
Lecture 007 (November 11, 2009)

14 Spectral sequences: filtered chain complexes

The treatment of spectral sequences given here is

a nuts and bolts approach (which means that we

chase some elements), that essentially follows Mac

Lane’s Homology [1]. There are, of course, many

books. The aim here is simply to get the basic

calculational machines running.

Suppose that C is an ordinary chain complex. A

filtration on C is a sequence of subcomplexes

F0C ⊂ F1(C) ⊂ · · · ⊂ FnC ⊂ . . .

of C such that

∪n≥0 FnC = lim−→
n≥0

FnC = C.

One often says that the structure consisting of a

chain complex C together with a filtration FnC is

a filtered complex.

Example 14.1. We have already seen some stan-

dard examples. Suppose that E is a first quadrant

bicomplex, and let FnE be the sub-bicomplex with

FnEp,q =


Ep,q if p ≤ n,

0 if p > n.
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Then the subobjects

Fn(Tot(E)) = Tot(FnE)

define a filtration of Tot(E).

Generally, any filtration of a bicomplexE (suitably

defined) determines a filtration of Tot(E). There

are two canonical filtrations of a bicomplex E,

namely the horizontal filtration displayed above

and the vertical filtration, with

F ′nEp,q =


Ep,q if q ≤ n,

0 if q > n.

The horizontal and vertical filtrations of a bicom-

plex are both of fundamental importance in appli-

cations.

Every filtration Fn = FnC on a chain complex

C determines short exact sequences of chain com-

plexes

0→ Fn−1
i−→ Fn

p−→ Fn/Fn−1 → 0

with corresponding long exact sequences in homol-
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ogy groups

. . . ∂ //Hp+qFp−1

i∗
��

Hp+qFp
p∗ //Hp+q(Fp/Fp−1) ∂ //Hp+q−1Fp−1

i∗
��

Hp+q−1Fp
p∗ // . . .

It is a key observation that these long exact se-

quences fit together to form a “ladder diagram”

. . . ∂ //Hp+qFp−2

i∗
��

. . . ∂ //Hp+qFp−1

i∗
��

p∗ //Hp+q(Fp−1/Fp−2) ∂ //Hp+q−1Fp−2

i∗
��

Hp+qFp
p∗ //Hp+q(Fp/Fp−1) ∂ //Hp+q−1Fp−1

i∗
��

p∗ // . . .

Hp+q−1Fp
p∗ // . . .

The following is the piece of the picture on which
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I want to focus:

Hp+q−1Fp−3

i∗
��

p∗ // . . .

. . . ∂ //Hp+qFp−1

i∗
��

Hp+q−1Fp−2

i∗
��

p∗ // . . .

. . . ∂ //Hp+qFp
p∗ //

i∗
��

Hp+q(Fp/Fp−1) ∂ //Hp+q−1Fp−1

i∗
��

p∗ // . . .

. . . ∂ //Hp+qFp+1

i∗
��

Hp+q−1Fp
∂ //

i∗
��

. . .

...

��

...

��

Hp+qC Hp+q−1C

We have the following definitions of abelian groups:

Zr
p,q := ∂−1(im(ir−1

∗ )),

Br
p,q := p∗(ker(ir−1

∗ )),

Er
p,q = Zr

p,q/B
r
p,q.

Here, ir−1
∗ denotes the composite map,

Hp+q−1Fp−r → Hp+q−1Fp−1, and

Hp+qFp → Hp+qFp+r−1,

respectively.

All of these groups are R-modules if the filtered

chain complex is defined in the category of R-
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modules. The definitions are natural in morphisms

of filtered complexes, suitably defined.

Observe that

E1
p,q = Hp+q(Fp/Fp−1)

since i0∗ is the identity map, so that

Z1
p,q = Hp+q(Fp/Fp−1) and B1

p,q = 0.

There is a homomorphism

dr : Er
p,q → Er

p−r,q+r−1,

called the r-differential, which is defined by [u] 7→
[p∗(v)] where ir−1

∗ (v) = ∂(u).

