Lecture 009 (November 25, 2009)

20 Homotopy colimits

Suppose that [ is a small category, and let

s(R — Mod)’
be the category of I-diagrams in simplicial mod-
ules.

The objects of this category are the functors
A: I — s(R—Mod),

and a morphism f : A — B between [-diagrams
is a natural transformation. Explicitly, f consists
of homomorphisms f : A(i) — B(i), one for each
object ¢ € I, such that the diagrams

A(i)—~B(i)
A(j)—~B(j)
commute for all morphisms « : ¢ — 5 of I.

Say that the natural transformation f : A — B
is a weak equivalence (respectively projective fi-
bration) if all maps f : A(i) — B(i) are weak
equivalences (respectively fibrations) of simplicial
R-modules.



The cofibrations of s(R — Mod)! are defined by
a left lifting property: a morphism¢: C — D is a
projective cofibration if and only if it has the left
lifting property with respect to all trivial fibrations.

The function compler hom(A, B) for I-diagrams
A and B is asimplicial R-module such that hom(A, B),
is the module of natural transformations

AR A" — B.
Here, if K is a simplicial set then
(A® K)(i) = A(i) ® R(K)
defines the I-diagram A® K. One could also write
(AR K)(i) = A1) @ R(K)(i)
(pointwise tensor product) where R(K) is the con-

stant diagram defined by R(K)(i) = R(K), with
identity maps giving the structure as a functor.
Theorem 20.1. Suppose that I s a small cate-
gory. Then, with these definitions, the category
s(R — Mod)! of I-diagrams in simplicial mod-
ules has the structure of a proper closed simpli-
cial model category.

Remark 20.2. The model structure of Theorem
20.1 is called the projective model structure on
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the category of I-diagrams in s(R — Mod). The
general approach to constructing model categories
of this type, on categories M’ of I-diagrams in
cofibrantly generated model categories M first ap-
peared in [1]. The term “projective model struc-
ture” is relatively new, and its use originated in
motivic homotopy theory.

Proof of Theorem 20.1. The i-sections functor A +—
A(7) has a left adjoint

L; : s(R — Mod) — s(R — Mod)’
which is defined by
L;M = M ® hom(i, ).

Observe that L; takes monomorphisms to monomor-
phisms.

A map p: A — B is a projective fibration if and
only if it has the right lifting property with respect
to all maps

A map g : C' — D is a trivial projective fibration
if and only if it has the right lifting property with
respect to all maps
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A small object argument therefore implies that ev-
ery natural transformation f : A — B has factor-
1zations

P
N
D

A B

such that

1) p is a projective fibration and 4 is a trivial
projective cofibration which has the left lifting
property with respect to all projective fibra-
tions, and

2) ¢ is a trivial projective fibration and j is a pro-
jective cofibration.

This proves CM5, and CMA4 follows by a stan-
dard argument.

Properness and the simplicial model axiom are both
consequences of the corresponding statements for
simplicial modules (Theorem 19.3). (]

Corollary 20.3. The category Ch(R)! of I-
diagrams of ordinary chain complexes has a proper
closed simplicial model structure for which the
weak equivalences (respectively fibrations) are
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defined sectiounse: a natural transformation C' —
D is a weak equivalence (respectively projective
fibration) if and only if all maps C(i) — D(7)
are weak equivalences (respectively fibrations)
of Chy(R).

This is a consequence of Theorem 20.1 and the
Dold-Kan correspondence (Theorem 17.2). The
basic closed model structure (with properness) can
also be derived independently.

All objects are fibrant in the projective model struc-
ture on s(R — Mod)’.

Lemma 20.4. Suppose that f : A — B is a
weak equivalence of cofibrant objects in s(R —
Mod)!. Then the induced map

fi:lim A —lim B
— —
I I
15 a weak equivalence.

Proof. Suppose that p : C' — D is a fibration of
simplicial R-modules. Then the corresonding map
between constant [-diagrams is a projective fibra-
tion. It follows by adjointness that if ¢ : A” — B’
is a trivial projective cofibration, then the induced
map

lim A" — lim B’

— —
1 I



is a trivial cofibration of simplicial R-modules.

In general, form the diagram

in which the inner square is a pushout. Then the
dotted arrow 7 exists and is uniquely defined. The
diagram

A A Ba A

(io,il)l J{(io*,f*h)
A® A T My
is a pushout, so that the map (ips, fii1) is a cofi-

bration. Then B is cofibrant, so it follows that the
map f,21 18 a cofibration.

