Lecture 010 (November 27, 2009)

22 Bisimplicial modules

A bistmplicial R-module A is a functor
A AP x A? - R — Mod.

Equivalently, A is a simplicial object in simplicial
modules. The category s*(R — Mod) of bisimpli-
cial modules is the obvious thing, namely bisim-
plicial modules and their natural transformations.

Usually, we write A,, = A(p,q). The object
A has horizontal and vertical simplicial structure
maps, defined by

0, =(00,1)":A,,— A,
and

Yo = (1,7)": Apg = Aps
for ordinal number morphisms 6 : r — p and
v 18 — (, respectively.

A bisimplicial module A has an associated Moore
bicomplex, usually with the same notation. The
group of (p, ¢)-chains of A is just the group A, ,.



The horizontal boundary 0y, : A,, — Ap_1, 1s

defined by
p .
O = > (—=1)(d;)p.

i=0
The vertical boundary 9, : A,, — Ap,—1 1s de-
fined by

Examples:

1) Suppose that C' and D are simplicial modules.
Then the external tensor product C' ® D with

<C® D)p,q — Cp ® Dq

is a simplicial module. If X and Y are simpli-
cial sets, then the external product X x Y with
(X xY),, =X, xY,is abisimplicial set, and the
associated free bisimplicial R-module R(X X Y)
has a canonical isomorphism

RX xY)=R(X)® R(Y)
with the external tensor product.

2) Every bisimplicial set X : A%? x A? — Set
determines a free bisimplicial module R(X') with

R(X)p,q - R(Xp,q)-



Bisimplicial sets are a major source of bisimplicial
bisimplicial modules, and hence bicomplexes, via
this mechanism.

3) Suppose that [ is a small category and that the
functor Y : I — Set is a functor. The translation
category ErY has for objects all pairs (7, x) with
x € Y(i). The morphisms « : (i,z) — (7,y) of
E;Y are morphisms « : ¢ — j such that a,(x) =
y. The n-simplices of the nerve BE;Y are the
strings of morphisms
(io,l‘o) g1—> (z’l,asl) 32—> ce a—n> (Zn,.fl?n)

in the category ErY of length n. The elements
x1,...,x, are completely specified by zy and the
morphism «aq, ..., x,, so that there is a bijection

BE/Y), = U Y.

fg—s i
If X : I — sSet isan I-diagram of simplicial sets,
then the functors X,, : I — Set form a simplicial
object in set-valued diagrams, and so the simplicial
sets B(F;X,) form a bisimplicial set B(E;X) |
which in “horizontal degree n” has the form

L X(do).

ig——in
If Z is a bisimplicial set, the diagonal d(Z) is a
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simplicial set with d(Z),, = Z,, and with simpli-
cial structure maps

(6,0)"

Zn,n ’ Zm,m

associated to 0 : m — n.

The diagonal d(B(E;X)) is usually called the ho-
motopy colimit of the diagram X, because that’s
what it is.

Given a bisimplicial module A, there are two func-
torially associated chain complexes:

1) the total complex Tot( A) of the associated Moore
bicomplex A, and

2) the Moore complex d(A) of the diagonal sim-
plicial module.

These two constructions are related by the Gen-
eralized Eilenberg-Zilber Theorem, of Dold and
Puppe [1]:

Theorem 22.1. The chain complexes d(A) and
Tot(A) are naturally chain homotopy equiva-
lent, for all bistmplicial modules A. Any two
natural maps d(A) — Tot(A) which induce the
same map

Hy(dR(A")) — Hy(Tot R(A™))
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are naturally chain homotopic.

Proof. The external product AP x A?is the (p, q)-
cell APY = hom( , (p,q)) in the category of bisim-
plicial sets, and this identification is natural in p,
and q.

There is a bisimplicial module map
Gpgt Apg @ APT — A
The map
Ppg D Apg — Ars

(0,7)
(r,S)—7>(p,q)

is the map (6,v)* : A,, — A, s on the summand
corresponding to the morphism (6, ). Note that
AP1 @ AP1 is shorthand notation for the object

AP @ RAPA.
All diagrams
a0
) p,q
Ay, &A™ A
Ar,s ® A"?

commute, and this collection of diagrams in initial
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among all collections of commutative diagrams

Ap’q ® Apvq
Apy ® AT B
f

w%?l /

s ® A7
It follows that there is a short exact sequence
&) Ap QA — P A, QAPT — A — 0
(97) (p:q)
(1)

(r,s)—(p,q)
which is natural in bisimplicial abelian groups A.
The functors A — Tot(A) and A — d(A) are ex-

act and commute with tensoring by abelian groups.

