
Lecture 010 (November 27, 2009)

22 Bisimplicial modules

A bisimplicial R-module A is a functor

A : ∆op ×∆op → R−Mod.

Equivalently, A is a simplicial object in simplicial

modules. The category s2(R−Mod) of bisimpli-

cial modules is the obvious thing, namely bisim-

plicial modules and their natural transformations.

Usually, we write Ap,q = A(p,q). The object

A has horizontal and vertical simplicial structure

maps, defined by

θ∗h = (θ, 1)∗ : Ap,q → Ar,q

and

γ∗v = (1, γ)∗ : Ap,q → Ap,s

for ordinal number morphisms θ : r → p and

γ : s→ q, respectively.

A bisimplicial module A has an associated Moore

bicomplex, usually with the same notation. The

group of (p, q)-chains of A is just the group Ap,q.
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The horizontal boundary ∂h : Ap,q → Ap−1,q is

defined by

∂h =
p∑
i=0

(−1)i(di)h.

The vertical boundary ∂v : Ap,q → Ap,q−1 is de-

fined by

∂v =
q∑
i=0

(−1)i(di)h.

Examples:

1) Suppose that C and D are simplicial modules.

Then the external tensor product C ⊗D with

(C ⊗D)p,q = Cp ⊗Dq

is a simplicial module. If X and Y are simpli-

cial sets, then the external product X × Y with

(X×Y )p,q = Xp×Yq is a bisimplicial set, and the

associated free bisimplicial R-module R(X × Y )

has a canonical isomorphism

R(X × Y ) ∼= R(X)⊗R(Y )

with the external tensor product.

2) Every bisimplicial set X : ∆op ×∆op → Set

determines a free bisimplicial module R(X) with

R(X)p,q = R(Xp,q).
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Bisimplicial sets are a major source of bisimplicial

bisimplicial modules, and hence bicomplexes, via

this mechanism.

3) Suppose that I is a small category and that the

functor Y : I → Set is a functor. The translation

category EIY has for objects all pairs (i, x) with

x ∈ Y (i). The morphisms α : (i, x) → (j, y) of

EIY are morphisms α : i → j such that α∗(x) =

y. The n-simplices of the nerve BEIY are the

strings of morphisms

(i0, x0)
α1−→ (i1, x1)

α2−→ . . .
αn−→ (in, xn)

in the category EIY of length n. The elements

x1, . . . , xn are completely specified by x0 and the

morphism α1, . . . , xn, so that there is a bijection

B(EIY )n ∼=
⊔

i0→···→in
Y (i0).

If X : I → sSet is an I-diagram of simplicial sets,

then the functors Xn : I → Set form a simplicial

object in set-valued diagrams, and so the simplicial

sets B(EIXn) form a bisimplicial set B(EIX) ,

which in “horizontal degree n” has the form
⊔

i0→···→in
X(i0).

If Z is a bisimplicial set, the diagonal d(Z) is a
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simplicial set with d(Z)n = Zn,n and with simpli-

cial structure maps

Zn,n
(θ,θ)∗−−−→ Zm,m

associated to θ : m→ n.

The diagonal d(B(EIX)) is usually called the ho-

motopy colimit of the diagram X , because that’s

what it is.

Given a bisimplicial module A, there are two func-

torially associated chain complexes:

1) the total complex Tot(A) of the associated Moore

bicomplex A, and

2) the Moore complex d(A) of the diagonal sim-

plicial module.

These two constructions are related by the Gen-

eralized Eilenberg-Zilber Theorem, of Dold and

Puppe [1]:

Theorem 22.1. The chain complexes d(A) and

Tot(A) are naturally chain homotopy equiva-

lent, for all bisimplicial modules A. Any two

natural maps d(A) → Tot(A) which induce the

same map

H0(dR(∆0,0))→ H0(TotR(∆0,0))
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are naturally chain homotopic.

Proof. The external product ∆p×∆q is the (p, q)-

cell ∆p,q = hom( , (p,q)) in the category of bisim-

plicial sets, and this identification is natural in p,

and q.

There is a bisimplicial module map

φp,q : Ap,q ⊗∆p,q → A.

