(C,A)−n = hom(Cn, A)
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for n ≥ 0.

It is standard to write

Hn hom(C,A) := H−n hom(C,A)

for n ≥ 0.

Lemma 11.2. Suppose that C is an ordinary

chain complex and that A is a module. Then

there is an isomorphism

Hn hom(C,A) = H−n hom(C,A) ∼= π(C,A[−n]).

Proof. A cycle f of hom(C,A) can be identified

with a chain map f : C → A[−n], and the cycle

f is a boundary if and only if the chain map f is

chain homotopic to 0.

Corollary 11.3. Suppose that C is an ordinary

complex and that A is a module. Choose a cofi-

brant replacement ε : P '−→ C. Then there is an

isomorphism

Hn(C,A) ∼= π(P,A[−n]) = Hn hom(P,A).

Remark 11.4. The choice of cofibrant replace-

ment P → C in Corollary 11.3 does not matter,

and can be made functorial, all by a familiar argu-

ment.
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In effect, choose a functorial fibrant replacement

π : PC → C as in Lecture 04. Then the lifting θ

exists in the diagram

PC
π

��

P ε
//

θ
>>

C

since π is a trivial fibration and P is cofibrant.

The map θ is a weak equivalence between cofibrant

(and fibrant) objects is a weak equivalence, and is

necessarily a chain homotopy equivalence by the

Whitehead Theorem (Theorem 7.13). Finally, the

functor hom( , A) preserves chain homotopy equiv-

alences (exercise).

I could have written

Extn(C,A) = Hn(C,A) = [C,A[−n]]

and called these cohomology groups Ext groups,

although these groups are really hyper Ext invari-

ants.

If B is a module, it is standard to write

Extn(B,A) = Hn(B[0], A) = [B[0], A[−n]],

and call these the Ext-groups of B with coefficients

in A. The terminology will be explained later.
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The Ext groups are the derived functors of homo-

morphisms:

Lemma 11.5. 1) Suppose that P is a projec-

tive module. Then

Extn(P,A) = 0

for n > 0.

2) Suppose that C is a chain complex and that

A is a module. Then there is a natural iso-

morphism

H0 hom(C,A) ∼= hom(H0(C), A).

Proof. For statement 1), P [0]→ P is a projective

resolution of P , and P [0]k = 0 for k > 0. It follows

that

hom(P [0], A)k = 0

for k < 0, so that

Hk hom(P [0], A) = 0

in the same range.

For statement 2), choose a cofibrant replacement

P '−→ C for C. The sequence

P1
∂−→ P0 → H0(C)→ 0
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so that the sequence

0→ hom(H0(C), A)→ hom(P0, A) ∂∗−→ hom(P1, A)

is exact, since hom( , A) is right exact (exercise).

Lemma 11.6. 1) Suppose that

0→ F
j−→ E

p−→ B → 0

is a short exact sequence of chain complexes

and that A is some module. Then there is a

long exact sequence

0→ H0(B,A)
p∗−→ H0(E,A)

j∗−→ H0(F,A)

∂−→ H1(B,A)
p∗−→ H1(E,A)→ . . .

2) Suppose that

0→ A→ A′ → A′′ → 0

is a short exact sequence of modules and that

C is a chain complex. Then there is a long

exact sequence

0→ H0(C,A)→ H0(C,A′)→ H0(C,A′′)
∂−→ H1(C,A)→ H1(C,A′)→ . . .

Proof. For statement 1), use the method of proof

of Lemma 9.10 to find a weakly equivalent short
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exact sequence

0→ F ′ → PE′ → PB → 0

with all objects cofibrant. Then the sequence is

split exact in all degrees since all modules PBn are

projective, so that the sequence of cochain com-

plexes

0→ hom(PB, A)→ hom(PE′, A)→ hom(F ′, A)→ 0

is short exact. The desired long exact sequence

is the long exact sequence in homology which is

associated to this sequence.

For statement 2), the functor A 7→ hom(P,A) is

exact if P is projective (exercise). Thus, if P '−→ C

is a cofibrant model for C, then the sequence of

cochain complexes

0→ hom(P,A)→ hom(P,A′)→ hom(P,A′′)→ 0

is exact. The resulting long exact sequence in ho-

mology is the one we want.