We therefore have a commutative diagram

A0

NI

B

in which f,2; is a trivial projective cofibration and
the map 7 has a section by the trivial projective
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cofibration ig.. Applying the functor lim , to the di-
agram therefore produces a diagram of weak equiv-
alences, by the first paragraph. ]

Remark 20.5. The diagram (1) is the mapping
cylinder construction for the map f : A — B in
s(R—Mod). Generally, if a functor F': M — N
between model categories takes trivial cofibrations
to weak equivalences, then F' takes weak equiva-
lences between cofibrant objects to weak equiva-
lences, by the same argument.

Write
holim ;A = lim A,

T

where A, = A is a cofibrant model of the I-
diagram A. The object holim; A is called the
homotopy colimit of the I-diagram A. The choice
of cofibrant model A, can be made functorial, so
that

A —> M T A

defines a functor. Lemma 20.4 implies that any
weak equivalence A — B of [-diagrams induces a
weak equivalence

holim ; A — holim ; B



of simplicial modules. The homotopy colimit func-
tor is the left derived functor of the colimit functor,
in exactly the same way that the derived tensor
product is a left derived functor of tensor product.

Example 20.6. Suppose that I is the category
0—=1

|

2

Then one can show that a diagram

Ay 4,
g
4y

of simplicial R-modules is projective cofibrant if
and only if Ay is cofibrant and the maps ¢ and j
are cofibrations.

Suppose given a pushout diagram

By— B

(O

By,—B

in s(R — Mod) in which ¢ is a cofibration, and
suppose that A — B is a cofibrant model for the
I-diagram defined by By «~ By — Bj. Then by



comparing exact sequences we see that the map

holm; A —lim B=B
% ?
is a weak equivalence.

There is an obvious corollary of Lemma 20.4:

Corollary 20.7. Suppose that f : C — D 1s a
weak equivalence of cofibrant objects in Ch.(R)!.
Then the induced map
feilm A —lim B
I I
18 a weak equivalence.

Here is a first application of this result:

Every diagram M : I — R — Mod of R-modules
can be identified with a diagram MI[0] : [ —
Ch.(R) of chain complexes. This diagram of chain
complexes has a cofibrant model P = M[0]. The
higher derived functors @n M of the colimit
are defined by

iy, M = H,(liny P) = H,(holiny M)

21 Cosimplicial chain compexes

Cosimplicial objects in a category C are (covariant)
functors A — C. Write cC for the corresponding
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category. Bicosimplicial objects are functors
AxXA—C,

or equivalently, cosimplicial objects in sC. Write
c2C for the category of bicosimplicial objects in C.

We shall be investigating the projective model struc-
tures for both cosimplicial and bicosimplicial chain
complexes (or simplicial modules) in this section.

Cosimplicial spaces are functors A — sSet, and
are the subject of the Bousfield-Kan Springer Lec-
ture Note [1]. We shall use some of the ideas from
that source in this section.

Suppose that A : A — R — Mod is a cosim-
plicial module. Write M" ' A for the subobject
of (A" 1" consisting of all n-tuples (aq, . . ., ap_1)
such that s'a; = s/~'a; for i < j. The module
M"1A is traditionally called a matching object.
There is a canonical map
s: A" — M"1A

which is defined by

s(a) = (s'a,s'a, ..., s" ta).
This makes sense, on account of the cosimplicial
identities s's’(a) = s/71s'(a) for i < j.
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Lemma 21.1. Suppose that A is a costmplicial
module. Then the map s : A" — M" 1A is
surjective.

Proof. Suppose first of all that one is given an el-
ement of the form

a = (agp,...,a;,0,...,0).
Then
s'aj = s’aj;1 =0
if 7 > j (recall the cosimplicial identity s's’ =
s/sif 4 > §). Tt follows that

s'd’a; = d's'"a; =0
if i > j and s’d’a; = a;, so that a — s(s’a;) has
the form
a— s(s’aj) =b=(by,...bj_1,0,...0).

Inductively, if every such element b = s(c), then
s =s(s’a; +c). O

Corollary 21.2. 1) Suppose thatp : A — B is
a map of costmplicial module which consists
of epimorphisms p . A" — B". Then all
induced maps

(p, S) : An — Bn XMn—lB Mn_lA
are epimorphisms.
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2) Suppose that p: A — B is a map of cosim-
plicial chain complexes (respectively simpli-
cial modules) which consists of fibrations p -
A" — B". Then all induced maps

(p, S) : An — Bn XMn—lB Mn_lA

are fibrations of chain complezes (respectively
simplicial modules).