The map

φp,q :
⊕

(r,s)
(θ,γ)−−→(p,q)

Ap,q → Ar,s

is the map (θ, γ)∗ : Ap,q → Ar,s on the summand

corresponding to the morphism (θ, γ). Note that

Ap,q ⊗∆p,q is shorthand notation for the object

Ap,q ⊗R∆p,q.

All diagrams

Ap,q ⊗∆p,q

φp,q

%%KKKKKKKKKKKK

Ap,q ⊗∆r,s

1⊗(θ,γ) 66mmmmmmmmmmmmm

(θ,γ)∗⊗1 ((QQQQQQQQQQQQQ
A

Ar,s ⊗∆r,s
φr,s

99ssssssssssss

commute, and this collection of diagrams in initial
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among all collections of commutative diagrams

Ap,q ⊗∆p,q

fp,q

%%KKKKKKKKKKKK

Ap,q ⊗∆r,s

1⊗(θ,γ) 66mmmmmmmmmmmmm

(θ,γ)∗⊗1 ((QQQQQQQQQQQQQ
B

Ar,s ⊗∆r,s
fr,s

99ssssssssssss

It follows that there is a short exact sequence
⊕

(r,s)
(θ,γ)−−→(p,q)

Ap,q⊗∆r,s → ⊕
(p,q)

Ap,q⊗∆p,q → A→ 0

(1)

which is natural in bisimplicial abelian groups A.

The functors A 7→ Tot(A) and A 7→ d(A) are ex-

act and commute with tensoring by abelian groups.

Theorem 21.9 implies that there is a map of chain

complexes

f : d(R(∆p,q))→ Tot(R(∆p,q))

which is natural in (p, q), and induces the identity

map

R ∼= H0(d(R(∆0,0))→ H0(Tot(R(∆0,0)) ∼= R.

This natural map f determines a comparison dia-
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gram
⊕

(θ,γ) Ap,q ⊗ d(R∆r,s) //

��

⊕
(p,q) Ap,q ⊗ d(R∆p,q)

��⊕
(θ,γ) Ap,q ⊗ Tot(R∆r,s) //

⊕
(p,q) Ap,q ⊗ Tot(R∆p,q)

It follows that there is an induced natural map

f∗ : d(A)→ Tot(A).

Any two natural maps f, f ′ : d(A) → Tot(A)

having the same effect on H0(d(R(∆0,0))) restrict

to bicosimplicial chain complex maps

f, f ′ : d(R(∆p,q))→ Tot(R(∆p,q)),

which maps are chain homotopic by Theorem 21.9.

The chain homotopy construction respects colim-

its, so the maps f, f ′ : d(A) → Tot(A) are natu-

rally chain homotopic.

The map f has a natural chain homotopy inverse

g : Tot(R∆p,q)→ d(R∆p,q)

which induces a natural map

g∗ : Tot(A)→ d(A),

and g∗ is a chain homotopy inverse for f∗

Remark 22.2. Theorem 22.1 appears as Theo-

rem IV.2.4 in [2]. There is an error in the proof
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of that result which is repaired in the proof given

here.

The following is the classical Eilenberg-Zilber The-

orem:

Corollary 22.3 (Eilenberg-Zilber). Suppose that

X and Y are simplicial sets. Then there is a

natural chain homotopy equivalence

f : R(X × Y ) '−→ R(X)⊗R(Y ).

Any two such natural maps f are naturally chain

homotopic

Remark 22.4. There are explicit choices for the

natural map f and its natural homotopy inverse g,

namely the Alexander-Whitney and shuffle maps

respectively. See the ancient texts for descriptions

of these maps.

The Eilenberg-Zilber Theorem leads immediately

to the definition of the cup product for the coho-

mology H∗(X,R) of a space X with coefficients in

a ring R. Suppose that the chain maps

α : R(X)→ R[−p], β : R(X)→ R[−q]

represent elements (chain homotopy classes) [α] ∈
Hp(X,R) and [β] ∈ Hq(X,R), respectively. Then
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the composite chain map

R(X)
∆∗ //R(X ×X)

f //R(X)⊗R(X)

α⊗β
��

R[−p]⊗R[−q] ∼= R[−p− q]

represents an element

[α] ∪ [β] ∈ Hp+q(X,R) = [R(X), R[−p− q]],

which is the cup product of the classes [α] and [β].