Corollary 11.7. 1) Suppose that B and A are

modules. Then there is a natural isomor-

phism

Ext0(B,A) ∼= hom(B,A).
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2) Suppose that

0→ B
j−→ B′

p−→ B′′ → 0

is a short exact sequence of modules and that

A is a. Then there is a long exact sequence

0→ Ext0(B′′, A)
p∗−→ Ext0(B′, A)

j∗−→ Ext0(B,A)

∂−→ Ext1(B′′, A)
p∗−→ Ext1(B′, A)→ . . .

3) Suppose that

0→ A→ A′ → A′′ → 0

is a short exact sequence of modules and that

B is a module. Then there is a long exact

sequence

0→ Ext0(B,A)→ Ext0(B,A′)→ Ext0(B,A′′)
∂−→ Ext1(B,A)→ Ext1(B,A′)→ . . .

Examples:

1) Suppose that A is an abelian group, and let

0→ Z ×n−→ Z→ Z/n→ 0

be the standard free resolution of Z/n. The groups

Ext∗(Z/n,A) are the homology groups of the cochain

complex

hom(Z, A)
(×n)∗−−−→ hom(Z, A)→ 0→ . . .
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which complex is isomorphic to

A ×n−→ A→ 0→ . . .

It follows that

Ext0(Z/n,A) ∼= nA = Tor(Z/n,A),

Ext1(Z/n,A) ∼= A/nA = A⊗ Z/n,
Extk(Z/n,A) = 0 if k > 1.

2) Exercise: Show that Extk(B,A) = 0 for k > 1

for all abelian groups A and B.

3) Suppose that Z is the trivial module over the

cyclic group Z/m, and suppose thatA is an abelian

group, again with the trivial Z/m-module struc-

ture.

The sequence

hom(Z(Z/m), A)
(1−t)∗−−−→ hom(Z(Z/m), A) N∗−→ hom(Z(Z/m), A)

is isomorphic to the sequence

A 0−→ A ×m−−→ A

It follows that

Ext0(Z, A) ∼= A

Ext2k+1(Z, A) ∼= Tor(Z/m,A) if k > 0,

Ext2k(Z, A) ∼= A⊗ Z/m if k > 0.

in the category of Z/m-modules.

9



12 Injective resolutions

An injective R-module I is a module for which the

functor hom( , I) is exact. This means that, given

an exact sequence

M
g−→M ′ f−→M ′′

the sequence

hom(M ′′, I)
f∗−→ hom(M ′, I)

g∗−→ hom(M ′′, I)

should be exact.

Equivalently (exercise), I is injective if and only

if the dotted extension exists in every diagram of

R-module homomorphisms

A //

i
��

I

B

??

where i is a monomorphism.

The following result is a special case of a theorem

of Grothendieck which first appeared in [2], and is

proved in many places:

Theorem 12.1. The category of R-modules has

enough injectives: for every R-module A there

is monomorphism i : A → I such that I is in-

jective.
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The quickest proof of Theorem 12.1 (as stated) is

an abstraction of a step of the proof in Lemma 12.3

below.

Example 12.2. Every vector space over a field k

is an injective module over k, because all monomor-

phisms of k-vector spaces split.

Lemma 12.3. An abelian group A is injective

(ie. an injective Z-module) if and only if A is

n-divisible for all n.

The group A is n-divisible if and only if for all

a ∈ A there is a b ∈ A such that n · b = a (or,

multiplicatively, every element has an nth root).

Proof. An abelian groupA is injective if and only if

the morphism A→ 0 has the right lifting property

with respect to all monomorphisms B ⊂ B′ of

abelian groups. In particular, if A is injective, then

A → 0 has the right lifting property with respect

to the multiplication by n map ×n : Z→ Z, so A

is n-divisible, for all n.