Proof. Suppose that the cosimplicial abelian group
K is the kernel of p. Suppose given an element
(b, (ag, . .., a,—1))such that s(b) = p(ag, - . ., @p_1).
There is an element a € A" such that p(a) =
b. Then s(a) — (ag,...,a,_1) is an element of
M" 1K and there is an element x € K" such
that

s(x) =s(a) — (ag,...,an_1)
by Lemma 21.1. But then s(a+x) = (ag, ..., ap-1)
and p(a + x) = b.

The second claim follows from the first. One uses
Lemma 19.4 together with the fact the fact that the
normalized complex functor preserves finite limits
up to natural isomorphism. []

Lemma 21.3. Suppose that K is a cosimpli-
cial object in chain complexes (respectively sim-
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plicial modules) such that all objects K" are
acyclic. Then the map

s: K" — M" 'K
1 a trivial fibration.

Proof. Write MZ; 'K for the set of (k + 1)-tuples
(ag, - - .,ar) € K" ! such that s'a; = s/~la; for
t < 7 < k. Then there are canonical maps s :
K" — Mg;lK and pullback diagrams

—1 7~ Pk _
MZ, K—— K1

S*J/ S

n—1 n—2
MK 5 M2 K

All maps d : K" — MgglK are fibrations, by a
variant of the argument for Lemma 21.1.

Inductively, all maps s : K" ! — Mng are
trivial fibrations, so that the map s, in the diagram
is a trivial fibration. Inductively again, the map s :
K" — M".'K is a weak equivalence, so that the
map s : K" — MZ%.'K is a trivial fibration.  [J

Corollary 21.4. Suppose that p : A — B 1is
a map of cosimplicial chain complexes (respec-

tively simplicial modules) which consists of triv-
wal fibrations p : A" — B". Then all induced
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maps
(p, S) : An — Bn XMn—lB Mn_lA

are trivial fibrations of chain complexes (respec-
tively simplicial modules).

Proof. The map (p, s) is surjective in all simplicial
degrees since p is surjective for all n and in all
simplicial degrees. Suppose that the cosimplicial
object K is the kernel of p. The kernel of (p, s)
is isomorphic to the kernel of the map s : K" —
M" 1K which kernel is acyclic by Lemma 21.3.

]

Corollary 21.5. 1) Suppose thatp : A — B is
a projective fibration of bicosimplicial chain
complexes (or simplicial modules), and iden-
tify this map with a morphism of cosimpli-
cial objects in cosimplicial objects. Then all
induced maps

(p, S) . ATL — Bn XMn—lB Mn_lA

are projective fibrations of cosimplicial ob-
jects.

2) Suppose that p : A — B is a trivial pro-
jective fibration of bicosimplicial chain com-
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plexes (or simplicial modules). Then all in-
duced maps

(p, S) : An — Bn XMn—lB Mn_lA

are trivial projective fibrations of cosimpli-
cial objects.

Suppose again that A : A — R — Mod is a
cosimplicial module. The module L™A is defined
by the coequalizer

@ An—Q — @ An—l N LnA

i<j 0<i<n

which is defined by the cosimplicial identities d’d
did’ =t for i < 7. In effect, the two composites
An—Q Mj<j @ An—Z - @ An—l
1<j 0<i<n

are the composites
j—1 o
An—2 d An—l tn; @ An—l

and

A2 (UR i D A1

0<i<n
There is a canonical map d : L" 'A — A" which
is defined by the coface d’ on the i"" summand.

Suppose that A and B are cosimplicial objects (in
modules, chain complexes, or simplicial modules),
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and that f* : A* — B* k < n, are homomor-
phisms which define a map f : A" — B~" of
truncated cosimplicial objects. Then f extends to
a map f, : AS" — B="if and only if there is a
map f, : A" — B" such that the diagram

d

=14 An 5 MP1A
| 5 |1
A
Ln—lB ?Bn T)Mn—lB
commutes (exercise).
Lemma 21.6. Suppose thatt : A — B is a map
of cosimplicial chain complexes (or simplicial

modules) such that the map 1 : A — B is a
cofibration and all maps

(d, Z) . Ln_lB ULn—lA An — Bn

are cofibrations. Then v - A — B is a cofi-
bration for the projective model structure on
cosimplicial chain complexes (respectively sim-
plicial modules).

Proof. Suppose given a lifting problem



in cosimplicial objects, where the map ¢ satisfies
the conditions of the Lemma and p is a trivial pro-
jective fibration. Then p° is a trivial fibration so
that the lifting Y exists in the diagram

AO s XO
0
L2
BO - Y()
in cosimplicial degree 0. Then the maps 6" making
up the lifting 6 are inductively found by solving the
lifting problems

L?’L—lB ULn—lA An s XTL
@o " |(0:)
Bn Yn XMn—ly Mn_lX

This can be done, since (d, 7) is a cofibration by as-
sumption and (p, s) is a trivial fibration by Corol-
lary 21.4. ]

Lemma 21.7. Suppose thatt : A — B is a map
of bicosimplicial chain complexes (or simplicial
modules) such that the map i : A" — B° and
all maps

(d,i): L" *BUjn14 A" — B"

are projective cofibrations of cosimplicial chain
complexes (respectively simplicial modules). Then
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1 A — B is a cofibration for the projective
model structure on bicosimplicial chain com-
plexes (respectively simplicial modules).