There is a natural twist map

τ : R(X)⊗R(Y )→ R(Y )⊗R(X)

which is defined on generators by

τ (x⊗ y) = (−1)pqy ⊗ x

for x ∈ Xp and y ∈ Yq. There is a natural map

t : X × Y → Y × X of simplicial sets which is

defined by t(x, y) = (y, x). The diagram

H0R(∆0 ×∆0)
f∗ //

t∗
��

H0(R(∆0)⊗R(∆0))
τ∗

��

H0R(∆0 ×∆0)
f∗

//H0(R(∆0)⊗R(∆0))
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commutes, and so it follows that the diagram

R(X × Y )
f //

t∗
��

R(X)⊗R(Y )

τ
��

R(Y ×X)
f

//R(Y )⊗R(X)

is naturally chain homotopy comutative.

It follows (exercise) that the cup product onH∗(X,R)

is graded commutative in the sense that the equa-

tion

[α] ∪ [β] = (−1)pq[β] ∪ [α]

for [α] ∈ Hp(X,R) and [β] ∈ Hq(X,R), provided

that R is a commutative ring.

It is also an exercise to show that the cup product

onH∗(X,R) is associative. Use Proposition 21.10.

23 Bisimplicial sets and spectral sequences

There are some simple consequences of the Gen-

eralized Eilenberg-Zilber Theorem (Theorem 22.1)

that we can just write down:

Corollary 23.1. Suppose that A is a bisimpli-

cial module. Then there are spectral sequences

E2
p,q = Hh

pH
v
qA⇒ Hp+qd(A) = πp+q(d(A), 0),
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and

E2
p,q = Hv

pH
h
qA⇒ Hp+qd(A).

Corollary 23.2. Suppose that A is an abelian

group and that X and Y are spaces (ie. simpli-

cial sets). Then there is a spectral sequence

E2
p,q = Hp(X,Hq(Y,A))⇒ Hp+q(X × Y,A).

The spectral sequence of Corollary 23.2 is the Künn-

eth spectral sequence; it has analogs in a vari-

ety of contexts, including categories of diagrams of

spaces. It makes virtually no sense to use this re-

sult for ordinary spaces, where it collapses to give

the ordinary Künneth Theorem (Theorem 10.11).

The diagram-theoretic variants have much more

content.

Here’s a more interesting construction. Let p :

X → Y be a morphism of simplicial sets, and

consider the pullbacks

p−1(σ) //

��

X
p

��

∆n
σ

// Y

over all simplices σ : ∆n → Y of the base. Any
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morphism of simplices

∆m

��

τ
''NNNNNN

Y

∆n σ

77pppppp

(2)

induces a morphism p−1(τ ) → p−1(σ), and the

collection of induced maps p−1(σ)→ X induces a

weak equivalence

holim−−−→∆n σ−→Y
p−1(σ) '−→ X. (3)

See Lemma IV.5.2 of [2] — the proof of this result

is not difficult.

The simplices ∆n → Y and their morphisms (2)

define a category ∆/Y , which is called the simplex

category of Y . The functor σ 7→ p−1(σ) defined

above is a functor ∆/X → sSet which indexes

the homotopy colimit in (3).

It follows that there is a spectral sequence, with

E2
p,q = lim−→ pHq(p

−1(∗), A)⇒ Hp+q(Y,A) (4)

This is the Grothendieck spectral sequence for the

map p.

If the map p happens to be a fibration, this spec-

tral sequence reduces to the standard variants of

the Serre spectral sequence. All induced maps
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p−1(τ ) → p−1(σ) are weak equivalences, and the

functor σ 7→ Hq(p
−1(σ)) are morphism inverting

and induce functors π(Y ) → Ab which are de-

fined on the fundamental groupoid π(Y ) of Y .

If Y is a simply connected space, then its fun-

damental groupoid is trivial and the spectral se-

quence (4) has the form

E2
p,q = Hp(Y,Hq(F,A))⇒ Hp+q(X,A). (5)

This is the classical homology Serre spectral se-

quence for a fibration p with simply connected

base. Here, F is any fibre p−1(x) over a vertex

x : ∆0 → Y of Y .

The Künneth spectral sequence of Corollary 23.2

is a very simple example of the Serre spectral se-

quence.

