
Lecture 009 (November 25, 2009)

20 Homotopy colimits

Suppose that I is a small category, and let

s(R−Mod)I

be the category of I-diagrams in simplicial mod-

ules.

The objects of this category are the functors

A : I → s(R−Mod),

and a morphism f : A → B between I-diagrams

is a natural transformation. Explicitly, f consists

of homomorphisms f : A(i)→ B(i), one for each

object i ∈ I , such that the diagrams

A(i)
f //

α∗
��

B(i)
α∗
��

A(j)
f
//B(j)

commute for all morphisms α : i→ j of I .

Say that the natural transformation f : A → B

is a weak equivalence (respectively projective fi-

bration) if all maps f : A(i) → B(i) are weak

equivalences (respectively fibrations) of simplicial

R-modules.
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The cofibrations of s(R −Mod)I are defined by

a left lifting property: a morphism i : C → D is a

projective cofibration if and only if it has the left

lifting property with respect to all trivial fibrations.

The function complex hom(A,B) for I-diagrams

A andB is a simplicialR-module such that hom(A,B)n
is the module of natural transformations

A⊗∆n → B.

Here, if K is a simplicial set then

(A⊗K)(i) := A(i)⊗R(K)

defines the I-diagram A⊗K. One could also write

(A⊗K)(i) = A(i)⊗R(K)(i)

(pointwise tensor product) where R(K) is the con-

stant diagram defined by R(K)(i) = R(K), with

identity maps giving the structure as a functor.

Theorem 20.1. Suppose that I is a small cate-

gory. Then, with these definitions, the category

s(R−Mod)I of I-diagrams in simplicial mod-

ules has the structure of a proper closed simpli-

cial model category.

Remark 20.2. The model structure of Theorem

20.1 is called the projective model structure on
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the category of I-diagrams in s(R −Mod). The

general approach to constructing model categories

of this type, on categories MI of I-diagrams in

cofibrantly generated model categoriesM first ap-

peared in [1]. The term “projective model struc-

ture” is relatively new, and its use originated in

motivic homotopy theory.

Proof of Theorem 20.1. The i-sections functorA 7→
A(i) has a left adjoint

Li : s(R−Mod)→ s(R−Mod)I

which is defined by

LiM = M ⊗ hom(i, ).

Observe thatLi takes monomorphisms to monomor-

phisms.

A map p : A → B is a projective fibration if and

only if it has the right lifting property with respect

to all maps

LiR(Λn
k)→ LiR(∆n).

A map q : C → D is a trivial projective fibration

if and only if it has the right lifting property with

respect to all maps

LiR(∂∆n)→ LiR(∆n).
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A small object argument therefore implies that ev-

ery natural transformation f : A→ B has factor-

izations

C
p

  A
AA

AA
AA

A

i
>>~~~~~~~ f //

j   @
@@

@@
@@

B

D
q

>>}}}}}}}

such that

1) p is a projective fibration and i is a trivial

projective cofibration which has the left lifting

property with respect to all projective fibra-

tions, and

2) q is a trivial projective fibration and j is a pro-

jective cofibration.

This proves CM5, and CM4 follows by a stan-

dard argument.

Properness and the simplicial model axiom are both

consequences of the corresponding statements for

simplicial modules (Theorem 19.3).

Corollary 20.3. The category Ch+(R)I of I-

diagrams of ordinary chain complexes has a proper

closed simplicial model structure for which the

weak equivalences (respectively fibrations) are
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defined sectiowise: a natural transformation C →
D is a weak equivalence (respectively projective

fibration) if and only if all maps C(i) → D(i)

are weak equivalences (respectively fibrations)

of Ch+(R).

This is a consequence of Theorem 20.1 and the

Dold-Kan correspondence (Theorem 17.2). The

basic closed model structure (with properness) can

also be derived independently.

All objects are fibrant in the projective model struc-

ture on s(R−Mod)I .

Lemma 20.4. Suppose that f : A → B is a

weak equivalence of cofibrant objects in s(R −
Mod)I. Then the induced map

f∗ : lim−→
I

A→ lim−→
I

B

is a weak equivalence.