Theorem 21.9 implies that there is a map of chain
complexes

f o d(R(AP)) — Tot(R(AM))

which is natural in (p, q), and induces the identity
map

R = Hy(d(R(A™)) — Hy(Tot(R(A")) = R.

This natural map f determines a comparison dia-



gram
@(9’7) Ap,q & d(RAT’S) —>€B(p7q) Apg & d(RAp’q)

| l

D(9,) Apg ® Tot(RA™) —=&(, ) Apy @ Tot(RAPT)
It follows that there is an induced natural map
fe : d(A) — Tot(A).

Any two natural maps f, f : d(A) — Tot(A)
having the same effect on Ho(d(R(A"?))) restrict
to bicosimplicial chain complex maps

fo I d(R(AM)) — Tot(R(AM)),

which maps are chain homotopic by Theorem 21.9.
The chain homotopy construction respects colim-
its, so the maps f, f' : d(A) — Tot(A) are natu-
rally chain homotopic.

The map f has a natural chain homotopy inverse
g : Tot(RAPY) — d(RAPY)
which induces a natural map
g« Tot(A) — d(A),
and g, 1s a chain homotopy inverse for f, O

Remark 22.2. Theorem 22.1 appears as Theo-
rem [V.2.4 in [2]. There is an error in the proof
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of that result which is repaired in the proof given
here.

The following is the classical Eilenberg-Zilber The-
orem:

Corollary 22.3 (Eilenberg-Zilber). Suppose that
X and Y are simplicial sets. Then there is a
natural chain homotopy equivalence

FiR(X xY)3 R(X)® R(Y).

Any two such natural maps f are naturally chain
homotopic

Remark 22.4. There are explicit choices for the
natural map f and its natural homotopy inverse g,
namely the Alexander-Whitney and shuffle maps
respectively. See the ancient texts for descriptions
of these maps.

The Eilenberg-Zilber Theorem leads immediately
to the definition of the cup product for the coho-
mology H*(X, R) of a space X with coefficients in
a ring R. Suppose that the chain maps

a:R(X)— R|—p|, B:R(X)— R|—q|

represent elements (chain homotopy classes) [a] €
HP(X, R)and [§] € HY(X, R), respectively. Then
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the composite chain map

R(X) 2% R(X x X) ' R(X)® R(X)

represents an element
o] U[B] € H"M(X, R) = [R(X), R[-p — q]],
which is the cup product of the classes [o] and [5].

There is a natural twist map
T:RX)® RY) — R(Y)® R(X)
which is defined on generators by
Ta®y)=(-1)"y®u

for x € X, and y € Y. There is a natural map
t: X xY — Y x X of simplicial sets which is
defined by t(z,y) = (y,z). The diagram

HyR(A® x A% L Hy(R(A%) @ R(A))

t*l if*

HyR(AY x A%) — Hy(R(A”) ® R(A"))



commutes, and so it follows that the diagram

RIX xY)L-R(X)® R(Y)

bl |

R(Y x X)—~R(Y) @ R(X)

is naturally chain homotopy comutative.

[t follows (exercise) that the cup product on H*( X, R)
is graded commutative in the sense that the equa-
tion

] U 8] = (=1)™[B] U [o]
for [a] € HP(X, R) and [§] € HY(X, R), provided
that R is a commutative ring.

It is also an exercise to show that the cup product
on H*(X, R) is associative. Use Proposition 21.10.

23 Bisimplicial sets and spectral sequences

There are some simple consequences of the Gen-
eralized Eilenberg-Zilber Theorem (Theorem 22.1)
that we can just write down:

Corollary 23.1. Suppose that A is a bisimpli-
ctal module. Then there are spectral sequences

E),=H'H'A= H, d(A) =m,,(d(A),0),
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and
E),=H)H'A= H, /dA).

Corollary 23.2. Suppose that A is an abelian
group and that X and Y are spaces (ie. simpli-
cial sets). Then there is a spectral sequence

Eiq = H,(X,H,(Y,A)) = H, (X x Y, A).

The spectral sequence of Corollary 23.2 is the Kinn-
eth spectral sequence; it has analogs in a vari-
ety of contexts, including categories of diagrams of
spaces. It makes virtually no sense to use this re-
sult for ordinary spaces, where it collapses to give
the ordinary Kiinneth Theorem (Theorem 10.11).
The diagram-theoretic variants have much more
content.