24 Some calculations

In general (from Section 6), there is a natural short

exact sequence of chain complexes

0→ K → C̃ → C → 0,

where C̃ is acyclic. The kernel K is isomorphic to

F0C[1], where F0C is the kernel of the canonical
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map C → P0C to the 0th Postnikov section. In

particular, if C = A[−n] for some R-module A

where n ≥ 1 then F0A[−n] = A[−n] and so K =

A[−n + 1]. It follows in particular (via the Dold-

Kan correspondence) that for n ≥ 1 there are short

exact sequences of simplicial modules

0→ K(A, n− 1)→ E → K(A, n)→ 0

and hence fibre sequences

K(A, n− 1)→ E → K(A, n)

such that E is contractible. These fibre sequences

are natural in R-modules A. Recall in all that

follows that K(A, 1) = BA.

There are various ways to show that the circle S1

(or simplicial circle ∆1/∂∆1) is weakly equivalent

to BZ. The most common is to observe that the

winding function R→ S1 defined by t 7→ e2πit is a

Serre fibration with fibre Z. This construction can

be modelled in simplicial sets, and it is an exercise

to do so. It is also a standard exercise to show that

there are isomorphisms

Hn(BZ,Z) ∼= Hn(S1,Z) ∼=

Z if n = 0, 1, and

0 otherwise
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Example 24.1. In the fibre sequence

BZ→ E → K(Z, 2)

the space E is contractible and K(Z, 2) is simply

connected. The Serre spectral sequence for this

fibre sequence has the form

E2
p,q = Hp(K(Z, 2), Hq(BZ,Z))⇒ Hp+q(E,Z).

The space E is contractible, so that

Hn(E) = Hn(E,Z) = 0

for n ≥ 1. It follows that E∞p,q = 0 for (p, q) 6=
(0, 0). In effect, the filtration FpHn ofHn = Hn(E)

has the form

F0Hn
//

∼=
��

F1Hn
//

��

. . . Fn−1Hn
//FnHn

= //

��

Hn

E∞0,n E∞1,n−1 E∞n,0

so that E∞p,n−p = 0 for p ≤ n and for all n, by

induction on p.

Now look at the E2-term:

• E2
1,0 = E∞1,0 = 0 since there are no non-trivial

differentials in or out. Thus, H1(K(Z, 2)) = 0.

• The differential d2 : E2
2,0 → E2

0,1 has kernel

E∞2,0 and cokernel E∞0,1, and is therefore an iso-
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morphism. It follows that d2 induces an iso-

morphism

H2(K(Z, 2)) ∼= H1(BZ) ∼= Z.

Also, E2
2,1
∼= Z.

I claim thatH2n(K(Z, 2) ∼= Z andH2n+1(K(Z, 2) =

0 for all n.

The argument is an induction on n which repeats

the arguments just seen. The differential

H2n+2(K(Z, 2)) ∼= E2
2n+2,0

d2−→ E2
2n,1
∼= Z

which has kernel E∞2n+2,0 and cokernel E∞2n,1 and

therefore must be an isomorphism. There are no

non-trivial differentials out of E2
2n+3,0 so that

H2n+3(K(Z, 2)) ∼= E2
2n+3,0

∼= E∞2n+3,0 = 0.

In general, for a functor X : I → Set, there is a

functor EIX → I which is defined by (i, x) 7→ i.

Identify a groupG with a one-object category, with

object ∗.
The group multiplication G × G → G defines a

functor G : G → Set which takes the object ∗
to G and takes a morphism ∗ g−→ ∗ to the func-

tion G → G which is defined by h 7→ hg−1. It is

standard to write EG = B(EGG) for the nerve

16



of the corresponding translation category. The

functor EG(G) → G induces a simplicial set map

EG → BG. Observe that there is a G-action

G × EG → EG which is defined by the left G-

action on the object level, and that the quotient

map EG → EG/G can be identified with the

canonical map EG→ BG.

The element (∗, e) is terminal in EG(G) so that

EG is constractible. The corresponding weak equiv-

alence Z(EG)→ Z of chain complexes gives Z(EG)

the structure of a free G-resolution of the trivial

G-modules Z. Upon tensoring with any trivial G-

modules A over G, we find an isomorphism

Z(EG)⊗G A ∼= Z(BG)⊗Z A.

It follows that there is an isomorphism

TorGp (Z, A) ∼= Hp(BG,A)

for all trivial G-modules A, and for all p ≥ 0.