Conversely, suppose that A is n-divisible for all n,
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and consider the poset of partial lifts

B
f //

��
A

��

C
��

θ

99sssssss

B′ // 0

of a morphism f , where the morphisms

B → C → B′

are injective with a fixed composition i : B →
B′. This poset has maximal elements, by Zorn’s

Lemma.

Suppose that x ∈ B′ − C, and let C ′ = 〈C, x〉 be

the subgroup of B′ which is generated by C and

x. Let x : Z → B′ be the homomorphism which

sends 1 to x. Then there is a pushout

x−1(C) //

j
��

C

��

Z x
//C ′

where j is a monomorphism, and the subgroup

x−1(C) is either 0 or of the form nZ for some n.

In either case, there is a lift θ′ : C ′ → A which

extends θ, since A is n-divisible for all n, and so

θ is not maximal. It follows that all maximal lifts

extend the homomorphism f to all of B′.
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Example 12.4. Every Q-vector space is an injec-

tive abelian group. Lemma 12.3 also tells you how

to make an injective module containing an abelian

group A: just put in all the nth roots for all n with

something like a small object argument. This is

also how the proof of Theorem 12.1 works.

Maps into injectives play the same role in homo-

logical algebra as do maps out of projectives.

Corollary 12.5. Every module A has an injec-

tive resolution, meaning an exact sequence

0→ A σ−→ I0 → I−1 → I−2 → . . .

for which all modules Ip are injective.

I like to write injective resolutions as maps of un-

bounded chain complexes σ : A[0]→ I , where I is

a complex of injectives such that Ip = 0 for p > 0,

and σ is a weak equivalence.

Lemma 12.6. Suppose that f : C → D is a

weak equivalence of ordinary chain complexes

and that I is an injective module. Then the

induced map

f ∗ : hom(D, I)→ hom(C, I)

is a weak equivalence of cochain complexes.
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Proof. If K is an acyclic complex, then the se-

quence

. . . ∂−→ K2
∂−→ K1

∂−→ K0 → 0

is exact, so that the sequence

0→ hom(K0, I) ∂∗−→ hom(K1, I) ∂∗−→ . . .

is exact. The cochain complex hom(K, I) is there-

fore acyclic.

Suppose that p : E → D is a trivial fibration

with acyclic kernel K. The sequence of cochain

complexes

0→ hom(D, I)
p∗−→ hom(E, I)→ hom(K, I)→ 0

is exact and so hom(K, I) is acyclic, so that p∗ is

a homology isomorphism.

Similarly, if i : C → E is a trivial cofibration with

acyclic cokernel K ′, then hom(K ′, I) is acyclic, so

that i∗ is a homology isomorphism.

Every weak equivalence f has a factorization f =

p · i where p is a trivial fibration and i is a trivial

cofibration, so f ∗ is a homology isomorphism.

Suppose that C is an ordinary chain complex and

that K is a cochain complex. There is a (third
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quadrant) bicomplex hom(C,K) with

hom(C,K)p,q = hom(C−p, Kq).

There is a cochain complex Tot(hom(C,K)) asso-

ciated to this bicomplex, with

Tot(hom(C,K))n =
⊕

p+q=n
hom(C−p, Kq),

and with

∂(f ) = ∂∗(f ) + (−1)−p∂∗f = f ·∂C + (−1)p∂K · f
for f ∈ hom(C−p, Kq).

The following result is a generalization of Lemma

11.2 (see also [3]):

Lemma 12.7. There is an isomorphism

H−n Tot(hom(C,K)) ∼= π(C,K[−n]).

This isomorphism is natural in chain complexes

C and cochain complexes K.

Proof. The group Tot(hom(C,K))n is the direct

sum

hom(Cn, K0)⊕hom(Cn−1, K−1)⊕· · ·⊕hom(C0, K−n).

Write (fn, fn−1, . . . , f0) for an element of this group.

Then

∂(fn,fn−1, . . . , f0)

= (fn∂C, fn−1∂C + (−1)n∂Kfn, . . . , (−1)0∂Kf0).
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In particular the j-term in the (n+2)-tuple ∂(fn, . . . , f0)

is

fj−1∂C + (−1)j∂Kfj

for 0 < j < n + 1.

