
Lecture 008 (November 13, 2009)

17 The Dold-Kan correspondence

Suppose that A : ∆op → R −Mod is a simpli-

cial R-module. Examples to keep in mind are the

free simplicial objects R(X) associated to simpli-

cial sets X and nerves BM of R-modules M .

There are two basic ways to make chain complexes

from a simplicial abelian group (or simplicial R-

module) A:

1) The Moore complex, which is again denoted

by A, has n-chains given by An, n ≥ 0, and

has boundary maps

∂ =
n∑
i=0

(−1)idi : An → An−1

defined by alternating sums of face homomor-

phisms.

2) The normalized chain complex NA has

NAn =
n−1⋂
i=0

ker(di)

and has boundary

∂ = (−1)ndn : NAn → NAn−1.
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To see that the definition of ∂ for the normalized

complexNAmakes sense and that ∂2 = 0, observe

that

didn(a) = dn−1di(a)

for i ≤ n− 1.

Suppose that a = sj(b) in An. Then, in the Moore

complex

∂(sj(b)) =
n∑
i=0

(−1)idisj(b)

= d0sj(b) + · · · + (−1)jdjsj(b) + (−1)j+1dj+1sj(b)+

· · · + (−1)ndnsj(b)

= sj−1d0(b) + · · · + (−1)j−1sj−1dj−1(b) + (−1)j+2sjdj+1(b)+

· · · + (−1)nsjdn−1(b).

It follows that if we define DAn ⊂ An to be the

subgroup which is generated by all degeneracies

sj(b), b ∈ An−1, 0 ≤ j ≤ n−1, then the boundary

in the Moore complex A restricts to a boundary

DAn → DAn−1 and DA acquires the structure of

a subcomplex of A.

The definition of the boundary on the normalized

complex NA was rigged so that NA is a subcom-

plex of the Moore chain complex A. Here’s a first

result:
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Theorem 17.1. Suppose that A is a simplicial

R-module. Then we have the following:

1) The composite

NA ⊂ A→ A/DA

is an isomorphism of chain complexes.

2) The inclusion NA ⊂ A is a chain homo-

topy equivalence, and in particular a weak

equivalence.

The statements of this result appear as Theorem

III.2.1 and Theorem III.2.4, respectively, in [1].

The normalized chains construction defines a func-

tor

N : s(R−Mod)→ Ch+(R).

Suppose that C is an ordinary chain complex, and

let ∆m be the category of injective ordinal num-

ber morphisms. Then C determines a functor C :

∆op
m → R −mod with n 7→ Cn and which sends

a monomorphism d : m→ n to

d∗ =



(−1)n∂ if d = dn,

1 if d = 1, and

0 otherwise.
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To see that the definition actually gives a functor,

suppose given ordinal number monomorphisms

k d−→m d′−→ n

Then we have the following:

a) If d′d = dn then d′ = dn and d = 1 or, d′ = 1

and d = dn. If d′d = 1 then d′ = 1 and d = 1.

In all such cases (d′d)∗ = d∗d′∗.

b) If the composite d′d is neither 1 nor dn, then

(d′d)∗ = 0. If both d′∗ and d∗ are non-zero,

then d′ = dn and d = dn−1 so that

d∗d′∗ = (−1)n∂(−1)n−1∂ = 0.

It follows that d∗d′∗ = (d′d)∗ for all composable

morphisms in ∆m, and we have defined a functor

C : ∆op
m → R−Mod.

Define a simplicial R-module Γ(C) by

Γ(C)n =
⊕

σ:n�k
Ck.

where the direct sum is indexed over all ordinal

number epimorphisms σ : n � k which have

source n. Suppose that θ : m → n is an ordinal

number maps, and define θ∗ to be the homomor-
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phism such that all diagrams

Ck
inσ //

d∗
��

⊕
σ:n→k Ck

θ∗
��

Cr inσ′
//⊕
ν:m→r Cr

commute, where the diagram

m θ //

σ′
��

n
σ
��

r
d
//k

defines an epi-monic factorization of the composite

σθ.

