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14 Simplicial groups

A simplicial group is a functor G : A’? — Grp.

A morphism of simplicial groups is a natural trans-
formation of such functors.

The category of simplicial groups is denoted by
sGr.

We use the same notation for a simplicial group G
and its underlying simplicial set.

Lemma 14.1 (Moore). Every simplicial group is a
Kan complex.

The proof of Lemma 14.1 involves the classical
simplicial identities. Here’s the full list:

did; =d; 1d; ifi < j

(s 0d; ifi<j
ds;j={1  ifi=jj+1
sidiny ifi> 41

SiSj — Sj+18i if i S ]
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Proof. Suppose

(.X(), cee g X1 X0—15- -+ 7-xn)
(¢ > k+2) is a family of (n — 1)-simplices of G
such that dix; = d;_x; for i < j.

Suppose there is an n-simplex y € G such that d;(y) =
x;fori<k—1landi>/.

Then dixy_ | =didy_(y) fori<k—1landi>/{—1,
and

di(sea(xe1de 1 (y7))y) = x;
fori<k—landi>/¢—1.

Alternatively, suppose S C n and |S| < n.

Write A"(S) for the subcomplex of JA™ which is
generated by the faces d;t, fori € S.

Write
Gs) :=hom(A"(S),G).

Restriction to faces determines a group homomor-
phismd : G, — Gs).

We show that d is surjective, by induction on |S].

There 1s a j € S such that either j —1 or j4 1 is
not a member of S, since |S| < n.

Pick such a j, and suppose 6 : A*(S) — G is a sim-
plicial set map such that 6;, = 0(d;1,) = e for i # j.
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Then there is a simplex y € G, such that d;(y) = 6.

For this, sety =s;0;if j+1¢ Sory=s;_,0; if
j—1¢S8.

Now suppose o : A*(S) — G is a simplicial set
map, and let /) denote the composite

A"(S—{j}) C AY(S) > G.

Inductively, there is a y € G, such that d(y) = ¢/,
or such that d;y = o; for i = j. Let yg be the restric-
tion of y to A"(S).

The product ¢ -y, ' is amap such that (o-y; '), =e
for i # j. Thus, there is a 8 € G, such that d(0)
(0] -ys_l.

Thend(6-y) = o.

[]

The following result will be useful:

Lemma 14.2. 1) Suppose that S C n such that |S| <
n. Then the inclusion A"(S) C A" is anodyne.

2)IfT CS, and T # 0, then A*(T) C A*(S) is
anodyne.



Proof. For 1), we argue by induction on n.
Suppose that £ is the largest element of S. There is
a pushout diagram

NS — kAN —{kY) (D)

| |

An—l " A <S>

By adding (n — 1)-simplices to A*(S), one finds a
k € n such that the maps in the string

A" (S) C A} C A"
are anodyne. []
Write
N,(G) = Nicyker(d; : G, — G,_y).

The simplicial identities imply that the face map
d, induces a homomorphism

d, : N,(G) = N,_1(G).
In effect, if i <n—1, theni <n and

did,(x) =d, 1d;(x) = e
for x € N,(G).

The image of d,, : N,(G) — N,_1(G) is normal in
G, since

Ay (($n-1%)(8p-12) 7') = xdn(y)x "
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fory € N,y 1(G) and x € G,,.
Lemma 14.3. 1) There are isomorphisms

ker(d, : N,(G) — N,,_1(G))
im(d,.1: N1 (G) — N, (G)
foralln > 0.

) = m,(G,e)

2) The homotopy groups m,(G,e) are abelian for
n>1.

3) There are isomorphisms
7, (G,x) = m,(G,e)
for any x € Gy,.

Proof. The group multiplication on G induces a
multiplication on 7,(G,e) which has identity rep-
resented by e € G and satisfies an interchange law
with the standard multiplication on the simplicial
homotopy group 7,(G,e).

Thus, the two group structures on 7,(G,e) coin-
cide and are abelian for n > 1.