Example 24.2. We have seen (Section 9) that

Hp(B(Z/n),Z) ∼=



Z if p = 0,

Z/n if p = 2n + 1, n ≥ 0,

0 if p = 2n, n > 0.

Recall that there is a fibre sequence

B(Z/n)→ E → K(Z/n, 2)
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withE contractible. The corresponding Serre spec-

tral sequence has the form

E2
p,q = Hp(K(Z/n, 2), Hq(B(Z/n)))⇒ Hp+q(E).

We have E∞p,q = 0 for (p, q) 6= (0, 0), as before. It

follows that

H1(K(Z/n, 2)) = E2
1,0 = E∞1,0 = 0.

The sequence

0→ E∞2,0 → E2
2,0

d2
−→ E2

0,1 → E∞0,1 → 0

is exact, so it also follows that the differential d2

defines an isomorphism

H2(K(Z/n, 2)) ∼= H1(B(Z/n)) ∼= Z/n.

The groups E2
1,1 and E2

0,2 = H2(B(Z/n)) are triv-

ial, so that

H3(K(Z/n, 2)) = E2
3,0 = E∞3,0 = 0.

Example 24.3. Observe (exercise) that there is

a natural isomorphism

H1(BG) ∼= G/[G,G]

which induced by the canonical mapBG→ Z(BG)

— this is the Hurewicz map for BG. In general,

the canonical map X → Z(X) is Hurewicz map
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for a simplicial set X . It follows that there is a

natural isomorphism

H1(BA) ∼= A

for abelian groups A.

The spectral sequence for the fibration

BA→ E → K(A, 2)

can be used to show that H1(K(A, 2)) = 0 and

that the differential

H2(K(A, 2)) = E2
2,0

d2
−→ E1

0,1 = H1(BA) ∼= A

is an isomorphism, just as before.

We know from the previous examples that

H3(K(B, 2)) = 0

if B is Z or Z/n. If B1 and B2 are abelian groups

which satisfy

H3(K(Bi, 2)) = 0

then

H3(K(B1 ⊕B2, 2)) = 0

by a Künneth Theorem argument (exercise). It

follows that all finitely generated abelian groups

B satisfy H3(K(B, 2)) = 0. Finally, every abelian
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group A is a filtered colimit of its finitely generated

abelian subgroups, and so every abelian group A

satisfies H3(K(A, 2)) = 0.

Example 24.4. Suppose that A is an abelian

group. I claim that

Hn+1(K(A, n)) = 0 = Hp(K(A, n))

for all n ≥ 2 and for 0 < p < n, and that there is

a natural isomorphism

Hn(K(A, n)) ∼= A.

There is a fibre sequence

K(A, n)→ E → K(A, n + 1)

with E contractible. The Serre spectral sequence

E2
p,q = Hp(K(A, n+1), Hq(K(A, n)))⇒ Hp+q(E)

converges to the homology of a contractible space

so that E∞p,q = 0 for (p, q) 6= (0, 0). It follows that

Hp(K(A, n + 1)) ∼= E2
p,0 = E∞p,0 = 0

for 0 < p < n+1, because E2
p,q = 0 for 0 < q < n.

The differential

E2
n+1,0 = En+1

n+1,0
dn+1
−−→ En+1

0,n = E2
0,n
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is an isomorphism, since the kernel and cokernel

are E∞ terms. Thus, the diffential dn+1 defines a

natural isomorphism

Hn+1(K(A, n + 1)) ∼= Hn(K(A, n)) ∼= A.

The groups E2
n+1−p,p are 0 for 0 < p ≤ n + 1; in

particular,

E2
0,n+1 = Hn+1(K(A, n)) = 0

by the inductive assumption. But then

Hn+2(K(A, n + 1)) = E2
n+2,0 = E∞n+2,0 = 0.

The results given in Example 24.4 are the calcula-

tional results which are required for the proof of the

Hurewicz Theorem (Theorem III.3.7 of [2]), which

says that if a pointed space X is n-connected and

n ≥ 1, then the Hurewicz map

X → Z(X)→ Z̃(X) = Z(X)/Z(∗)

induces morphisms

h : πp(X)→ H̃p(X,Z)

which are isomorphisms for p ≤ n + 1 and an

epimorphism if p = n + 2.
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