Here’s a more interesting construction. Let p :
X — Y be a morphism of simplicial sets, and
consider the pullbacks

pHo)—X

|y

AR?Y

over all simplices o : A" — Y of the base. Any
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morphism of simplices

A™ (2)
\Y
"

An

induces a morphism p~*(7) — p~(o), and the

collection of induced maps p~!(o) — X induces a

)

weak equivalence

. _1 ~
holimy \, 0., p~ (o) = X. (3)
See Lemma IV.5.2 of [2] — the proof of this result
is not difficult.

The simplices A" — Y and their morphisms (2)
define a category A /Y, which is called the simplex
category of Y. The functor o +— p~!(o) defined
above is a functor A/X — sSet which indexes
the homotopy colimit in (3).

It follows that there is a spectral sequence, with
E}%,q = hLQqu(p_l(*), A)= Hy (Y, A)  (4)

This is the Grothendieck spectral sequence for the
map p.
If the map p happens to be a fibration, this spec-

tral sequence reduces to the standard variants of
the Serre spectral sequence. All induced maps
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p Y1) — p~ (o) are weak equivalences, and the
functor o — H,(p~!(c)) are morphism inverting
and induce functors m(Y) — Ab which are de-
fined on the fundamental groupoid 7(Y") of Y.

If Y is a simply connected space, then its fun-
damental groupoid is trivial and the spectral se-
quence (4) has the form

B2, = H,(Y. H,(F, A) = Hy (X, ). (5)

This is the classical homology Serre spectral se-
quence for a fibration p with simply connected

base. Here, F is any fibre p~1(z) over a vertex
z: A" =Y ofY.

The Kiinneth spectral sequence of Corollary 23.2
is a very simple example of the Serre spectral se-
quence.

24 Some calculations

In general (from Section 6), there is a natural short
exact sequence of chain complexes

0-K—C—C—0,

where C' is acyclic. The kernel K is isomorphic to
FyC[1], where FyC' is the kernel of the canonical
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map C' — P,C to the 0" Postnikov section. In
particular, if C' = A[—n] for some R-module A
where n > 1 then FyA[—n] = A[—n] and so K =
Al—n + 1]. Tt follows in particular (via the Dold-
Kan correspondence) that for n > 1 there are short
exact sequences of simplicial modules

0—- KAn—-1)—F— K(An)—0
and hence fibre sequences
KAn—-1)—FE — K(A,n)

such that E is contractible. These fibre sequences

are natural in R-modules A. Recall in all that
follows that K(A,1) = BA.

There are various ways to show that the circle S!
(or simplicial circle Al /OAL) is weakly equivalent
to BZ. The most common is to observe that the
winding function R — S defined by ¢ — €*™ is a
Serre fibration with fibre Z. This construction can
be modelled in simplicial sets, and it is an exercise
to do so. It is also a standard exercise to show that

there are isomorphisms

Z ifn=0,1, and

0 otherwise
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Example 24.1. In the fibre sequence
BZ — E — K(Z,2)

the space E is contractible and K(Z,2) is simply
connected. The Serre spectral sequence for this
fibre sequence has the form

E;, = H,(K(Z,2), H(BZ,7)) = H,.,(E,Z).
The space E is contractible, so that
Hn(E) - Hn<Ea Z) =0

for n > 1. Tt follows that £} = 0 for (p,q) #
(0,0). In effect, the filtration F),H,, of H,, = H,(E)
has the form

FOHnHFlHnH Fn—lHnHFan;Hn
E(()),On Eion—l ETC;?O
so that EJ5_ = 0 for p < n and for all n, by

induction on p.

Now look at the E2-term:

o Eio = L7 = 0 since there are no non-trivial
differentials in or out. Thus, Hy(K(Z,2)) = 0.

e The differential dy : E3, — Ef, has kernel
E5% and cokernel Egq, and is therefore an iso-
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morphism. It follows that dy induces an iso-
morphism

Hy(K(Z,2)) = H{(BZ) = Z.
Also, B3| = Z.
[ claim that Hy,(K(Z,2) = Z and Hoy, 11 (K (Z,2) =
0 for all n.

The argument is an induction on n which repeats
the arguments just seen. The differential

Y d s
HQn—i—Q(K(Zv 2)) — E%n—i—Z,O = E22n,1 =7

which has kernel Eg7 ., and cokernel Egp, and
therefore must be an isomorphism. There are no
non-trivial differentials out of E3, 3 so that

Hony3(K(Z,2)) = E22n+3,0 = Eg,.50=0.

In general, for a functor X : I — Set, there is a
functor £y X — I which is defined by (i, x) — 1.
Identify a group G with a one-object category, with
object *.