Multiplication by the vertex x defines a group ho-
momorphism

7, (G,e) = m,(G,x),
with inverse defined by multiplication by x~!. [
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Corollary 14.4. A map f : G — H of simplicial
groups is a weak equivalence if and only if it in-
duces isomorphisms

o(G) = mo(H), and

m.(G,e) = m,(H,e), n>1.
Lemma 14.5. Suppose p : G — H is a simplicial

group homomorphism such that p : G; — H; is a
surjective group homomorphism for i < n.

Then p has the RLP wrt all morphisms A]' C A™
form <n.

Proof. Suppose given a commutative diagram
Al'-*-G
i
B
and let K be the kernel of p.

Since m < n there is a simplex 0 : A" — G such
that p@ = 3. Then pO[y» = pa, and there is a
simplex ¥ : A" — K such that the diagram

05(9|Az1)_

K




commutes, since K is a Kan complex (Lemma 14.1).
Then (Y0)[a» = « and p(y6) = . [

Lemma 14.6. Suppose p : G — H is a simplicial
group homomorphism such that the induced ho-
momorphisms N;(G) — N;(H) are surjective for
1 < n.

Then p is surjective up to level n.

Proof. Suppose B : A" — H is an n-simplex, and
suppose that p is surjective up to level n — 1.

p 1s surjective up to level n — 1 and is a fibration
up to level n — 1 by Lemma 14.5.

It follows from the proof of Lemma 14.2, ie. the
pushouts (1), that p has the RLP wrt to the inclu-
sion A""! C A"(S) defined by the inclusion of the
minimal simplex of S.

Thus, there 1s map « : A, — G such that the fol-
lowing commutes
Al %G
L
B

Choose a simplex 6 : A" — G which extends «.
Then (Bp(0)')|arn = e so there is an n-simplex

¥ € N,(G) such that p(y) = Bp(6)~".
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But then 8 = p(y9). N

Lemma 14.7. The following are equivalent for a
simplicial group homomorphism p : G — H:

1) The map p is a fibration.

2) The induced map p. : N,(G) — N, (H) is sur-
jective for n > 1.

Proof. We will show that 2) implies 1). The other
implication is an exercise.

Consider the diagram

G P H

| |

K(ﬂoG, 0) WKOIOH? 0)

where K(X,0) denotes the constant simplicial set
on a set X.
Example: K (G, 0) is the constant simplicial group
on the group my(G).
Every map K(X,0) — K(Y,0) induced by a func-
tion X — Y 1s a fibration (exercise), so that the
map p, 1s a fibration, and the map

K(ﬂ'()G, O) X K (myH ,0) H—H

1s a fibration.



The functor G — N,(G) preserves pullbacks, and
the map

p/ G — K(WOG, O) XK(TE()H,O) H

is surjective in degree 0 (exercise).

Then p’ induces surjections
Nn<G) — Nn (K(TC()G, O) XK(TL'()H,O) H)

for n > 0, and is a fibration by Lemmas 14.5 and
14.6. []

Here are some definitions:

e A homomorphism p : G — H of simplicial groups
1s said to be a fibration if the underlying map
of simplicial sets is a fibration.

e The homomorphism f: A — B in sGr is a weak
equivalence if the underlying map of simpli-
cial sets is a weak equivalence.

e A cofibration of sGr is a map which has the
left lifting property with respect to all trivial
fibrations.

The forgetful functor U : sGr — sSet has a left ad-
joint X — G(X) which is defined by the free group
functor in all degrees.



A map G — H 1is a fibration (respectively weak
equivalence) of sGr iff U(G) — U(H) is a fibra-
tion (resp. weak equivalence) of simplicial sets.

If i : A — B is a cofibration of simplicial sets, then
the map i, : G(A) — G(B) of simplicial groups is
a cofibration.

Suppose G and H are simplicial groups and that K
is a simplicial set.