Proof. Suppose that p : C → D is a fibration of

simplicial R-modules. Then the corresonding map

between constant I-diagrams is a projective fibra-

tion. It follows by adjointness that if i : A′ → B′

is a trivial projective cofibration, then the induced

map

lim−→
I

A′ → lim−→
I

B′
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is a trivial cofibration of simplicial R-modules.

In general, form the diagram

A
f //

i0
��

B
i0∗
��

1

��1
11

11
11

11
11

11
11

11

A i1
//A⊗∆1

f∗
//

fs
))SSSSSSSSSSSSSSSSS

Mf
π

!!

B

(1)

in which the inner square is a pushout. Then the

dotted arrow π exists and is uniquely defined. The

diagram

A⊕ A f⊕1 //

(i0,i1)
��

B ⊕ A
(i0∗,f∗i1)
��

A⊗∆1
f∗

//Mf

is a pushout, so that the map (i0∗, f∗i1) is a cofi-

bration. Then B is cofibrant, so it follows that the

map f∗i1 is a cofibration.

We therefore have a commutative diagram

A
f∗i1//

f   B
BB

BB
BB

B Mf

π
��

B

in which f∗i1 is a trivial projective cofibration and

the map π has a section by the trivial projective
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cofibration i0∗. Applying the functor lim−→I
to the di-

agram therefore produces a diagram of weak equiv-

alences, by the first paragraph.

Remark 20.5. The diagram (1) is the mapping

cylinder construction for the map f : A → B in

s(R−Mod). Generally, if a functor F :M→N
between model categories takes trivial cofibrations

to weak equivalences, then F takes weak equiva-

lences between cofibrant objects to weak equiva-

lences, by the same argument.

Write

holim−−−→ IA = lim−→
I

Ac

where Ac
'−→ A is a cofibrant model of the I-

diagram A. The object holim−−−→ I A is called the

homotopy colimit of the I-diagram A. The choice

of cofibrant model Ac can be made functorial, so

that

A 7→ holim−−−→ I A

defines a functor. Lemma 20.4 implies that any

weak equivalence A→ B of I-diagrams induces a

weak equivalence

holim−−−→ I A→ holim−−−→ I B
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of simplicial modules. The homotopy colimit func-

tor is the left derived functor of the colimit functor,

in exactly the same way that the derived tensor

product is a left derived functor of tensor product.

Example 20.6. Suppose that I is the category

0 //

��

1

2

Then one can show that a diagram

A0
i //

j
��

A1

A2

of simplicial R-modules is projective cofibrant if

and only if A0 is cofibrant and the maps i and j

are cofibrations.

Suppose given a pushout diagram

B0
//

i
��

B1

��
B2

//B

in s(R −Mod) in which i is a cofibration, and

suppose that A → B is a cofibrant model for the

I-diagram defined by B2
i←− B0 → B1. Then by
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comparing exact sequences we see that the map

holim−−−→ I A→ lim−→
I

B = B

is a weak equivalence.

There is an obvious corollary of Lemma 20.4:

Corollary 20.7. Suppose that f : C → D is a

weak equivalence of cofibrant objects in Ch+(R)I.

Then the induced map

f∗ : lim−→
I

A→ lim−→
I

B

is a weak equivalence.

Here is a first application of this result:

Every diagram M : I → R−Mod of R-modules

can be identified with a diagram M [0] : I →
Ch+(R) of chain complexes. This diagram of chain

complexes has a cofibrant model P '−→M [0]. The

higher derived functors lim−→n
M of the colimit

are defined by

lim−→n
M = Hn(lim−→

I

P ) = Hn(holim−−−→ I M [0]).

21 Cosimplicial chain compexes

Cosimplicial objects in a category C are (covariant)

functors ∆ → C. Write cC for the corresponding
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category. Bicosimplicial objects are functors

∆×∆→ C,
or equivalently, cosimplicial objects in sC. Write

c2C for the category of bicosimplicial objects in C.

We shall be investigating the projective model struc-

tures for both cosimplicial and bicosimplicial chain

complexes (or simplicial modules) in this section.

Cosimplicial spaces are functors ∆ → sSet, and

are the subject of the Bousfield-Kan Springer Lec-

ture Note [1]. We shall use some of the ideas from

that source in this section.