Write

f̃j = (−1)
∑j−1

i=o ifj.

Then ∂(fn, fn−1, . . . , f0) = 0 if and only if the

maps f̃j define a chain map f̃ : C → K[−n]. In

effect,

(−1)
∑j−2

i=0 ifj−1∂C+(−1)
∑j−2

i=0 i(−1)j∂Kfj = f̃j−1∂C−∂K f̃j.

Suppose that

∂(sn−1, . . . , s0) = (fn, . . . , f0),

and write

s̃j = (−1)
∑j

i=o isj.

Then

f̃j = (−1)
∑j−1

i=0 ifj

= (−1)
∑j−1

i=0 isj−1∂C + (−1)
∑j−1

i=0 i(−1)j∂Ksj

= s̃j−1∂C + ∂K s̃j

for all j, so the chain map defined by the maps f̃k
is chain homotopic to 0.
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The maps fj and sj can be recovered from f̃j
and s̃j, respectively, by multiplying by the obvi-

ous powers of −1.

Proposition 12.8. Suppose that J is a cochain

complex of injective modules, and that f : C →
D is a weak equivalence of ordinary chain com-

plexes. Then the induced map

π(D, J [−n])
f∗−→ π(C, J [−n])

is an isomorphism for all n ≥ 0.

Proof. Suppose that J has one non-trivial entry, so

that J = I [n], meaning that J consists of the in-

jective module I concentrated in degree −n. Then

there is a natural isomorphism

Tot(hom(C, I [n])) ∼= hom(C, I)[n]

(exercise). The induced map

f ∗ : hom(D, I)→ hom(C, I)

is a weak equivalence by Lemma 12.6, and so the

shifted map

f ∗ : hom(D, I)[n]→ hom(C, I)[n]

is a weak equivalence.
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Suppose that J has only finitely many non-zero

modules. Suppose that k is the maximal degree

such that Jk 6= 0. Then there is a short split exact

sequence

0→ Fk−1J → J → Jk[k]→ 0.

which sequence induces a natural short exact se-

quence

0 // Tot(hom(C,Fk−1J)) // Tot(hom(C, J))

��

Tot(hom(C, Jk[k])) // 0.

Then Fk−1J is a cochain complex of injectives with

fewer non-zero modules, and we assume induc-

tively that the map

f ∗ : Tot(hom(D,Fk−1J))→ Tot(hom(C,Fk−1J))

is a weak equivalence. It follows from the argument

above and a comparison of long exact sequences

that the map

f ∗ : Tot(hom(D, J))→ Tot(hom(C, J))

is a weak equivalence.

In general, for k < 0,

Tot(hom(C,FkJ))p = 0
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for p > k, and so

Hp(Tot(hom(C,FkJ))) = 0

for p > k. It follows that the map

Hp(Tot(hom(C, J)))→ Hp(Tot(hom(C, J/FkJ)))

is an isomorphism for p > k + 1.

The complex J/FkJ of injectives has only finitely

many non-zero modules. Thus, given n ≤ 0, choose

k such that n > k + 1. Then there is a commuta-

tive diagram

Hn(Tot(hom(D, J)))
∼= //

f∗
��

Hn(Tot(hom(D, J/FkJ)))

f∗∼=
��

Hn(Tot(hom(C, J))) ∼=
//Hn(Tot(hom(C, J/FkJ)))

Then it follows that f induces an isomorphism

f ∗ : Hn(Tot(hom(D, J)))
∼=−→ Hn(Tot(hom(C, J))).

One can form the Postnikov section P−1D for an

unbounded chain complex D just as for chain com-

plexes:

P−1(D)p =



0 if p > 0,

B0D if p = 0,

Dp if p < 0.
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and there is a short exact sequence

0→ f−1D → D → P−1D → 0.

Note that

f−1(D)p =



Dp if p > 0,

Z0D if p = 0

0 if p < 0.

Then f−1D is an ordinary chain complex, and the

functor D 7→ f−1D is right adjoint to the inclusion

functor Ch+(R) ⊂ Ch(R). This functor preserves

weak equivalences, and there is an isomorphism

π(C,D) ∼= π(C, f−1D),

relating chain homotopy classes in the unbounded

category to chain homotopy classes in ordinary

chain complexes.