The simplicial group G ® K has
(G %Y K)n — *xEKnGn
(generalized free product, or coproduct in Gr).

The function complex hom (G, H) for simplicial
groups G, H i1s defined by

hom(G,H),={GRA" — H}.
There is a natural bijection
hom(G ® K,H) = hom(K,hom(G,H)).

There is a simplicial group HX defined as a sim-
plicial set by

H* =hom(K,H),

10



with the group structure induced from H. There is
an exponential law

hom(G ® K,H) = hom(G,H").

Proposition 14.8. With the definitions of fibration,
weak equivalence and cofibration given above the
category sGr satisfies the axioms for a closed sim-
plicial model category.

Proof. The proof is exercise. Amap p:G— Hisa
fibration (respectively trivial fibration) if and only
if it has the RLP wrt all maps G(A}) — G(A") (re-
spectively with respect to all G(dA") — G(A"), so
a standard small object argument proves the fac-
torization axiom, subject to proving Lemma 14.9
below.

(We need the Lemma to show that the maps G(A) —
G(B) induced by trivial cofibrations A — B push
out to trivial cofibrations).

The axiom SMT7 reduces to the assertion that if
p: G — H is a fibration and i : K — L is an in-
clusion of simplicial sets, then the induced homo-
morphism

G* — G xyx H*

is a fibration which is trivial if either i or p is triv-
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ial. For this, one uses the natural isomorphism
GX)®K=G(X xK)

and the simplicial model axiom for simplicial sets.
[]

Lemma 14.9. Suppose i : A — B is a trivial cofi-
bration of simplicial sets. Then the induced map
i. : G(A) — G(B) is a strong deformation retrac-
tion of simplicial groups.

Proof. All simplicial groups are fibrant, so the lift
o exists in the diagram

G(A) —-G(4)

e

G(B)

The lift & also exists in the diagram

G(A) - G(B)
i*l ,-.,h“”'”.7 l(Po,Pl)

G(B) - G(B) x G(B)

(ixo,1)

and 4 is the required homotopy. []

Corollary 14.10. The free group functor G : sSet —
sGr preserves weak equivalences.
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The proof of Corollary 14.10 uses the mapping
cylinder construction. Let f : X — Y be a map of
simplicial sets, and form the diagram

X f Y

o) i

XTXxAl?(XxAl)uXY

Let j = f.i1, and observe that this map is a cofibra-
tion since X is cofibrant. The map pr: X x Al =X
induces a map pr, : (X x Al)Ux Y — Y such that
priip. = ly and one sees that the diagram

X - (X x A uxY (2)
|prs

Y

commutes. In other words, any simplicial set map
f : X — Y has a (natural) factorization as above
such that j is a cofibration and pr, has a section
which is a trivial cofibration.

f

Remark: A functor sSet — .# taking values in
a model category which takes trivial cofibrations
to weak equivalences must preserve weak equiva-
lences.

A similar statement holds for functors defined on
any category of cofibrant objects and taking values

in .
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Remark: The construction of (2) is an abstraction
of the classical replacement of the map f by a cofi-
bration. It is dual to the replacement of a map by a
fibration in a category of fibrant objects displayed
in (I — see p. 21) of Section 13.

Remark: We have used the forgetful-free group
functor adjunction to induce a model structure on
sGr from that on simplicial sets, in such a way that
the functors

G :sSet = sGr: U

form a Quillen adjunction.

15 Simplicial modules

s(R—Mod) is the category of simplicial R-modules,
where R is some unitary ring.

The forgetful functor U : s(R — Mod) — sSet has
a left adjoint

R :sSet — s(R—Mod).

R(X), is the free R-module on the set X, for n > 0.

s(R —Mod) has a closed model structure which is
induced from simplicial sets by the forgetful-free
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abelian group functor adjoint pair, in the same way
that the category sGr of simplicial groups acquires
its model structure.

A morphism f : A — B of simplicial R-modules is
a weak equivalence (respectively fibration) if the
underlying morphism of simplicial sets is a weak
equivalence (respectively fibration).

