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17 Proper model structures

M is a fixed closed model category, for a while.

Here’s a basic principle:

Lemma 17.1. Suppose f : X → Y is a morphism
of M, with both X and Y cofibrant.

Then f has a factorization

X i //

f ��

Z
u
��

Y

such that i is a cofibration, and u is a weak equiv-
alence which is left inverse to a trivial cofibration
j : Y → Z.

Proof. The construction is an abstraction of the clas-
sical mapping cylinder. It is dual to the replace-
ment of a map between fibrant objects by a fibra-
tion (Section 13).
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Lemma 17.2. Suppose given a pushout diagram

A u //

i
��

B

��

C u∗
//D

in M with all objects cofibrant, i a cofibration and
u a weak equivalence.

Then u∗ is a weak equivalence.

To put it a different way, in the category of cofi-
brant objects in a model category M, the class of
weak equivalences is closed under pushout along
cofibrations.

Proof. By Lemma 17.1, and since trivial cofibra-
tions are closed under pushout, it suffices to as-
sume that there is a trivial cofibration j : B→ A
with u j = 1B.

Form the diagram

B j
//

j
��

A u //

j∗

��
i

��

B

��

��

A
i
��

C j̃
//

1C ))

D̃ ũ //

f

&&

B∗
f∗

&&C u∗
//D
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in which the two back squares are pushouts.

j is a trivial cofibration so j̃ is a trivial cofibration,
and so ũ is a weak equivalence (since ũ j̃ is an iso-
morphism). f is a weak equivalence, so it suffices
to show that the map f∗ is a weak equivalence.

f∗ is a map between cofibrant objects of the model
category B/M which is obtained by pushing out
the map j∗

f−→ i of A/M along u.

The pushout functor takes trivial cofibrations of
slice categories to trivial cofibrations, thus preserves
weak equivalences between cofibrant objects.

Remark: For the last proof, you need to know (ex-
ercise) that if M is a model category and A is an
object of M, then the slice category A/M has a
model structure for which a morphism

A

�� ��

B f
//C

is a weak equivalence (respectively cofibration, fi-
bration) if and only if the map f : B→C is a weak
equivalence (respectively cofibration, fibration) of
M.
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The dual structure on the slice category M/A has
a similar description.

Here is the dual of Lemma 17.2:

Lemma 17.3. Suppose given a pullback diagram

W u∗ //

��

X
p
��

Z u
//Y

in M, with all objects fibrant, p a fibration and u
a weak equivalence.

Then u∗ is a weak equivalence.

Thus, in the category of fibrant objects in M the
class of weak equivalences is closed under pull-
back along fibrations.

Definition 17.4. A model category M is

1) right proper if the class of weak equivalences
is closed under pullback along fibrations,

2) left proper if the class of weak equivalences is
closed under pushout along cofibrations,

3) proper if it is both right and left proper.
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Examples: 1) The category sSet is proper.

All simplicial sets are cofibrant, so sSet is left proper.
Given a pullback

W u∗ //

��

X
p
��

Z u
//Y

in sSet with p a fibration and u a weak equiva-
lence, the induced diagram

|W | |u∗| //

��

|X |
|p|
��

|Z| |u|
// |Y |

of spaces is a pullback (realization is exact) in which
|p| is a Serre fibration (Quillen’s theorem: The-
orem 13.1) and |u| is a weak equivalence. All
spaces are fibrant, so |u∗| is a weak equivalence
by Lemma 17.3, and so u∗ is a weak equivalence
of sSet.
2) All spaces are fibrant, so CGWH is right proper
by Lemma 17.3. This category is also left proper
by (non-abelian) excision, and the fact that sSet is
left proper.

The excision statement is the following:
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Lemma 17.5. Suppose the open subsets U1,U2 cover
a space Y .

Then the induced map

S(U1)∪S(U1∩U2) S(U2)→ S(Y )

is a weak equivalence of simplicial sets.

Lemma 17.5 can be proved with simplicial approx-
imation techniques [3].

3) The categories of simplicial groups and simpli-
cial modules are right proper. The category of sim-
plicial modules is also left proper (exercise).

4) There is a model structure on sSet for which
the cofibrations are the monomorphisms, and the
weak equivalences are those maps X → Y which
induce rational homology isomorphisms

H∗(X ,Q)∼= H∗(Y,Q)

(this is the rational homology local model struc-
ture — it is one of the objects of study of rational
homotopy theory).