The group multiplication G x G — G defines a
functor G : G — Set which takes the object

to G and takes a morphism * < * to the func-

tion G — G which is defined by h +— hg™ ! Tt is
standard to write EG = B(EgG) for the nerve
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of the corresponding translation category. The
functor Eg(G) — G induces a simplicial set map
EG — BG. Observe that there is a G-action
G X EG — EG which is defined by the left G-
action on the object level, and that the quotient
map FG — FEG/G can be identified with the

canonical map EG — BG.

The element (%, e) is terminal in Fg(G) so that
EG is constractible. The corresponding weak equiv-
alence Z(EG) — 7 of chain complexes gives Z( EG)
the structure of a free G-resolution of the trivial
G-modules Z. Upon tensoring with any trivial G-
modules A over GG, we find an isomorphism

Z(EG) ¢ A = Z(BG) ®z A.

It follows that there is an isomorphism

Tor§(Z,A) = H,(BG, A)
for all trivial G-modules A, and for all p > 0.
Example 24.2. We have seen (Section 9) that
7, if p=0,
H,(B(Z/n),Z) = {Z/n ifp=2n+1n>0,
0 if p=2n,n>0.

Recall that there is a fibre sequence
B(Z/n) — E — K(Z/n,?2)
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with E contractible. The corresponding Serre spec-
tral sequence has the form

B2, = H/(K(Z/n,2), H(B(Z/n)) = H,.,(E).

We have E2¢ = 0 for (p,q) # (0,0), as before. It
follows that

Hy(K(Z/n,2)) = Ef, = E75 = 0.
The sequence
00 2 d? 2 00
0 — Boy— Ly — By — Loy — 0

is exact, so it also follows that the differential d?
defines an isomorphism

Hy(K(Z/n,2)) = H(B(Z/n)) = Z/n.
The groups E7 | and Eg, = Hy(B(Z/n)) are triv-
ial, so that
H3(K(Z/n,2)) = E5, = E55 = 0.

Example 24.3. Observe (exercise) that there is
a natural isomorphism

H\(BG) = G/|G, G

which induced by the canonical map BG — Z(BG)
— this is the Hurewicz map for BG. In general,
the canonical map X — Z(X) is Hurewicz map
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for a simplicial set X. It follows that there is a
natural isomorphism

H{(BA)= A
for abelian groups A.
The spectral sequence for the fibration
BA —- FE — K(A,?2)

can be used to show that Hi(K(A,2)) = 0 and
that the differential

Hy(K(A,2)) = B2, 5 B} = Hi(BA) = A
is an isomorphism, just as before.

We know from the previous examples that
H3(K(B,2)) =0
if BisZ or Z/n. If By and By are abelian groups
which satisty
H3(K(B;,2)) =0
then
H3(K (B ® Bs,2)) =0

by a Kiinneth Theorem argument (exercise). It
follows that all finitely generated abelian groups
B satisfy H3(K(B,2)) = 0. Finally, every abelian
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group A is a filtered colimit of its finitely generated

abelian subgroups, and so every abelian group A
satisfies H3(K(A,2)) = 0.

Example 24.4. Suppose that A is an abelian
group. I claim that

Hn+1(K<A7 n)) =0= HP(K(A7 n))

for all n > 2 and for 0 < p < n, and that there is
a natural isomorphism

H,(K(A,n)) = A.
There is a fibre sequence
K(An) — E— KA n+1)
with E contractible. The Serre spectral sequence
B2, = Hy(K(An+1), H(K(An)) = Hy\,(E)

converges to the homology of a contractible space
so that E2¢ = 0 for (p, q) # (0,0). It follows that

Hy(K(A,n+1)) = Eg,o =L =

p,0

for 0 < p < n+1, because Eg’q =0for0<qg<n.
The differential

p opmtl AN ol 2
En+1,O_En+1,O EO,n _EO,n
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is an isomorphism, since the kernel and cokernel
are £ terms. Thus, the diffential d"*! defines a

natural isomorphism

Hy 1 (K(A,n+1)) = H,(K(A,n)) = A.
The groups EﬁH_p’p are 0 for 0 < p < n+1;in
particular,

B}y = (K (An) = 0

by the inductive assumption. But then

Hyo(K(An+1)) = By 59 = Epis = 0.
The results given in Example 24.4 are the calcula-
tional results which are required for the proof of the
Hurewicz Theorem (Theorem II1.3.7 of [2]), which
says that if a pointed space X is n-connected and
n > 1, then the Hurewicz map

X - Z(X) = Z(X) = Z(X)/Z(x)
induces morphisms
h:my(X) — Hy(X,Z)

which are isomorphisms for p < n + 1 and an

epimorphism if p =n + 2.
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