A cofibration of simplicial R-modules is a map
which has the LLP wrt all trivial fibrations.

Examples of cofibrations of s(R — Mod) include
all maps R(A) — R(B) induced by cofibrations of
simplicial sets.

Suppose A and B are simplicial groups and that
K 1s a simplicial set. Then there is a simplicial

abelian group A ® K with
(ARK), = EPA, =ZA, OR(K),.
xekK,

The function complex hom(A,B) for simplicial
abelian groups A, B is defined by

hom(A,B), = {A®A" — B}.
Then there 1s a natural bijection

hom(A ® K,B) = hom(K,hom(A,B)).
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There is a simplicial module BX defined as a sim-
plicial set by

B* =hom(K,B),
with R-module structure induced from B.
There is an exponential law
hom(A ® K,B) = hom(A, BY).

Proposition 15.1. With the definitions of fibration,
weak equivalence and cofibration given above the
category s(R—Mod) satisfies the axioms for a closed
simplicial model category.

Proof. The proof is by analogy with the correspond-
ing result for simplicial groups (Prop. 14.8). [

The proof of Proposition 15.1 also uses the fol-
lowing analog of Lemma 14.9, in the same way:

Lemma 15.2. Suppose i : A — B is a trivial cofi-
bration of simplicial sets. Then the induced map
i. : R(A) — R(B) is a strong deformation retrac-
tion of simplicial R-modules.

Corollary 15.3. The free R-module functor
R : sSet — s(R —Mod)

preserves weak equivalences.
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Once again, the adjoint functors
R:sSet = s(R—Mod) : U
form a Quillen adjunction.

Example: R = Z: The category s(Z — Mod) is the
category of simplicial abelian groups, also denoted
by sAb.

The adjunction homomorphism 1 : X — UZ(X)
for this case is usually written as

h:X —7Z(X)

and is called the Hurewicz homomorphism. More
on this later.

Simplicial R-modules are simplicial groups, so we
know a few things:

e For a simplicial R-module A the modules N,A =
Ni<nker(d;) and the morphisms

NA E A

form an ordinary chain complex, called the nor-
malized chain complex of A. The assignment
A — NA defines a functor

N : s(R —Mod) — Ch. (R).
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e There is a natural isomorphism
7, (A,0) = H,(NA),

and amap f : A — B is a weak equivalence if
and only if the induced chain map NA — NB
1s a homology isomorphism (Corollary 14.4).

e Amap p:A — Bis a fibration of s(R —mod)
if and only if the induced map p, : NA — NB
is a fibration of Ch, (R) (Lemma 14.7).

This precise relationship between simplicial mod-
ules and chain complexes is not an accident.

The Moore complex M(A) for a simplicial mod-
ule A has n-chains given by M(A), = A,, and bound-
ary

d = Z(—l)ldl CA, — A
i=0

The fact that 0> = 0 is an exercise involving the
simplicial identities d;d; = d;_1d;, i < j.
The construction is functorial:

M :s(R—Mod) — Ch,(R).

The Moore chains functor is not the normalized
chains functor, but the inclusions N,A C A,, deter-
mine a natural chain map

N(A) C M(A).
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Example: If Y is a space, the n'" singular homol-
ogy module H,(Y,R) with coefficients in R is de-
fined by

H,(Y,R) = H,M(R(S(Y))).
If N is any R-module, then
H,(Y,N)=H,(M(R(S(Y)) ®&N))

defines the n'" singular homology module of Y
with coefficients in V.

The subobject D(A),, C M(A), is defined by
D(A), = (5,0) |0< j<n—T,y €Auy).

D(A), is the submodule generated by degenerate
simplices.

The Moore chains boundary o restricts to a bound-
ary map d : D(A), — DA, (exercise), and the in-
clusions D(A), C A, form a natural chain map

D(A) C M(A).
Here’s what you need to know:
Theorem 15.4. 1) The composite chain map
N(A)CM(A) - M(A)/D(A)
is a natural isomorphism.
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2) The inclusion N(A) C M(A) is a natural chain
homotopy equivalence.