Observe that if u, u′ ∈ Zr
p,q with u = u′+p∗(x) for

some x ∈ Hp+qFp then ∂(u) = ∂(u′) since ∂p∗ =

0, so that dr([u]) is independent of the choice of

representative u.

If ir−1
∗ (v′) = ir−1

∗ (v) = ∂(u), then v−v′ ∈ ker(ir−1
∗ )

so that p∗(v) = p∗(v
′) + p∗(v − v′) and [p∗(v)] =

[p∗(v
′)] in Er

p−r,q+r−1. It follows that dr is well

defined for all p, q, r.

Lemma 14.2. 1) The composite

Er
p+r,q−r+1

dr

−→ Er
p,q

dr

−→ Er
p−r,q+r−1

is the 0 map.
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2) There is an isomorphism

ker(dr)/ im(dr) ∼= Er+1
p,q .

Proof. The first claim is an exercise.

There are inclusions

Br
p,q ⊂ Br+1

p,q ⊂ Zr+1
p,q ⊂ Zr

p,q.

Let ν be the composite map

Zr+1
p,q ⊂ Zr

p,q → Er
p,q.

The sequence

Zr+1
p,q

ν−→ Er
p,q

dr

−→ Er
p−r.q+r−1

is exact. To see this, observe that

• If u ∈ Zr+1
p,q , then ∂(u) = ir∗(v) for some v ∈

Hp+q−1Fp−r−1, and so dr([v]) = [p∗i∗(v)] = 0.

• If dr([u]) = [p∗(v)] = 0, then p∗(v) = p∗(w)

where ir−1
∗ (w) = 0, so that p∗(v −w) = 0 and

v − w = i∗(v
′). But then

ir∗(v
′) = ir−1

∗ (v − w) = ir−1
∗ (v) = ∂(u),

and u ∈ Zr+1
p,q .

The resulting composite map

Zr+1
p,q → ker(dr)→ ker(dr)/ im(dr)
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has kernel Br+1
p,q . In effect, suppose that u 7→

0 under this map. Then [u] = [p∗(v
′)] in Er

p,q,

where ir−1
∗ (v′) = ∂(w) for some w, or equiva-

lently ir∗(v
′) = 0. But then u = p∗(v

′) + p∗(v)

where ir−1
∗ (v) = 0, so that u = p∗(v

′ + v) with

ir∗(v + v′) = 0, so that u ∈ Br+1
p,q .

Here are some observations:

1) The morphism d1 : E1
p,q → E1

p−1,q is the com-

posite

Hp+q(Fp/Fp−1) ∂−→ Hp+q−1Fp−1
p∗−→ Hp+q−1Fp−1/Fp−2,

and so the groupsE2
p,q are the homology groups

of the chain complex

Hp+q+1Fp+1/Fp
p∗∂−−→ Hp+qFp/Fp−1

p∗∂−−→ Hp+q−1Fp−1/Fp−2

2) Tacitly, Fp = 0 for p < 0 so that E1
p,q = 0 for

p < 0. It follows that Er
p,q = 0 for p < 0.

In good examples, such as the standard filtra-

tions of the total complex Tot(E) of a first

quadrant bicomplex E, we also have E1
p,q = 0

and hence Er
p,q = 0 if q < 0.

3) The number p + q is the total degree of the

group Er
p,q. The differential

dr : Er
p,q → Er

p−r,q+r−1,

7



decreases total degree by 1, for all r ≥ 1.

The picture that emerges is a sequence of arrays

of groups Er
p,q — the array Er

p,q is called the Er-

term — with differentials dr in the Er-term with

isomorphisms Hp,q(E
r) ∼= Er+1

p,q . This is a spectral

sequence.

Spectral sequences are a calculational tool, but to

actually make calculations we need a few more def-

initions.