There is a pullback square

K(Q/Z,0) u∗ //

��

P
p
��

K(Z,1) u
//K(Q,1)
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where p is a fibration, P is contractible, and u is
induced by the inclusion Z ⊂ Q. The map u is a
rational homology isomorphism since Q/Z con-
sists of torsion groups, while u∗ is not.

Here’s the glueing lemma:

Lemma 17.6. Suppose given a commutative cube

A1
j1 //

fA

��

i1
##

B1

fB
��

##
C1

fC

��

//D1

fD

��

A2 j2
//

i2 ##

B2

##
C2 //D2

in which all objects are cofibrant, i1 and i2 are
cofibrations, the top and bottom faces are pushouts,
and the maps fA, fB and fC are weak equivalences.

Then fD is a weak equivalence.

Proof. By Lemma 17.2, it suffices to assume that
the maps j1 and j2 are cofibrations.
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Form the diagram

A1
j1 //

fA

��

i1
%%

B1

fA∗��

%%
C1

fC

��

j1∗ //D1

fC∗
��

B′

ηB

��

i2∗
%%
D′

ηD

��

A2
j2 //

i2 %%

99

B2
%%

C2 //

99

D2

in which fA∗ is the pushout of fA along j1 and fC∗
is the pushout of fC along j1∗.

All squares in the prism are pushouts, i2∗ is a cofi-
bration, and ηB is a weak equivalence. It follows
from Lemma 17.2 that ηD is a weak equivalence.

fC∗ is also a weak equivalence, so fD is a weak
equivalence.

Remarks:

1) Lemma 17.6 has a dual, which is usually called
the coglueing lemma.

2) The statement of Lemma 17.6 holds in any left
proper model category, by the same argument, while
its dual holds in any right proper model category.
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18 Homotopy cartesian diagrams

Let’s be explicit. Here’s the cogluing lemma for
right proper model categories:

Lemma 18.1. Suppose M is right proper model.
Suppose given a diagram

X1 //

'
��

Y1
'
��

Z1
p1oo

'
��

X2 //Y2 Z2p2
oo

for which the vertical maps are weak equivalences
and the maps p1, p2 are fibrations.

Then the map

X1×Y1 Z1→ X2×Y2 Z2

is a weak equivalence.

The model category M will be right proper through-
out this section.

A commutative diagram

W //

��

X
f
��

Z g
//Y

(1)

in M is homotopy cartesian if f has a factoriza-
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tion
X θ //

f   

U
p
��

Y

(2)

such that p is a fibration and θ is a weak equiva-
lence, and such that the induced map

W θ∗−→ Z×Y U

is a weak equivalence.

Slogan 1: The choice of factorization of f doesn’t
matter.

Lemma 18.2. Suppose given a second factoriza-
tion

X θ ′ //

f   

U ′

p′
��

Y
of the map f in the commutative square (1). with
θ ′ a weak equivalence and p′ a fibration. Then the
map

W θ∗−→ Z×Y U

is a weak equivalence if and only if the map

W
θ ′∗−→ Z×Y U ′

is a weak equivalence.
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Proof. It suffices to assume that the maps θ and θ ′

are trivial cofibrations. To see this, factorize θ as

X i //

θ ��

V
π
��

U
where π is a trivial fibration and i is a trivial cofi-
bration. Then in the diagram

W i∗ //

θ∗ $$

Z×Y V
π∗
��

Z×Y U

the map π∗ is a trivial fibration, so θ∗ is a weak
equivalence if and only if i∗ is a weak equivalence.

Now suppose θ and θ ′ are trivial cofibrations. Then
the lifting s exists in the diagram

X θ //

θ ′ ��

U
p
��

U ′
p′
//

s
>>

Y

and the induced map s∗ in the diagram

W θ ′∗ //

θ∗ $$

Z×Y U ′

s∗
��

Z×Y U
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is a weak equivalence by Lemma 18.1. Thus, θ∗
is a weak equivalence if and only if θ ′∗ is a weak
equivalence.

Slogan 2: It doesn’t matter whether you factorize
f or g.

Lemma 18.3. Suppose

Z γ
//

g ��

V
q
��

Y

is a factorization of the map g in the diagram (1)
with q a fibration and γ a weak equivalence, and
f = p ·θ with p a fibration and θ a weak equiva-
lence as in (2). Then the map θ∗ : W → Z×Y U is a
weak equivalence if and only if the map γ∗ : W →
V ×Y X is a weak equivalence.