Proof. There is a subcomplex N;(A) C M(A) with
NjA,=NA,itn < j+1 and

NjA, = N]_ ker(d;) if n > j+2.
Dj(A,) := the submodule of A, generated by all
si(x) with i < j.
1) We show that the composite
¢:N;j(A,) A, — A,/D;(A,)

is an isomorphism for all j < n, by induction on j.

There is a commmutative diagram

Nj—lAn—l S;)Nj—lAn l N]An

=|¢ =9 o

0——Au1/Dj_1An_1 ~5:-An/Dj1Ay—=Ay /DA, —0

in which the bottom sequence is exact and i is the
obvious inclusion.

If [x] € A,/DjA, forx € Nj_A,, then [x —s;dx] =
(x| and x —s;d;x € NjA,, s0 ¢ : N;A, — A, /d;A, is
surjective.

If ¢(x) =0 for x € N;A, then x = s;(y) for some
y €& Nj—lAn—l- But djx =0s00= djS]'y =
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For 2), we have N; 1A C N;A and
NA =N jZON jA
in finitely many stages in each degree.

We show that i : N;,1A C N;A is a chain homo-
topy equivalence (this is cheating a bit, but is eas-

ily fixed — see [2, p.149])).
There are chain maps f : N;A — N, 1A defined by
) = {x—sj+1dj+1(x) %fn > ]:4—2,
X iftn<j41.
Write t = (—1)/s;41: NjA, = NjA,1 ifn > j+1
and set t = 0 otherwise. Then f(i(x)) = x and
l—i-f=dtr+10.
[]
Suppose A is a simplicial R-module. Every monomor-

phism d : m — n induces a homomorphism d* :
NA, — NA,,, and d* = 0 unless d = d".

Suppose C is a chain complex. Associate the mod-
ule C, to the ordinal number n, and associate to
each ordinal number monomorphism d the mor-
phism d* : C,, — C,,, where

0 if d #d"
d*{ ifd #d",

T (=1)9:Co— Coy ifd=ad".
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Define
I'(C),= & G

sn—»k
The ordinal number map 6 : m — n induces an
R-module homomorphism

0" :T'(C),—T(C)
which is defined on the summand corresponding

to the epi s : n — K by the composite

L™ P,

m—r
where the ordinal number maps

t d
m-—-r—Kk

give the epi-monic factorization of the composite
0 N
m — n — k.
and d* is induced by d according to the prescrip-
tion above.

The assignment C — I'(C) is defines a functor
T:Ch,(R) — s(R—Mod).

Theorem 15.5 (Dold-Kan). The functor I is an in-
verse up to natural isomorphism for the normal-
ized chains functor N.
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The equivalence of categories defined by the func-
tors N and I is the Dold-Kan correspondence.

Proof. One can show that
DI ). = P G,
sn—K k<n—1
so there is a natural isomorphism
C=M(I'(C))/D(T(C)) =N(I'(C))

There is a natural homomorphism of simplicial
modules
Y .T'(NA) — A,

which in degree n is the homomorphism

P NA — A,

ssn—»k
defined on the summand corresponding to s : n —
k by the composite

NA, CA S5 A,

Collapsing ¥ by degeneracies gives the canonical
isomorphism NA = A/D(A), so the map

N(¥):N(I'(NA)) — NA
is an isomorphism of chain complexes.

It follows from Lemma 14.6 that the natural map
W is surjective in all degrees.
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The functor A — NA is exact: it is left exact from
the definition, and it preserves epimorphisms by
Lemma 14.7.

It follows that the normalized chains functor re-
flects isomorphisms.