The proof is the same as that of Lemma 21.6.

Corollary 21.8. 1) Suppose that A is a cosim-
plicial chain complex (or simplicial module)
such that AY is cofibrant and all maps

d:L" 1A — A"
are cofibrations. Then A is a projective cofi-

brant cosimplicial object.

2) Suppose that A is a bicosimplicial chain com-
plex (or simplicial module) such that the cosim-
plicial object A is projective cofibrant and
all maps

d:L" 1A — A"
are projective cofibrations. Then A is a pro-
jective cofibrant bicosimplicial object.

Examples:
1) The diagram
(m,n) — R(A™ x A")
of Moore complexes is a bicosimplicial chain com-
plex. Then
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a) The cosimplicial chain complex
ni— R(A” x A") = R(A")

is projective cofibrant. In effect, R(A?) is a cofi-
brant chain complex and the map

d: L" 'R(A*) — R(A")

can be identified up to isomorphism with the in-
clusion 7, : R(OA"™) — R(A") which is induced
by the inclusion 7 : OA™ C A". Then the chain
complex R(A") is obtained from R(OA") by freely
adjoining generators in all degrees, so that i, is a
cofibration.

b) The map
d: L"TR(A* x A*) — R(A" x A*)

can be identified with the cosimplicial chain com-
plex map

R(OA™ x A*) — R(A" x A*)
which is induced by the cosimplicial space map
OA" x A" — A" x A™.
The cochain complex map
R(OA" x A") — R(A™ x A"
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is a cofibration. The map
(d,q) : L™ ' R(A"X A )UR(OA" X A™) — R(A™xA")

can be identified up to isomorphism with the cofi-
bration

R((A™ x OA™) U (DA™ x A™)) — R(A" x A™).

It follows that the bicosimplicial chain complex
R(A* x A*) is projective cofibrant.

2) A similar argument shows that the bicosimpli-
cial chain complex

(m,n) — R(A™) @ R(A")
is also projective cofibrant.

Theorem 21.9. There is a map of bicosimpli-
ctal chain complexes

[ R(A™ x A") — R(A™) @ R(A")

which is a lifting of the tdentity on Hy, and any
two such maps are chain homotopic. The map
f 1s a chain homotopy equivalence.

Proof. There are isomorphisms of bicomsimplicial
abelian groups

HyR(A™ x A") = HyR(A" x A% =2 R,
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and

Hy(RIAM@R(A™) 2 Hy(RA)@ R(A%) = R,

It follows that there are trivial projective fibrations
R(A™ x A™) — R|0]

and

R(A"™) ® R(A™) — RJ0]
of bicosimplicial chain complexes, where R|0] is a
constant bicosimplicial object.
The bicosimplicial chain complexes R(A™ x A")
and R(A™) ® R(A") are therefore projective cofi-
brant models for the same thing so the map f ex-
ists by solving a lifting problem

R(A") & R(AY

;oo l

R(A* x A*)———— R[0]

Any two such lifts are chain homotopic, because
the chain homotopy construction for chain com-
plexes defines a path object for the projective model
structure.

The map g : R(A")®@ R(A*) — R(A* x A*) exists
as a covering of the identity on the constant object
R|0], and is a chain homotopy inverse of f, by the
same argument. []
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We will see, in the next section, that Theorem 21.9
is a form of the Eilenberg-Zilber Theorem.

Observe as well that a similar argument which is
based on the projective model structure for tri-
cosimplicial chain complexes gives the following:

Proposition 21.10. There is a chain homo-
topy equivalence of tricosimplicial chain com-
plexes

f RIA"XA"xAF) = RIAMQR(AM)@R(AY).
which lifts the isomorphism

HoR(A"xA'x A") =~ Hy(R(A")QR(A")@R(A")).
Any two such maps are chain homotopic.

The proof amounts to showing that the tricosim-
plicial objects
R(A* x A" x A%)
and
R(A") ® R(A™) ® R(AY)
are cofibrant for the projective model structure on

tricosimplicial chain complexes.

Higher dimensional analogues, for n-cosimplicial
chain complexes, of Theorem 21.9 and Proposition
21.10 can also be proved.
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