Define subgroups Z∞p,q and B∞p,q of Hp+q(Fp/Fp−1)

by

Z∞p,q = ker(∂ : Hp+qFp/Fp−1 → Hp+q−1Fp−1)

B∞p,q = p∗(ker(Hp+qFp → Hp+qC))

Then B∞p,q ⊂ Z∞p,q (exercise), and we define

E∞p,q = Z∞p,q/B
∞
p,q.

Finally, set

FpHp+qC = im(Hp+qFp → Hp+qC).

Then the subgroups

· · · ⊂ FpHp+qC ⊂ Fp+1Hp+qC ⊂ . . .

define a filtration of Hp+qC, and we have the fol-

lowing:
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Lemma 14.3. There are (natural) short exact

sequences

0→ Fp−1Hp+qC → FpHp+qC
π−→ E∞p,q → 0.

The proof of this result is an exercise: the map

π : FpHp+qC → E∞p,q

is defined by π(x) = [p∗(y)], where y ∈ Hp+qFp
maps to x under the map

Hp+qFp → Hp+qC.

We have inclusions

Br
p,q ⊂ B∞p,q ⊂ Z∞p,q ⊂ Zr

p,q

for all r ≥ 1. We are filtering an ordinary chain

complex, so that

Z∞p,q = Zr
p,q

if r ≥ p + 1. We say that the spectral sequence

converges if

Br
p,q = B∞p,q

for r sufficiently large, for all p, q. This would mean

that

Er
p,q = E∞p,q

for r sufficiently large, for all p, q. In this case, we

write

Er
p,q =?⇒ Hp+qC

9



to indicate that we have a spectral sequence for

which one can calculate the Er-term (usually for

r = 1 or r = 2, and there’s some fun in the calcu-

lation) and which converges to give a calculation

of the homology H∗C.

This means that we have a filtration FpHp+qC of

Hp+qC with filtration quotients

FpHp+q → E∞p,q → 0

which can be calculated from the corresponding

termsEr
p,q by iterating the homology machine which

produces Er+1
p,q from Er

p,q finitely many times in

each bidegree. The references to bidegree and the

corresponding total degree give notational cues for

keeping track of the calculations.

15 First quadrant bicomplexes

The two spectral sequences associated to a first

quadrant bicomplex E are standard and very im-

portant examples.

1) Recall that the bicomplex E has a horizontal

filtration FnE with

FnEp,q =


Ep,q if p ≤ n,

0 if p > n
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which induces a filtration

Fn Tot(E) = Tot(FnE)

of the associated total complex Tot(E). Recall

that there is an isomorphism

Fp Tot(E)/Fp−1 Tot(E) ∼= Ep,∗[−p]

and so there is an isomorphism

E1
p,q = Hp+q(Ep,∗[−p]) ∼= HqEp,∗ =: Hv

qEp,∗.

These isomorphisms fit into a commutative dia-

gram

E1
p,q

d1
//

∼=
��

E1
p−1,q

∼=
��

HqEp,∗
∂h
∗

//HqEp−1,∗

so that one could write

E2
p,q = Hh

pH
v
q (E)

The spectral sequence converges since

Fn Tot(E)p+q = Tot(E)p+q

if n ≥ p + q, so that we have

E2
p,q = Hh

pH
v
q (E)⇒ Hp+q Tot(E). (1)
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The resulting filtration of Hn Tot(E) in total de-

gree n has the form

F0Hn
//

∼=
��

F1Hn
//

��

. . . Fn−1Hn
//FnHn

∼= //

��

Hn

E∞0,n E∞1,n−1 E∞n,0
(2)

2) The bicomplex E has a vertical filtration F ′pE

with

F ′nEp,q =


Ep,q if q ≤ n,

0 if q > n

which induces a filtration

F ′n Tot(E) = Tot(F ′nE)

of the associated total complex Tot(E). there is

an isomorphism

Fp Tot(E)/Fp−1 Tot(E) ∼= E∗,p[−p]

and so there is an isomorphism

E1
p,q = Hp+q(E∗,p[−p]) ∼= HqE∗,p =: Hh

qE∗,p.