Suppose that A : ∆ → R −Mod is a cosim-

plicial module. Write Mn−1A for the subobject

of (An−1)n consisting of all n-tuples (a0, . . . , an−1)

such that siaj = sj−1ai for i < j. The module

Mn−1A is traditionally called a matching object.

There is a canonical map

s : An →Mn−1A

which is defined by

s(a) = (s0a, s1a, . . . , sn−1a).

This makes sense, on account of the cosimplicial

identities sisj(a) = sj−1si(a) for i < j.
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Lemma 21.1. Suppose that A is a cosimplicial

module. Then the map s : An → Mn−1A is

surjective.

Proof. Suppose first of all that one is given an el-

ement of the form

a = (a0, . . . , aj, 0, . . . , 0).

Then

siaj = sjai+1 = 0

if i ≥ j (recall the cosimplicial identity sisj =

sjsi+1 if i ≥ j). It follows that

sidjaj = djsi−1aj = 0

if i > j and sjdjaj = aj, so that a − s(sjaj) has

the form

a− s(sjaj) = b = (b0, . . . bj−1, 0, . . . 0).

Inductively, if every such element b = s(c), then

s = s(sjaj + c).

Corollary 21.2. 1) Suppose that p : A→ B is

a map of cosimplicial module which consists

of epimorphisms p : An → Bn. Then all

induced maps

(p, s) : An → Bn ×Mn−1B M
n−1A

are epimorphisms.
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2) Suppose that p : A→ B is a map of cosim-

plicial chain complexes (respectively simpli-

cial modules) which consists of fibrations p :

An → Bn. Then all induced maps

(p, s) : An → Bn ×Mn−1B M
n−1A

are fibrations of chain complexes (respectively

simplicial modules).

Proof. Suppose that the cosimplicial abelian group

K is the kernel of p. Suppose given an element

(b, (a0, . . . , an−1)) such that s(b) = p(a0, . . . , an−1).

There is an element a ∈ An such that p(a) =

b. Then s(a) − (a0, . . . , an−1) is an element of

Mn−1K, and there is an element x ∈ Kn such

that

s(x) = s(a)− (a0, . . . , an−1)

by Lemma 21.1. But then s(a+x) = (a0, . . . , an−1)

and p(a + x) = b.

The second claim follows from the first. One uses

Lemma 19.4 together with the fact the fact that the

normalized complex functor preserves finite limits

up to natural isomorphism.

Lemma 21.3. Suppose that K is a cosimpli-

cial object in chain complexes (respectively sim-
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plicial modules) such that all objects Kn are

acyclic. Then the map

s : Kn →Mn−1K

is a trivial fibration.

Proof. Write Mn−1
≤k K for the set of (k + 1)-tuples

(a0, . . . , ak) ∈ Kn−1 such that siaj = sj−1ai for

i < j ≤ k. Then there are canonical maps s :

Kn →Mn−1
≤k K and pullback diagrams

Mn−1
≤k K

prk //

s∗
��

Kn−1

s
��

Mn−1
<k K sk−1

//Mn−2
<k K

All maps d : Kn → Mn−1
≤k K are fibrations, by a

variant of the argument for Lemma 21.1.

Inductively, all maps s : Kn−1 → Mn−2
≤i K are

trivial fibrations, so that the map s∗ in the diagram

is a trivial fibration. Inductively again, the map s :

Kn → Mn−1
<k K is a weak equivalence, so that the

map s : Kn →Mn−1
≤k K is a trivial fibration.

Corollary 21.4. Suppose that p : A → B is

a map of cosimplicial chain complexes (respec-

tively simplicial modules) which consists of triv-

ial fibrations p : An → Bn. Then all induced
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maps

(p, s) : An → Bn ×Mn−1B M
n−1A

are trivial fibrations of chain complexes (respec-

tively simplicial modules).

Proof. The map (p, s) is surjective in all simplicial

degrees since p is surjective for all n and in all

simplicial degrees. Suppose that the cosimplicial

object K is the kernel of p. The kernel of (p, s)

is isomorphic to the kernel of the map s : Kn →
Mn−1K, which kernel is acyclic by Lemma 21.3.