There is a natural simplicial R-module homomor-

phism

Ψ : Γ(NA)→ A

which is defined by the homomorphisms

Ψn :
⊕

σ:n→k
NAk → An.

The homomorphism Ψn is defined on the summand

NAk corresponding to the epimorphism σ : n→ k

to be the composite

NAk ⊂ Ak
σ∗−→ An.

Then we have the following
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Theorem 17.2. The map Ψ is an isomorphism

for all simplicial R-modules A. The functors Ψ

and N determine an equivalence of categories

N : s(R−Mod) � Ch+(R) : Γ

Observe that Theorem 17.1 implies that there is

an isomorphism

C
∼=−→ NΓ(C)

for all chain complexes C.

The statements of Theorem 17.2 appear as Propo-

sition III.2.2 and Corollary III.2.3 of [1]. This

equivalence of categories is called the Dold-Kan

correspondence.

18 Simplicial homotopy theory

I shall now outline some of the basic homotopy

theory of simplicial sets. Proofs of these results

can be found in [1], but the outline given here is

followed with more clarity in [3].

The category sSet of simplicial sests has a (proper,

simplicial) closed model structure for which the

cofibrations are the monomorphisms and the weak

equivalences are those maps X → Y which induce
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weak equivalences |X| → |Y | of their realizations

in topological spaces.

The realization of a simplicial set X is the topo-

logical space which is defined by

|X| = lim−→
∆n→X

|∆n|.

In other words, |X| is constructed by glueing to-

gether copies of the topological simplex |∆n|, one

for each simplex ∆n → X , along the incidence re-

lations between simplices. The realization functor

is left adjoint to the singular functor Y 7→ S(Y ),

where

S(Y )n = hom(|∆n|, Y )

for a topological space Y . The realization |X| of a

simplicial set is a CW-complex, so a map f : X →
Y is a weak equivalence if and only if the induced

map f∗ : |X| → |Y | is a homotopy equivalence.

A model category is proper if weak equivalences

are stable under pullback along fibrations and un-

der pushout along cofibrations. There is a simpli-

cial set hom(X, Y ), called the function complex

for all simplicial sets X and Y which enriches the

ordinary set of simplicial set maps X → Y : its n-

simplices are the simplicial set maps X×∆n → Y .
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The simplicial set category sSet is Quillen equiv-

alent to topological spaces. This means two things:

1) In the adjunction

| | : sSet � CGHaus : S

the realization functor preserves weak equiv-

alences (by definition) and cofibrations, and

therefore preserves trivial cofibrations. It fol-

lows that the singular functor S preserves fi-

brations and trivial cofibrations.

2) The adjunction maps η : X → S|X| and

ε : |S(Y )| → Y are weak equivalences for sim-

plicial sets X and all spaces Y .

CGHaus is the category of compactly generated

Hausdorff spaces.

The fibrations for simplicial sets (this is the inter-

esting bit in the formal setup) are the Kan fibra-

tions: these are the maps X → Y which have the

right lifting property with respect to all inclusions

Λn
k ⊂ ∆n of horns in simplices. A Kan complex is

a fibrant simplicial set.

The kth horn Λn
k is the subcomplex of ∆n which

is generated by the faces di(ιn, i 6= k, of the top

simplex. The boundary ∂∆n is the subcomplex
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which is generated by all faces of the top simplex.

Here are some examples:

1) All simplicial groups, and in particular all sim-

plicial abelian groups or simplicial modules, are

Kan complexes — see Lemma 14.1 of [3], or

Lemma I.3.4 of [1].

2) The singular set S(Y ) of a topological space Y

is a Kan complex, since |Λn
k| is a strong defor-

mation retract of |∆n|.

3) The nerve BG of a group G is a Kan complex.

4) The simplices ∆n = Bn are not Kan com-

plexes. In general, the nerve BC of a small

category C is a Kan complex if and only if C

is a groupoid (exercise).