These isomorphisms fit into a commutative dia-

gram

E1
p,q

d1
//

∼=
��

E1
p−1,q

∼=
��

HqE∗,p ∂v
∗

//HqE∗,p−1
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so that one could write

E2
p,q = Hv

pH
h
q (E)

The spectral sequence converges by the same ar-

gument as before, so that we have

E2
p,q = Hv

pH
h
q (E)⇒ Hp+q Tot(E). (3)

The spectral sequence (3) is effectively the “same”

spectral sequence as the spectral sequence (1) which

is obtained by filtering in horizontal degree, except

that we’ve reversed the roles of p and q. Revers-

ing the order of calculating vertical and horizontal

homology can have strikingly different outcomes,

and this frequently gives two very useful and com-

plementary apporoaches to calculating the same

thing, which is the homology of the total complex

Tot(E).

Example 15.1. Suppose that C is a chain com-

plex of right R-modules and that A is a left R-

module. Suppose that the bicomplex map

P (C)p,q → Cp

is an Eilenberg-Cartan resolution of C (as in Sec-

tion 13). Then Tot(P (C)) → C is a weak equiv-

alence and Tot(P (C)) is a complex of projectives.
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Recall that the higher torsion product functors

Tor∗(C,A) (Section 10) are defined by

Torn(C,A) = Hn(Tot(P (C))⊗R A)

up to isomorphism.

There is an isomorphism

Tot(P (C))⊗R A ∼= Tot(P (C)⊗R A).

1) Filter the bicomplex P (C)⊗A in the horizontal

direction:

Fn(P (C)⊗ A)p,q =


P (C)p,q ⊗ A if p ≤ n,

0 if p > n.

and

Fn Tot(P (C)⊗ A) = Tot(Fn(P (C)⊗ A).

Then

Fp Tot(P (C)⊗A)/Fp−1 Tot(P (C)⊗A) ∼= P (C)p,∗⊗A[−p]

where P (C)p,∗ → Cp is a projective resolution, so

that

E1
p,q
∼= Torq(Cp, A).

It follows that

E2
p,q
∼= Hp Torq(C,A)⇒ Torp+q(C,A). (4)
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2) Filter the bicomplex P (C) ⊗ A in the vertical

direction:

F ′n(P (C)⊗ A)p,q =


P (C)p,q ⊗ A if q ≤ n,

0 if q > n.

and

F ′n Tot(P (C)⊗ A) = Tot(F ′n(P (C)⊗ A).

Then

F ′p Tot(P (C)⊗A)/F ′p−1 Tot(P (C)⊗A) ∼= P (C)∗,p⊗A[−p]

and

E1
p,q = Hq(P (C)∗,p ⊗ A).

The chain complexes P (C)∗,p are split, and so there

are isomorphisms

Hq(P (C)∗,p ⊗ A) ∼= Hq(P (C)∗,p)⊗ A

by Lemma 13.7. The chain complex p 7→ Hq(P (C))∗,p
is a projective resolution of HqC since P (C)→ C

is an Eilenberg-Cartan resolution, and it follows

that there is an isomorphism

E2
p,q
∼= Torp(HqC,A).

In summary, this spectral sequence has the form

E2
p,q = Torp(HqC,A)⇒ Hp+q Torp+q(C,A). (5)
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The spectral sequence (5) is the universal coeffi-

cients spectral sequence. It is a generalization of

the universal coefficients theorem (Theorem 9.17).

The spectral sequences (4) and (5) both converge

to the same thing, namely the higher torsion groups

Tor∗(C,A). The spectral sequence (4) is more use-

ful in the presence of “coarse” information about

the complex C on the chain level, while (5) is used

when was one has “fine” information about its ho-

mology.

Example 15.2. Choose cofibrant (projective) mod-

els P '−→ C and Q '−→ D for C and D respectively,

in the respective categories of ordinary chain com-

plexes. Form the bicomplex P ⊗R Q with

(P ⊗R Q)p,q = Pp ⊗R Qq

and take the horizontal filtration Fp(P⊗RQ). Then

in the corresponding spectral sequence

E1
p,q = Hq(Pp⊗RQ) ∼= Hq(Pp⊗D) ∼= Pp⊗Hq(D).