Corollary 21.5. 1) Suppose that p : A→ B is

a projective fibration of bicosimplicial chain

complexes (or simplicial modules), and iden-

tify this map with a morphism of cosimpli-

cial objects in cosimplicial objects. Then all

induced maps

(p, s) : An → Bn ×Mn−1B M
n−1A

are projective fibrations of cosimplicial ob-

jects.

2) Suppose that p : A → B is a trivial pro-

jective fibration of bicosimplicial chain com-
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plexes (or simplicial modules). Then all in-

duced maps

(p, s) : An → Bn ×Mn−1B M
n−1A

are trivial projective fibrations of cosimpli-

cial objects.

Suppose again that A : ∆ → R − Mod is a

cosimplicial module. The module LnA is defined

by the coequalizer
⊕
i<j
An−2 ⇒

⊕
0≤i≤n

An−1 → LnA

which is defined by the cosimplicial identities djdi =

didj−1 for i < j. In effect, the two composites

An−2 ini<j−−−→ ⊕
i<j
An−2 ⇒

⊕
0≤i≤n

An−1

are the composites

An−2 dj−1
−−→ An−1 ini−→ ⊕

0≤i≤n
An−1

and

An−2 di

−→ An−1 inj−→ ⊕
0≤i≤n

An−1.

There is a canonical map d : Ln−1A → An which

is defined by the coface di on the ith summand.

Suppose that A and B are cosimplicial objects (in

modules, chain complexes, or simplicial modules),
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and that f k : Ak → Bk, k < n, are homomor-

phisms which define a map f : A<n → B<n of

truncated cosimplicial objects. Then f extends to

a map f∗ : A≤n → B≤n if and only if there is a

map f∗ : An → Bn such that the diagram

Ln−1A
d //

f∗
��

An

f∗
��

s //Mn−1A
f∗
��

Ln−1B d
//Bn

s
//Mn−1B

commutes (exercise).

Lemma 21.6. Suppose that i : A→ B is a map

of cosimplicial chain complexes (or simplicial

modules) such that the map i : A0 → B0 is a

cofibration and all maps

(d, i) : Ln−1B ∪Ln−1A A
n → Bn

are cofibrations. Then i : A → B is a cofi-

bration for the projective model structure on

cosimplicial chain complexes (respectively sim-

plicial modules).

Proof. Suppose given a lifting problem

A //

i
��

X
p
��

B //

θ
>>

Y
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in cosimplicial objects, where the map i satisfies

the conditions of the Lemma and p is a trivial pro-

jective fibration. Then p0 is a trivial fibration so

that the lifting θ0 exists in the diagram

A0 //

i0
��

X0

p0
��

B0 //

θ0 =={{{{{{{{

Y 0

in cosimplicial degree 0. Then the maps θn making

up the lifting θ are inductively found by solving the

lifting problems

Ln−1B ∪Ln−1A A
n //

(d,i)
��

Xn

(p,s)
��

Bn //

θn
44

Y n ×Mn−1Y M
n−1X

This can be done, since (d, i) is a cofibration by as-

sumption and (p, s) is a trivial fibration by Corol-

lary 21.4.

Lemma 21.7. Suppose that i : A→ B is a map

of bicosimplicial chain complexes (or simplicial

modules) such that the map i : A0 → B0 and

all maps

(d, i) : Ln−1B ∪Ln−1A A
n → Bn

are projective cofibrations of cosimplicial chain

complexes (respectively simplicial modules). Then
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i : A → B is a cofibration for the projective

model structure on bicosimplicial chain com-

plexes (respectively simplicial modules).

The proof is the same as that of Lemma 21.6.

Corollary 21.8. 1) Suppose that A is a cosim-

plicial chain complex (or simplicial module)

such that A0 is cofibrant and all maps

d : Ln−1A→ An

are cofibrations. Then A is a projective cofi-

brant cosimplicial object.

2) Suppose that A is a bicosimplicial chain com-

plex (or simplicial module) such that the cosim-

plicial object A0 is projective cofibrant and

all maps

d : Ln−1A→ An

are projective cofibrations. Then A is a pro-

jective cofibrant bicosimplicial object.