In general, the set π0X of path components of a

simplicial set X is defined by the coequalizer

X1

d0 //

d1
//X0

// π0X.

One can show that π0X ∼= π0|X|, so the name

makes sense.

Classical simplicial homotopy is defined by the cylin-
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der

X tX ∇ //

(d1,d0)
��

X

X ×∆1
pr

::tttttttttt

Here,

di : X ∼= X ×∆0 1×di−−→ X ×∆1

is the inclusion along an end point (vertex) of the

“interval” ∆1, and the map (d1, d0) can be iden-

tified with the cofibration X × ∂∆1 → X × ∆1

up to isomorphism. The projection pr is a weak

equivalence, because its realization is a projection

and |∆1| is contractible.

Say that the maps f, g : X → Y are simplicially

homotopic if there is a diagram

X
d1
��

f

$$J
JJJJJJJJJJ

X ×∆1 h // Y

X
g

::uuuuuuuuuuu
d0
OO

Here, the map h is the homotopy, from f to g.

If X is a Kan complex and x ∈ X0 is a vertex

of X , then one can define combinatorial homotopy

groups πsn(X, x) for n ≥ 1. The set underlying
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πsn(X, x) is the set of simplicial homotopy classes

of maps of pairs

α : (∆n, ∂∆n)→ (X, {x}),
and the group structure is geometrically defined.

The group πsn(X, x) is abelian for n ≥ 1. One can

show that the element α represents the identity

element e ∈ πsn(X, x) if and only if the lift exists

in the diagram

∂∆n+1
(x,...,x,α)

//

��

X

∆n+1

66

The Milnor Theorem (Theorem 13.2 of [3], Propo-

sition I.11.2 of [1]) asserts that if X is a Kan com-

plex, then the canonical map η : X → S|X| in-

duces isomorphisms

π0(X)
∼=−→ π0(S|X|) ∼= π0|X|, and

πsn(X, x)
∼=−→ πsn(S|X|, x) ∼= πn(|X|, x) for all n ≥ 1.

It follows that a map f : X → Y of Kan complexes

is a weak equivalence if and only if it induces iso-

morphisms in all possible combinatorial homotopy

groups.

If G is a simplicial group, then the set of all maps

α : (∆n, ∂∆n)→ (G, {e}),
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has a group structure which it inherits from the

group structure G×G→ G on G, and this group

structure induces the group structure on πn(G, e)

by a standard interchange law trick. That same

trick implies that π1(G, e) is abelian.

Write

ZGn = ∩ni=0 ker(di)

and

NGn = ∩n−1
i=0 ker(di).

We have “proved”

Lemma 18.1. Suppose that G is a simplicial

group. Then there is a short exact sequence

NGn+1
dn+1−−→ ZGn → πsn(G, e)→ e.

The other thing to know about simplicial groups

is the following:

Lemma 18.2. A homomorphism f : G → H

of simplicial groups is a weak equivalence if and

only if it induces isomorphisms

π0G
∼=−→ π0H, and

πsn(G, e)
∼=−→ πsn(H, e) for all n ≥ 1.

Proof. Multiplication by x ∈ G0 induces an iso-

morphism

x∗ : πsn(G, e)
∼=−→ πsn(G, x).
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Corollary 18.3. 1) There is a natural R-module

isomorphism

πsn(A, 0) ∼= Hn(NA)

for all simplicial R-modules A.

2) A map f : A → B of simplicial R-modules

is a weak equivalence of simplicial sets if and

only if the map f : NA → NB is a homol-

ogy isomorphism.

19 Model structures for simplicial modules

Lemma 19.1. The free module functor

R : sSet→ s(R−Mod)

preserves weak equivalences.

This result is a special case of Corollary 14.9 of [3].

Proof. It is enough to show that the functor R

takes trivial cofibrations to weak equivalences. In

effect, every weak equivalence f : X → Y of sim-

plicial sets has a factorization

X
i //

f   A
AA

AA
AA

A Z
p
��

Y
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where i is a trivial cofibration and p is a trivial

fibration. Every simplicial set is cofibrant, so that

the trivial fibration p has a section σ : Y → Z,

which section is a trivial cofibration.