It follows that

E2
p,q = Torp(C,HqD)⇒ Torp+q(C,D).

Filtering in the vertical direction gives the spectral
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sequence

E2
p,q = Torp(HqC,D)⇒ Torp+q(C,D).

For either of these spectral sequences, there is more

work to do: more spectral sequence calculations as

in Example 15.1 may be required to calculate the

respective E2-terms.

16 Filtered cochain complexes and third quad-
rant bicomplexes

Suppose that C is an unbounded complex with a

filtration

· · · ⊂ FnC ⊂ Fn+1C ⊂ . . . C

indexed by n ∈ Z. We still require that

∪n∈Z FnC = lim−→
n∈Z

FnC = C.

The basic spectral sequence machinery of Section

14 applies in this more general case. We still have
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the picture of interlocking long exact sequences

Hp+q−1Fp−3

i∗
��

p∗ // . . .

. . . ∂ //Hp+qFp−1

i∗
��

Hp+q−1Fp−2

i∗
��

p∗ // . . .

. . . ∂ //Hp+qFp
p∗ //

i∗
��

Hp+q(Fp/Fp−1) ∂ //Hp+q−1Fp−1

i∗
��

p∗ // . . .

. . . ∂ //Hp+qFp+1

i∗
��

Hp+q−1Fp
∂ //

i∗
��

. . .

...

��

...

��

Hp+qC Hp+q−1C

but with p, q ∈ Z. We set

Zr
p,q := ∂−1(im(ir−1

∗ )),

Br
p,q := p∗(ker(ir−1

∗ )),

Er
p,q = Zr

p,q/B
r
p,q.

and then again a differential

dr : Er
p,q → Er

p−r,q+r−1

is defined such that the analog of Lemma 14.2

holds (with the same proof): the composite

Er
p+r,q−r+1

dr

−→ Er
p,q

dr

−→ Er
p−r,q+r−1
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is the 0 map, and there is an isomorphism

ker(dr)/ im(dr) ∼= Er+1
p,q .

Subgroups Z∞p,q and B∞p,q of Hp+q(Fp/Fp−1) are de-

fined by

Z∞p,q = ker(∂ : Hp+qFp/Fp−1 → Hp+q−1Fp−1)

B∞p,q = p∗(ker(Hp+qFp → Hp+qC))

Then B∞p,q ⊂ Z∞p,q, and we set

E∞p,q = Z∞p,q/B
∞
p,q.

Finally, the analog of Lemma 14.3 holds (with the

same proof): there are natural short exact sequences

0→ Fp−1Hp+qC → FpHp+qC
π−→ E∞p,q → 0, (6)

where FpHp+qC is the image of the map

Hp+q(FpC)→ Hp+qC.

Remark 16.1. The definition of Z∞p,q which ap-

pears above is not standard. This group is nor-

mally required to be the preimage under the map

∂ of the canonical map

lim←−
k

Hp+q−1Fk → Hp+q−1Fp−1.

The two descriptions of Z∞p,q coincide for the filtra-

tions of ordinary chain complexes which were dis-

cussed in Section 15, but not in general, and the
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question of when the two corresponding descrip-

tions of E∞p,q coincide can become a rather delicate

issue.

In general, there are inclusions

Br−1
p,q ⊂ Br

p,q ⊂ B∞p,q ⊂ Z∞p,q ⊂ Zr
p,q ⊂ Zr−1

p,q

We say that the spectral sequence converges if for

all p, q there is an r such that

1) Z∞p,q = Zr
p,q, and

2) Br
p,q = B∞p,q.

Generally, even if such a spectral sequence con-

verges, to make effective calcuations you also need

to know that

3) FnHp+qC = 0 for some n, for all p, q.

Suppose that E is a third quadrant bicomplex.

1) Filter the bicomplex E in horizontal degrees by

setting

FnEp,q =


Ep,q if p ≤ n,

0 if p > n.