To see this, suppose f : A — B is a simplicial mod-
ule map and that the sequence

O—>K—>Ai>B—>C—>O

1s exact. Suppose also that N f is an isomorphism.
Then the sequence of chain complex maps

0— NK — NA XL NB— NC = 0

1s exact, sothat NK =NC =0. Butthen K =C=0
since W is a natural epimorphism, so that f is an
isomorphism.

Finally, N¥ is an isomorphism, so that ¥ is an
isomorphism. []

16 Eilenberg-Mac Lane spaces

Under the Dold-Kan correspondence
[':Ch.(R) =S s(R—Mod) : N

amap f : A — B of simplicial modules is a weak
equivalence (respectively fibration, cofibration) if
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and only if the induced map f,: NA — NB is a
weak equivalence (resp. fibration,cofibration) of
Ch. (R).
There are natural isomorphisms

7x(1A],0) = 7,(A,0) = H,(N(A)) = H,(M(A)).
for simplicial modules A.
Suppose that C is a chain complex.

Take n > 0. Write C|—n| for the shifted chain
complex with

Ck—n k Z n,
Cl—ni =
0 k <n.

There is a natural short exact sequence of chain
complexes

e~

0—C—C[-1]—C[-1] =0.

In general (see Section 6), D is the acyclic com-
plex with D, = D, ® D, for n > 0,

Do={(x,z) € Do®D; | x+9(z) =0},
and with boundary map defined by
d(x,z) = (d(x),(—1)"x+d(z))
for (x,z) € D,.
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For a simplicial module A, the objects I'(NA[—1])

e~

and I'(NA[—1]) have special names, due to Eilen-
berg and Mac Lane:

W(A) :=T(NA[-1]),

and

—_— N ——

W(A) := T(NA[—1)).

There is a natural short exact (hence fibre) sequence
of simplicial modules

0—+A—=W(A)—>W(A) -0,
(exercise) and there are isomorphisms
7u(A) = 71 (W(A)).

The object W(A) is a natural delooping of the sim-
plicial module A, usually thought of as either a
suspension or a classifying space for A.

Suppose B is an R-module, and write B(0) for the
chain complex concentrated in degree 0, which
consists of B in that degree and O elsewhere.

Then B(n) = B(0)|—n] is the chain complex with
B in degree n. Write

K(B,n) =T'(B(n)).
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There are natural isomorphisms

0 j#n.
The object K(B,n) (or |K(B,n)|) is an Eilenberg-
Mac Lane space of type (B,n).

7K (B,n) = H;(B(n)) = {B =

This is a standard method of constructing these
spaces, together with the natural fibre sequences

K(B,n) - W(K(B,n)) — K(B,n+1)

for modules (or abelian groups) B. These fibre
sequences are short exact sequences of simplicial
modules.

Non-abelian groups

The non-abelian world is different. Here’s an ex-
ercise:

Exercise: Show that a functor f : G — H between
groupoids induces a fibration BG — BH if and
only if f has the path lifting property in the sense
that all lifting problems

ﬁG
0, if
—H

- %

can be solved.



Suppose G is a group, identified with a groupoid
with one object *, and recall that the slice cate-
gory */G has as objects all group elements (mor-
phisms) * < %, and as morphisms all commutative
diagrams

The canonical functor 7 : /G — G sends the mor-
phism above to the morphism & of G.

The functor 7 has the path lifting property, and the
fibre over the vertex x of the fibration 7 : B(x/G) —
BG is a copy of K(G,0).

One usually writes
EG = B(x/G).

This is a contractible space, since it has an initial
object e and the unique maps 7, : ¢ — g define a
contracting homotopy */G x 1 — x/G.

The Kan complex BG is connected, since it has
only one vertex. The long exact sequence in ho-
motopy groups associated to the fibre sequence

K(G,0) = EGS BG
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can be used to show that 5(BG) is trivial for n #
1, and that the boundary map

7(BG) % G = m(K(G,0))
is a bijection.
For this, there is a surjective homomorphism
G — 7 (BG),

defined by taking g to the homotopy group ele-
ment [g] represented by the simplex % <> %. One
shows that the composite

G- m(BG) > G 3)
is the identity on G, so that the homomorphism
G — 7] (BG) is a bijection.