Suppose that i : A → B is a trivial cofibration of

simplicial sets. Then R(A) is a fibrant simplicial

set, so the lifts σ and σ∗ exist in the diagram

A
η //

i
��

R(A) 1 //

i∗
��

R(A)

��
B η

//

σ
55

R(B) //

σ∗

::

e

The morphism σ∗ is a simplicial R-module homo-

morphism. The lifts h and h∗ also exist in the

diagram

A
η //

i
��

R(A)

i∗
��

si∗ //R(B)∆1

(p0,p1)
��

B η
//

h
44

R(B)
(i∗σ∗,1)

//
h∗

77

R(B)×R(B)

where R(B)∆1
is the simplicial R-module defined

by the function complex hom(∆1, R(B)), and the

diagram of simplicial R-module homomorphisms

hom(∆1, R(B))

(p0,p1)
��

hom(∆0, R(B))

s
44iiiiiiiiiiiiiiii

∆
//hom(∂∆1, R(B))
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is the (standard) path object for the Kan complex

R(B).

Observe that we end up showing in the proof of

Lemma 19.1 that the free R-module functor takes

trivial cofibrations of simplicial sets to strong de-

formation retractions of simplicial R-modules.

Say that a map f : A → B of simplicial R-

modules is a weak equivalence (respectively fibra-

tion) if the underlying map of simplicial sets is a

weak equivalence (respectively fibration). The cofi-

brations of simplicial R-modules are those maps

which have the left lifting property with respect to

trivial fibrations.

It is a consequence of Corollary 18.3 that a map

f : A → B is a weak equivalence of simplicial R-

modules if and only if the associated chain complex

morphism f∗ : NA → NB is a weak equivalence

(aka. homology isomorphism).

For simplicial modules A and B there is a simpli-

cial module hom(A,B) with

hom(A,B)n = hom(A⊗R(∆n), B).
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There are natural isomorphism

hom(K,hom(A,B)) ∼= hom(A⊗R(K), B)
∼= hom(A,hom(K,B))

for all simplicial sets K. Here, hom(K,B) is the

function complex of simplicial sets, endowed with

the simplicial R-module structure that it inherits

from B.

Remark 19.2. Here, we’re using the tensor prod-

uct A⊗ C of simplicial modules, which is defined

by

(A⊗ C)n = An ⊗ Cn.
The chain complex N(A ⊗ C) does not coincide

with NA ⊗ NC up to isomorphism in the chain

complex category. There is, however, a natural

weak equivalence between the two objects (this is

usually called the Eilenberg-Zilber Theorem), and

more will be said about this later.

Theorem 19.3. With these definitions, the cat-

egory s(R −Mod) satisfies the axioms for a

proper closed simplicial model category.

Proof. A map p : A → B is a fibration (respec-

tively trivial fibration) if and only if it has the right

lifting property with respect to all maps R(Λn
k)→
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R(∆n) (respectively with respect to all R(∂∆n)→
R(∆n)).

If one is given a pushout diagram

R(Λn
k) //

i
��

A
i∗
��

R(∆n) //A′

then the map i∗ is a weak equivalence. In effect,

the diagram of normalized chain complexes

NR(Λn
k) //

Ni
��

NA
Ni∗
��

NR(∆n) //NA′

is a pushout, and the mapNi is a weak equivalence

by Lemma 19.1. It therefore follows from a small

object argument that any morphism f : A → B

has a factorization

A
i //

f   @
@@

@@
@@

C
p
��

B

where p is a fibration and i is a trivial cofibration

which has the left lifting property with respect to

all fibrations.

The proof of the other factorization statement is

similar: one uses a small object argument to show
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that every f : A→ B has as factorization

A
j //

f   @
@@

@@
@@

D
q
��

B
such that q is a trivial fibration and j is a cofibra-

tion. It is an artifact of that proof that j is also

a monomorphism. We have therefore proved the

factorization axiom CM5.