Then the subobjects

Fn(Tot(E)) = Tot(FnE)

define a filtration of Tot(E) with F0 Tot(E) =

Tot(E), so the filtration on Tot(E) is descending.
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Note that condition 2) above follows automatically.

Also, FnEp,q = 0 if q > n so that Fn Tot(E)p+q =

0 if p + q > n. It follows that Hp−1Fk = 0 if

k < p − 1. Conditions 1) and 3) follow, and so

the spectral sequence for the filtered complex con-

verges in the strong sense that it satisfies condi-

tions 1)–3).

Suppose that p and q are positive numbers. There

are isomorphisms

E1
−p,−q = H−p−q(F−p/F−p−1) ∼= H−p−q(E−p,∗[p]) ∼= H−qE−p,∗

and it follows that the spectral sequence has the

form

E2
−p,−q

∼= Hh
−pH

v
−q(E)⇒ H−p−q Tot(E).

The filtration of H−n Tot(E) has the form

F−nH−n //

∼=
��

F−(n−1)H−n //

��

. . . F−1H−n //F0H−n
∼= //

��

H−n

E∞−n,0 E∞−(n−1),−1 E∞0,−n

2) Reversing the roles of p and q (or by using the

vertical filtration) we find a spectral sequence with

E2
−p,−q = Hv

−pH
h
−q(E)⇒ H−p−q Tot(E).
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In both spectral sequences, the terms Er
−p,−q are

only non-zero for p, q ≥ 0. It is a common (mean-

ing, universal) practice to rewrite

Ep,q
r = Er

−p,−q and Ep,q
∞ = E∞−p,−q

and

Hn Tot(E) = H−n Tot(E).

Then the two spectral sequences are written

Ep,q
2 = Hp

hH
q
v(E)⇒ Hp+q Tot(E), and

Ep,q
2 = Hp

vH
q
h(E)⇒ Hp+q Tot(E).

The differentials

dr : Er
−p,−q → Er

−p−r,−q+r−1

are rewritten as

dr : Ep,q
r → Ep+r,q−r+1

r ,

so that they raise total degree by 1 in the new

notation.

One also writes

F nHn Tot(E) = F−nH−n Tot(E)

so that the filtration of Hn Tot(E) (for both spec-
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tral sequences) takes the form

F nHn //

∼=
��

F n−1Hn //

��

. . . F 1Hn //F 0Hn
∼= //

��

Hn

En,0
∞ En−1,1

∞ E0,n
∞

(7)

Example 16.2. Suppose that C is a chain com-

plex and that A is a module. Suppose that A→ I

is an injective resolution of A. Form the third

quadrant bicomplex

hom(C, I)−p,−q = hom(Cp, I−q).

Recall from Lemma 12.7 that there is an isomor-

phism

Hn Tot(hom(C, I)) ∼= π(C, I [−n]).

Filter the bicomplex in vertical degrees, so that

there are isomorphisms

Ep,q
1
∼= hom(HpC, I

q).

It follows that the resulting spectral sequence has

Ep,q
2 = Extq(HpC,A)⇒ π(C, I [−p−q]) = [C,A[−p−q]].

(8)

The last identification is a consequence of Corol-

lary 12.9.
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The spectral sequence (8) is the universal coeffi-

cients spectral sequence in cohomology.

The standard universal coefficients theorem for co-

homology says that, if X is a simplicial set and A

is an abelian group, then there is short exact se-

quence

0→ Ext(Hp−1(X), A)→ Hp(X,A)→ hom(Hp(X), A)→ 0

where the homology groups H∗(X) = H∗(X,Z)

have integral coefficients.

This result is usually proved by applying hom( , A)

to the exact sequence of chain complexes

0→ Z(X)→ Z(X)→ B(X)[−1]→ 0

where Z(X)n = ZnZ(X), B(X)n = BnZ(X)

are defined by cycles and boundaries, respectively,

and the differentials are trivial for both Z(X) and

B(X).
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