To see that the composite (3) is the identity, ob-
serve that there is a commutative diagram

A)—-EG

e

A' - BG
Then J([g]) = do(%,) = &-

The classifying space BG for a group G is an Eilenberg-

Mac lane space K(G, 1). This is a standard model.
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Some facts about groupoids

Suppose that H is a connected groupoid. This
means that, for any two objects x,y € H there is
a morphism (isomorphism) @ : x — y.

Fix an object x of H and chose isomorphisms 7, :
y — x for all objects of H, such that %, = 1,. There
is an inclusion functor

i:H.,=H(x,x) CH.

We define a functor r : H — H, by conjugation
with the maps ¥,: if a :y — z is a morphism of
H, then r(o) = ¥, 'ay, so that the diagrams

commute.

The functor r is uniquely determined by the iso-
morphisms ¥,, and the composite

H,CH"H,

is the identity.

The maps ¥, define a natural transformation
Y:ii-r—lg.
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We have shown that the inclusion BH, — BH is a
homotopy equivalence, even a strong deformation
retraction.

It follows that, for arbitrary small groupoids H,
there is a homotopy equivalence

BH~ || BH(xx). 4)
] emo(H)

Thus, a groupoid H has no higher homotopy groups
in the sense that ;. (BH,x) = 0 for k > 2 and all ob-
jects x, since the same is true of classifying spaces
of groups.

Example: Group actions

Suppose that G X F — F is the action of a group
G on a set F.

Recall that the corresponding translation groupoid
EGF has objects x € F' and morphisms x — g - x.

The space B(EgF) = EG X F is the Borel con-
struction for the action of G on F'.

The group of automorphisms x — x in EgF can be
identified with the subgroup G, C G that stabilizes
x. If a : x — y is a morphism of EgF, then G, is
conjugate to Gy as subgroups of G (exercise).
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There is a bijection
(EG xXgF)=F /G,

and the identification (4) translates to a homotopy
equivalence

EGxgF~ || BG:. (5)
[x|eF /G
Then EG X F 1s contractible if and only if
1) G acts transitively on F, ie. F /G = *, and

2) the stabilizer subgroups G, (fundamental groups)
are trivial for all x € F.

One usually summarizes conditions 1) and 2) by
saying that G acts simply transitively on F, or that
G acts principally on F.

In ordinary set theory, this means precisely that
there is a G-equivariant isomorphism G — F.

In the topos world, where G X F' — F 1s the action
of a sheaf of groups G on a sheaf F, the assertion
that the Borel construction EG X F is (locally)
contractible is equivalent to the assertion that F is
a G-torsor.

The canonical groupoid morphism EgF — G has
the path lifting property, and hence induces a Kan
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fibration
n:EGXxgF — BG

with fibre F.

The use of this fibration 7, in number theory, ge-
ometry and topology, is to derive calculations of
homology invariants of BG from calculations of
the corresponding invariants of the spaces BG, as-
sociated to stabilizers, usually via spectral sequence
calcluations.

The Borel construction made its first appearance

in the Borel seminar on transformation groups at
IAS in 1958-59 [1].

If the action G X F' — F' is simple in the sense that
all stabilizer groups G, are trivial, then all orbits
are copies of G up to equivariant isomorphism,
and the canonical map

EGXGF—>F/G

1s a weak equivalence.

It is a consequence of Quillen’s Theorem 23.4 be-
low that if G X X — G is an action of G on a sim-
plicial set X, then X is the homotopy fibre of the
canonical map EG XX — BG.

It follows that, if the action G x X — X is simple in
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all degrees and the simplicial set X is contractible,
then the maps

EGxcX —X/G
B
BG
are weak equivalences, so that BG is weakly equiv-

alent to X /G. This is a well known classical result.
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