Corollary 12.9. Suppose that C is a chain com-

plex and that A is a module. Choose an injec-

tive resolution A[0] → I of A. Then there is a

natural isomorphism

[C,A[−n]] = Hn(C,A) ∼= π(C, I [−n]).

Proof. Choose a cofibrant model ε : P '−→ C for

C. The injective resolution A[0] → I induces a
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weak equivalence

A[−n]→ f−1I [−n]

and so there is are isomorphisms

π(P,A[−n])
∼=−→ π(P, f−1I [−n]) ∼= π(P, I [−n])

∼=←− π(C, I [−n])

for all n, by the Whitehead Theorem and Propo-

sition 12.8.

Corollary 12.10. Suppose that A and B are

modules and that B[0] → I is an injective res-

olution of B. Then there are natural isomor-

phisms

Extn(A,B) ∼= π(A[0], I [−n]) ∼= Hn hom(A, I).

13 Eilenberg-Cartan resolutions

The following is a formalization of techniques that

we’ve already seen:

Lemma 13.1. Suppose that f : C → D is

a map of first (respectively third) quadrant bi-

complexes such that the chain complex maps

f : Cp,∗ → Dp,∗ are weak equivalences for all

p. Then the chain complex map f∗ : Tot(C) →
Tot(D) is a weak equivalence.
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Proof. There is a natural filtration FnC of a bi-

complex C with

FnCp,q =


Cp,q if p ≤ n,

0 if p > n

In the short exact sequence of bicomplexes

0→ Fn−1C → FnC → FnC/Fn−1C → 0

the quotient FnC/Fn−1C consists of a copy of Cn,∗
in horizontal degree n, and is 0 in other horizontal

degrees. It follows that there is an isomorphism

Tot(FnC/Fn−1C) ∼= Cn,∗[−n]

It follows from the assumptions of the Lemma that

all induced maps

f∗ : Tot(FnC/Fn−1C)→ Tot(FnD/Fn−1D)

are weak equivalences.

If C and D are first quadrant bicomplexes, then

by increasing induction on n, all maps

f∗ : Tot(FnC)→ Tot(FnD)

are weak equivalences. There is a functorial iso-

morphism

Hk(Tot(C)) ∼= Hk(Totn(C)) (1)
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for n sufficiently large, for all k, so that

f∗ : Tot(C)→ Tot(D)

is a homology isomorphism.

If C and D are third quadrant bicomplexes, then

by decreasing induction on n all maps

f∗ : Tot(C/FnC)→ Tot(D/FnD)

are weak equivalences. There is a functorial iso-

morphism

Hk(Tot(C)) ∼= Hk(Tot(C/FnC)) (2)

for n sufficiently small, for all k, so that

f∗ : Tot(C)→ Tot(D)

is a homology isomorphism.

Remark 13.2. The isomorphisms (1) and (2) are

convergence isomorphisms for the standard fil-

tration, for first and third quadrant bicomplexes

respectively.

Lemma 13.3. Suppose that the sequence of mod-

ule homomorphisms

0→ A→ B → C → 0 (3)

is exact, and suppose given monomorphisms iA :

A → I(A) and iC : C → I(C) with I(A) and
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I(C) injective. Then there is a comparison of

exact sequences

0 //A
iA��

j //B
iB��

p //C
iC��

// 0

0 // I(A) // I(B) // I(C) // 0

(4)

in which the module I(B) is injective and iB is

a monomorphism.

Proof. Choose a map σ : B → I(A) such that the

diagram

A
j //

iA ��

B

σ||zz
zz

zz
zz

I(A)

commutes. Form the diagram

0 //A
iA��

j //B
(σ,iC ·p)��

p //C
iC��

// 0

0 // I(A) // I(A)⊕ I(C) // I(C) // 0

and set I(B) = I(A) ⊕ I(C). The map iB =

(σ, IC ·p) is a monomorphism by the Snake Lemma

(Lemma 1.2).