Proof. There is a commutative square

W θ∗ //

γ∗
��

Z×Y U
γ∗'
��

V ×Y X
θ∗
' //V ×Y U

The indicated maps are weak equivalences since
they are pull backs of weak equivalences along fi-
brations.
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The following is a rephrasing of the homotopy coglue-
ing lemma for a right proper model category M:

Lemma 18.4. Suppose given a commutative cube

W1 //

fW

��

##

X1

fX
��

##
Z1

fZ

��

//Y1

fY

��

W2 //

##

X2

##
Z2 //Y2

in a right proper model category M such that the
top and bottom faces are homotopy cartesian, and
the vertical maps fZ, fX and fY are weak equiva-
lences.

Then fW is a weak equivalence.

This result follows from the dual of Lemma 17.6.

Homotopy cartesian diagrams behave much like
pullback diagrams:

Lemma 18.5. Suppose M is right proper.

1) Suppose given a commutative diagram

X1
α //

��

X2

��

Y1
β

//Y2
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in M such that the maps α and β are weak
equivalences. Then this diagram is homotopy
cartesian.

2) Suppose given a commutative diagram

X1 //

��
I

X2 //

��
II

X3

��

Y1 //Y2 //Y3

Then

a) if the squares I and II are homotopy carte-
sian, then the composite square I+II is ho-
motopy cartesian,

b) if I+ II and II is homotopy cartesian then
I is homotopy cartesian.

Proof. The proof is an (important) exercise.

A homotopy fibre sequence (or just fibre sequence)
is a homotopy cartesian diagram

F //

��

X
f
��

P //Y
in which P is contractible (ie. weakly equivalent
to the terminal object). F is a homotopy fibre of
the map f .
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Remark: All concepts and results of this section
have duals in left proper model categories, where
one has homotopy cocartesian diagrams, homo-
topy cofibre sequences, and homotopy cofibres.

19 Diagrams of spaces

Suppose I is a small category. sSetI denotes the
category of functors I → sSet and their natural
transformations. sSetI is a diagram category.

Some people say that it is the category of simpli-
cial presheaves on the category I.

sSetI is the category of simplicial sheaves for the
chaotic topology on I (which means no topology
at all).

A map (natural transformation) f : X → Y of I-
diagrams is a weak equivalence (sometimes called
a sectionwise weak equivalence or pointwise weak
equivalence) if all maps f : X(i)→ Y (i), i ∈ I, are
weak equivalences of simplicial sets.

There are many model structures on the diagram
category sSetI for which the weak equivalences
are as described, but I will single out two of them:

• The projective structure: The fibrations are
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defined sectionwise: a projective fibration is
a map p : X → Y for which consists of Kan
fibrations f : X(i)→ Y (i), i ∈ I, in sections. A
projective cofibration is a map which has the
left lifting property with respect to all trivial
projective fibrations.

• The injective structure: The cofibrations are
defined sectionwise. A cofibration of I-diagrams
is a monomorphism of sSetI, and an injective
fibration is a map which has the right lifting
property with respect to all trivial cofibrations.

The projective structure was introduced by Bous-
field and Kan [1], and is easy to construct.

The i-sections functor X 7→ X(i) has a left adjoint
Li with

Li(K) = hom(i, )×K

for simplicial sets K.

A map p : X → Y of sSetI is a projective fibra-
tion (respectively projective trivial fibration) if and
only if it has the right lifting property with respect
to the set of all maps Li(Λ

n
k)→ Li(∆

n) (repectively
with respect to the set of maps Li(∂∆m)→ Li(∆

m).
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The factorization axiom is proved by standard small
object arguments, CM4 is proved by the usual tricks,
and the rest of the axioms are trivial.

Note that we have specified generating sets for
the trivial projective cofibrations and the projec-
tive cofibrations.

To summarize:

Lemma 19.1. The sectionwise weak equivalences,
projective fibrations and projective cofibrations give
the diagram category sSetI the structure of a proper
closed simplicial model category. This model struc-
ture is cofibrantly generated.

Heller [2] is credited with the introduction of the
injective structure on sSetI. It is also a special
case of the model structure for simplicial sheaves
which first appeared in Joyal’s seminal letter to
Grothendieck [4].