Examples:

1) The diagram

(m,n) 7→ R(∆m ×∆n)

of Moore complexes is a bicosimplicial chain com-

plex. Then
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a) The cosimplicial chain complex

n 7→ R(∆0 ×∆n) ∼= R(∆n)

is projective cofibrant. In effect, R(∆0) is a cofi-

brant chain complex and the map

d : Ln−1R(∆∗)→ R(∆n)

can be identified up to isomorphism with the in-

clusion i∗ : R(∂∆n) → R(∆n) which is induced

by the inclusion i : ∂∆n ⊂ ∆n. Then the chain

complex R(∆n) is obtained from R(∂∆n) by freely

adjoining generators in all degrees, so that i∗ is a

cofibration.

b) The map

d : Ln−1R(∆∗ ×∆∗)→ R(∆n ×∆∗)

can be identified with the cosimplicial chain com-

plex map

R(∂∆n ×∆∗)→ R(∆n ×∆∗)

which is induced by the cosimplicial space map

∂∆n ×∆∗ → ∆n ×∆∗.

The cochain complex map

R(∂∆n ×∆0)→ R(∆n ×∆0)

19



is a cofibration. The map

(d, i) : Lm−1R(∆n×∆∗)∪R(∂∆n×∆m)→ R(∆m×∆n)

can be identified up to isomorphism with the cofi-

bration

R((∆n × ∂∆m) ∪ (∂∆n ×∆m))→ R(∆n ×∆m).

It follows that the bicosimplicial chain complex

R(∆∗ ×∆∗) is projective cofibrant.

2) A similar argument shows that the bicosimpli-

cial chain complex

(m,n) 7→ R(∆m)⊗R(∆n)

is also projective cofibrant.

Theorem 21.9. There is a map of bicosimpli-

cial chain complexes

f : R(∆m ×∆n)→ R(∆m)⊗R(∆n)

which is a lifting of the identity on H0, and any

two such maps are chain homotopic. The map

f is a chain homotopy equivalence.

Proof. There are isomorphisms of bicomsimplicial

abelian groups

H0R(∆m ×∆n)
∼=−→ H0R(∆0 ×∆0) ∼= R,
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and

H0(R(∆m)⊗R(∆n))
∼=−→ H0(R(∆0)⊗R(∆0)) ∼= R.

It follows that there are trivial projective fibrations

R(∆m ×∆m)→ R[0]

and

R(∆n)⊗R(∆m)→ R[0]

of bicosimplicial chain complexes, where R[0] is a

constant bicosimplicial object.

The bicosimplicial chain complexes R(∆m × ∆n)

and R(∆m)⊗R(∆n) are therefore projective cofi-

brant models for the same thing so the map f ex-

ists by solving a lifting problem

R(∆∗)⊗R(∆∗)

��

R(∆∗ ×∆∗)

f
55

//R[0]

Any two such lifts are chain homotopic, because

the chain homotopy construction for chain com-

plexes defines a path object for the projective model

structure.

The map g : R(∆∗)⊗R(∆∗)→ R(∆∗×∆∗) exists

as a covering of the identity on the constant object

R[0], and is a chain homotopy inverse of f , by the

same argument.
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We will see, in the next section, that Theorem 21.9

is a form of the Eilenberg-Zilber Theorem.

Observe as well that a similar argument which is

based on the projective model structure for tri-

cosimplicial chain complexes gives the following:

Proposition 21.10. There is a chain homo-

topy equivalence of tricosimplicial chain com-

plexes

f : R(∆m×∆n×∆k) '−→ R(∆m)⊗R(∆n)⊗R(∆k).

which lifts the isomorphism

H0R(∆0×∆0×∆0) ∼= H0(R(∆0)⊗R(∆0)⊗R(∆0)).

Any two such maps are chain homotopic.

The proof amounts to showing that the tricosim-

plicial objects

R(∆∗ ×∆∗ ×∆∗)

and

R(∆∗)⊗R(∆∗)⊗R(∆∗)

are cofibrant for the projective model structure on

tricosimplicial chain complexes.

Higher dimensional analogues, for n-cosimplicial

chain complexes, of Theorem 21.9 and Proposition

21.10 can also be proved.
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