Corollary 13.4. Suppose given a short exact

sequence

0→ A→ B → C → 0
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of module homomorphisms and injective reso-

lutions ηA : A→ I(A) and ηC : C → I(C) of A

and C respectively. Then there is a comparison

of short exact sequences of cochain complexes

0 //A
ηA

��

j //B
η

��

p //C
ηC

��

// 0

0 // I(A) // I(B) // I(C) // 0

in which the map η : B → I(B) is an injective

resolution of B.

Proof. Form the diagram

0 //A
ηA

��

j //B
η

��

p //C
ηC

��

// 0

0 // I0(A) // I0(B) // I0(C) // 0

as in Lemma 13.3, and let the exact sequence

0→ Z−1(A)→ B′ → Z−1 → 0

be the cokernel of the vertical map. Then by Lemma

13.3 there is a commutative diagram

0 // I0(A) //

p
��

I0(B) //

p
��

I0(C) //

p
��

0

0 //Z−1(A)

i
��

//B′

i
��

//Z−1(C)

i
��

// 0

0 // I−1(A) // I−1(B) // I−1(C) // 0
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in which all vertical maps p are epimorphisms, all

maps i are monomorphisms, and the composites

ip : I0(A) → I−1(A) and ip : I0(C) → I−1(C)

coincide with the boundary homomorphisms for

the chosen injective resolutions of A and C respec-

tively.

Construct the resolution η : B → I(B) induc-

tively. The composite ip : I0(B) → I−1(B) is the

first differential.

Lemma 13.5. Suppose that A is a chain com-

plex (unbounded). Then there is a bicomplex

morphism η : Ap → I(A)p,q such that all in-

duced cochain complex maps

Ap → I(A)p,∗

ZpA→ ZpI(A)∗,0 → ZpI(A)∗,−1 → . . .

BpA→ BpI(A)∗,0 → BpI(A)∗,−1 → . . .

Hp(A)→ HpI(A)∗,0 → HpI(A)∗,−1 → . . .

are injective resolutions.

Proof. Write Bp = Bp(A), Zp = Zp(A) and Hp =

HpA for the boundaries, cycles and homology groups

of A, respectively.

Choose injective resolutions ηBp : Bp → I(Bp) and

ηHp : Hp → I(Hp) for all k.
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Use Corollary 13.4 to choose injective resolutions

ηZp : Zp → I(Zp) such that the diagrams

0 //Bp
j //

ηBp
��

Zp
π //

ηZp
��

Hp
//

ηHp
��

0

0 // I(Bp) j∗
// I(Zp) π∗

// I(Hp) // 0

commute for all k. Use Corollary 13.4 again to

choose injective resolutions ηp : Ap → I(Ap) so

that the diagrams

0 //Zp
i //

ηZp
��

Ap
q //

ηp
��

Bp−1
//

ηBp−1
��

0

0 // I(Zp) i∗
// I(Ap) q∗

// I(Bp−1) // 0

commute for all k.

The commutative diagrams

Ap
q //

ηp
��

Bp−1
j //

ηBp−1
��

Zp−1
i //

ηZp−1
��

Ap−1

ηp−1
��

I(Ap) q∗
// I(Bp−1)

j∗
// I(Zp−1)

i∗
// I(Ap−1)

(5)

imply that the lower composites define boundary

maps

∂ = i∗j∗q∗ : I(Ap)→ I(Ap−1)

which give a bicomplex I(A), and that the maps

ηp define a bicomplex map η : A→ I(A).
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By construction, ZpI(A) = I(Zp),BpI(A) = I(Bp)

and HpI(A) = I(HpA).

Remark 13.6. In the diagram (5) the chain maps

q∗ are epimorphisms and the maps i∗ and j∗ are

monomorphisms. The short exact sequences

0→ I(Bp)q
j∗−→ I(Zp)q

π∗−→ I(Hp)q → 0

0→ I(Zp)q
i∗−→ I(Ap)q

q∗−→ I(Bp−1)q → 0

are short exact sequences of injective modules, and

are therefore split.