The injective structure is a little trickier to derive.
Pick an infinite cardinal α > |Mor(I)|. Then one
must prove a bounded cofibration condition:

Lemma 19.2. Given a trivial cofibration X → Y
and an α-bounded subobject A⊂Y there is an α-
bounded B with A⊂ B⊂Y such that B∩X → B is
a trivial cofibration.
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An I-diagram A is α-bounded if |A(i)|< α for all
i ∈ I, and a cofibration A→ B is α-bounded if B is
α-bounded.

It follows (see the proof of Lemma 11.5 (Lecture
04)) that a map p : X → Y of sSet is an injective
fibration (respectively trivial injective fibration) if
and only if it has the right lifting property with re-
spect to all α-bounded trivial cofibrations (respec-
tively with respect to all α-bounded cofibrations).

The factorization axiom CM5 for the injective struc-
ture follows from a transfinite small object argu-
ment — see the proof of Lemma 11.4. The lifting
axiom CM4 also follows, while the remaining ax-
ioms CM1 — CM3 are trivial.

We have “proved”:

Theorem 19.3. The sectionwise weak equivalences,
cofibrations and injective fibrations give the cate-
gory sSetI the structure of a proper closed simpli-
cial model category. This model structure is cofi-
brantly generated.

For I-diagrams X and Y , write hom(X ,Y ) for the
simplicial set whose set of n-simplices is the col-
lection of maps X ×∆n→ Y (here ∆n is identified
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with a constant I-diagram). For a simplicial set K
and I-diagram X , the I-diagram XK is specified at
objects i ∈ I by

XK(i) = hom(K,X(i)).

There is also an I-diagram X ⊗K := X ×K given
by

(X×K)(i) = X(i)×K.

If i : A→ B is a cofibration (respectively projec-
tive cofibration) and j : K → L is a cofibration of
simplicial sets, then the map

(i, j) : (B×K)∪ (A×L)⊂ B×L

is a cofibration (respectively projective cofibration)
which is trivial if either i or j is trivial. The only
issue with this is in showing that (i, j) is projec-
tive if i is projective, but it’s true for generators
Lk(A′)→ Lk(B′), so it’s true.

Finally, every projective cofibration is a cofibra-
tion, and every injective fibration is a projective
fibration.

It follows that weak equivalences are stable un-
der pullback along injective fibrations, and weak
equivalences are stable under pushout along pro-
jective cofibrations, by properness for simplicial
sets.
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A model category M is cofibrantly generated if
there is a set I of trivial cofibrations and a set J of
cofibrations such that a map p is a fibration (rep-
sectively trivial fibration) if and only if it has the
right lifting property with respect to all members
of I (respectively J).

Exercise: Fill in the blanks in the proofs of Lemma
19.1 and Theorem 19.3.

20 Homotopy limits and colimits

The constant functor Γ : sSet→ sSetI has both a
right and left adjoint, given by limit and colimit,
respectively.

Specifically,
Γ(X)(i) = X .

and all maps i→ j of I are sent to 1X .

Γ preserves weak equivalences and cofibrations,
and takes fibrations to projective fibrations.

The colimit functor

lim−→ : sSetI→ sSet

therefore takes projective cofibrations to cofibra-
tions and takes trivial projective cofibrations to triv-
ial cofibrations.
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Homotopy colimits
The adjunction

lim−→ : sSetI � sSet : Γ

forms a Quillen adjunction for the projective struc-
ture on sSetI.

The homotopy left derived functor L lim−→ is de-
fined by

L lim−→(X) = lim−→ Y,

where Y → X is a weak equivalence with Y pro-
jective cofibrant.

Y is a projective cofibrant replacement (or pro-
jective cofibrant resolution, or projective cofibrant
model) of X .

The functor X 7→ lim−→X takes trivial projective cofi-
brations to trivial cofibrations, hence takes weak
equivalences between projective cofibrant objects
to weak equivalences.

The homotopy type of L lim−→(X) is independent of
the choice of projective cofibrant resolution for X .

The object L lim−→(X) has another name: it’s called
the homotopy colimit for the diagram X , and one
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writes

holim−−−→X = L lim−→(X) = lim−→Y,

where Y → X is a projective cofibrant model.