It follows by a standard argument that every trivial

cofibration has the left lifting property with respect

to all fibrations, giving CM4.

If p : A→ B is a fibration of simplicial R-modules

and i : K → L is a cofibration of simplicial sets,

then the induced map

hom(L,A)
(i∗,p∗)−−−→ hom(K,B)×hom(B,Y )hom(L,B)

is a fibration, which is trivial if either i or p is

trivial. This gives the simplicial model structure.

Weak equivalences pull back along fibrations by

the corresponding property for simplicial sets, and

weak equivalences push out along cofibrations by

a comparison of long exact sequences in homol-

ogy. Note that every cofibration is a retract of a

monomorphism, and is therefore a monomorphism.

We have therefore established properness.
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The following is a special case of a result of Quillen

[4] (see also Lemma 14.6 of [3]):

Lemma 19.4. A simplicial R-module homo-

morphism p : A→ B is a fibration if and only if

the induced map p∗ : NA → NB is a fibration

of chain complexes.

Proof. We will show that p is a fibration if p∗ is

a fibration of chain complexes. The other implica-

tion is an exercise.

Generally, if a simplicial group homomorphism p :

G → H is surjective in all degrees, then p is a

fibration. To see this, let K be the kernel of p and

consider a lifting problem

Λn
k

α //

��

G
p
��

∆n
β
//H

There is a simplex γ : ∆n → G such that p(γ) = β

since p is surjective in all degrees. Then α·(γ|Λnk)
−1

is a morphism Λn
k → K and there is an extension

Λn
k

α(γ|Λn
k

)−1

//

��

K

∆n
θ

88
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since K is a Kan complex. Then θγ is the desired

lifting.

It therefore follows from the Dold-Kan correspon-

dence (Theorem 17.2: the fact that Ψ is an iso-

morphism) that p : A → B is a fibration if the

induced map p∗ : NA → NB is surjective in all

degrees.

Form the diagram

A
p //

��

B

��

K(π0A, 0) p∗
//K(π0B, 0)

whereK(M, 0) denotes the constant simplicial mod-

ule on the module M . Any module homomor-

phism M → N induces a fibration K(M, 0) →
K(N, 0) (exercise), so the induced map

K(π0A, 0)×K(π0B,0) B → B

is a fibration.

The normalized chains functor N preserves pull-

backs, and NK(π0M, 0) ∼= M [0] for all modules

M . The induced map

NAn → (π0A[0]×π0B[0] NB)n

is isomorphic to NAn → NBn for n ≥ 1. It
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therefore suffices to show that the map

A0 → π0A[0]×π0B[0] B0 (1)

is surjective.

An element ([b], a) of the pullback π0A[0]×π0B[0]B0

determines a commutative diagram of simplicial

module morphisms

∆0 b //

d0
��

A
p
��

∆1
ω
//

θ
>>

B

where d1ω = a. Solving the indicated lifting prob-

lem produces an element d1θ ∈ A0 such that d1θ 7→
([b], a) under the map (1).

The simplicial moduleA is a Kan complex, so there

is a simplex ζ : ∆1 → A such that d0(ζ) = b.

Then d0(ω − p(ζ)) = 0, and p∗ : NA1 → NB1

is surjective, so there is an element v ∈ NA1 such

that p(v) = ω−p(ζ). Then d0(ζ+v) = d0(ζ) = b

and p(ζ + v) = ω. Thus, setting θ = ζ + v solves

the lifting problem.

Remark 19.5. The model structure on the cate-

gory s(R −Mod) of simplicial R-modules which

is given by Theorem 19.3 is equivalent to the stan-

dard model structure on the category Ch+(R) of
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ordinary chain complexes of Theorem 5.1 under

the Dold-Kan correspondence (Theorem 17.2). Why

bother? The answer is that the proof of Theorem

19.3 holds in far greater generality (eg. sheaves of

modules) than does the proof of Theorem 5.1. See

[2] for more detail.
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