Say that a chain complex C is split if all exact

sequences

0→ BpC → ZpC → HpC → 0

0→ ZpC → Cp → Bp−1C → 0

are split exact. All (vertical) chain complexes I(A∗)q
in the bicomplex I(A) of Lemma 13.5 are split.

Lemma 13.7. Suppose that C is a split chain

complex and that A is a module. Then

1) the complex C ⊗ A is split and there is an

isomorphism

Hn(C ⊗ A) ∼= Hn(C)⊗ A.
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2) the cochain complex hom(C,A) is split and

there is an isomorphism

H−n hom(C,A) ∼= hom(HnC,A).

The proof is an exercise.

Remark 13.8. The bicomplex I(A) of Lemma

13.5, is called an Eilenberg-Cartan resolution of

the cochain complex A.

There is a subtle point at work here: we construct

the map of bicomplexes A→ I(A) for unbounded

complexes A, but in that case the homotopy type

of Tot(I(A)) (which is defined on the chain level

by infinite direct sums) is hard to analyse. The

Eilenberg-Cartan construction is compatible with

the Postnikov tower construction, which construc-

tion produces shifted cochain complexes, and there

is a comparison of towers of fibrations

PnA→ Tot(I(PnA))

which consists of weak equivalences. A homotopy

inverse limit argument (eg. [1, VI.1]) shows that

the induced map

A ∼= lim←−n
PnA→ lim←−n

Tot(I(PnA))
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is a weak equivalence of unbounded complexes.

The thing on the right is the “correct” Eilenberg-

Cartan resolution for the unbounded complex A

— it is defined on the chain level by infinite direct

products.

Exercise 13.9. Show the projective resolution

analogs of Lemma 13.3, Corollary 13.4 and Lemma

13.5:

1) Show that every short exact sequence has a

projective cover, suitably defined.

2) Show that every short exact sequences of ordi-

nary chain complexes has a projective resolu-

tion.

3) Show that for every chain complex A there is

a bicomplex map P (A)→ A with

P (A)p,q = P (Ap)q → Ap

such that the maps

Ap ← P (A)p,∗

ZpA← ZpP (A)∗,0 ← ZpP (A)∗,1 ← . . .

BpA← BpP (A)∗,0 ← BpP (A)∗,1 ← . . .

HpA← HpP (A)∗,0 ← HpP (A)∗,1 ← . . .

are projective resolutions.
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Show that all chain complexes P (A)∗,q are split in

the sense described in Remark 13.6.

Corollary 13.10. 1) Eilenberg-Cartan resolu-

tions A→ I∗(A) and P∗(C)→ C for cochain

complexes A and chain complexes C induce

weak equivalences

A→ Tot(I∗(A)) and Tot(P∗(C))→ C,

respectively.

2) For every cochain complex A there is a weak

equivalence A → J of cochain complexes

such that all Jn are injective modules.

3) For every chain complex C there is a weak

equivalence P → A such that all Pn are pro-

jective modules.

Of course, we’ve already seen a better proof of

statement 3) — see Remark 4.11.

Corollary 13.11. Suppose that C is an ordi-

nary chain complex and A is a cochain complex.

Choose a weak equivalence A → J such that J

is a cochain complex of injective modules. Then

there are isomorphisms

[C, f−1(A[−n])] ∼= [C,A[−n]] ∼= π(C, J [−n]).
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relating morphisms in (respectively) the derived

category of ordinary chain complexes, morphisms

in the full derived category, and chain homo-

topy classes of unbounded chain complexes.

We can make the choice of weak equivalence A→
J with all Jn injective by Corollary 13.11.

Proof. Choose a projective resolution P → C.

Then P is a cofibrant unbounded chain complex,

by an adjunction argument (extending P to an un-

bounded complex by putting in zeros is left adjoint

to the truncation D 7→ f−1D). There are isomor-

phisms

π(P, f−1(A[−n])) ∼= π(P, f−1(J [−n]))
∼= π(P, J [−n])
∼= π(C, J [−n])

since the truncation functor f−1 preserves weak

equivalences, and by Proposition 12.8.
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