Examples:

1) Consider all diagrams

B← A→C

of simplicial sets. This diagram is projective cofi-
brant if and only if all displayed morphisms are
cofibrations (exercise). Every diagram

Z
f←− X

g−→ Y

has a resolution by a diagram of cofibrations.

Thus, to form the homotopy pushout of f and g,
replace f and g by cofibrations i and j, as in

B
' ��

C
'��

Z X g
//

f
oo

jdd i ::

Y

and then the homotopy pushout is B∪X C.

By (left) properness, you only need to replace one
of f or g: there are weak equivalences

B∪X Y '←− B∪X C '−→ Z∪X C.

Thus, any homotopy co-cartesian diagram constructs
the homotopy pushout.
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2) All discrete diagrams are projective cofibrant,
so homotopy coproducts and coproducts coincide.

3) Consider all countable diagrams

X : X1
α1−→ X2

α2−→ X3
α3−→ . . .

Such a diagram is projective cofibrant if and only
if all αi are cofibrations.

If the comparison

A1 //

'
��

A2 //

'
��

A3 //

'
��

. . .

X1 //X2 //X3 // . . .

is a projective cofibrant resolution of X , then the
induced map

lim−→
n

An→ lim−→
n

Xn

is a weak equivalence by comparing homotopy groups.
It follows that the canonical map

holim−−−→ X = lim−→A→ lim−→X

is a weak equivalence.
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Homotopy limits
The inverse limit functor

lim←− : sSetI→ sSet

takes injective fibrations to fibrations and takes triv-
ial injective fibrations to trivial fibrations.

The adjunction

Γ : sSet � sSetI : lim←−
forms a Quillen adjunction for the injective struc-
ture on sSetI.

The homotopy right derived functor R lim←− is de-
fined by

R lim←−(X) = lim←−Z

where α : X → Z is an injective fibrant model for
X (ie. α is a sectionwise weak equivalence with Z
injective fibrant).

The functor Z 7→ lim←−Z takes trivial injective fibra-
tions to weak equivalences, and therefore takes
weak equivalences between injective fibrant ob-
jects Z to weak equivalences.

The homotopy type of R lim←−(X) is independent the
choice of injective fibrant model for X .
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The object R lim←−(X) is the homotopy inverse limit
of the diagram X , and one writes

holim←−−−X = R lim←−(X) = lim←− Z

where X → Z is an injective fibrant model for X .

Examples:

1) A diagram
X

p−→ Y
q←− Z

of simplicial sets is injective fibrant if and only if
Y is fibrant and p and q are fibrations.

Suppose given a diagram

X1
f−→ X2

g←− X3

and form an injective fibrant model

X1
j1
��

f
//X2

j2
��

X3
j3
��

g
oo

Z1 p
// Z2 Z3q

oo

by choosing a fibrant model j2 and then factoriz-
ing both j2 f and j2g as a trivial cofibration fol-
lowed by a fibration.

25



Factorize g as g = π · j where j is a trivial cofibra-
tion and π is a fibration. There is a lifting

X3
j3 //

j
��

Z3
q
��

X ′3 j2π
//

??

Z2

There is a comparison diagram

X1

j1
��

f
//X2

j2
��

X ′3

��

πoo

Z1 p
// Z2 Z3q

oo

in which the vertical maps are weak equivalence
and π and q are fibrations. The induced map

X1×X2 X ′3→ Z1×Z2 Z3

is a weak equivalence by coglueing (Lemma 18.4).

Every homotopy cartesian diagram of simplicial
sets computes the homotopy pullback.

2) A discrete diagram {Xi} in sSet is injective fi-
brant if and only if all objects Xi are fibrant. The
homotopy product of a diagram {Yi} is constructed
by taking fibrant replacements Yi→Xi for all i, and
then forming the product ∏i Xi.

26



This construction is serious: consider the simpli-
cial sets An, n ≥ 1, where An is the string of n
copies of ∆1

0→ 1→ 2→ ··· → n

glued end to end.

Each An is weakly equivalent to a point so their
homotopy product is contractible, but ∏n≥1 An is
not path connected.

3) A countable diagram (aka. a “tower”)

X : X1← X2← X3← . . .

is injective fibrant if and only if X1 is fibrant and
all morphisms in the tower are fibrations.

The long exact sequences associated to the fibra-
tions in the tower entangle to define a spectral se-
quence (the Bousfield-Kan spectral sequence [1])
which computes the homotopy groups of lim←−Xn, at
least in good cases.
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