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21 Bisimplicial sets

A bisimplicial set X is a simplicial object
X : A? — sSet
in simplicial sets, or equivalently a functor

X : A7 x AP — Set.

I write
Xnn=X(m,n)
for the set of bisimplices in bidgree (m,n) and
Xm — Xm,*

for the vertical simplicial set in horiz. degree m.

Morphisms X — Y of bisimplicial sets are natural
transformations.

s*Set is the category of bisimplicial sets.
Examples:

1) AP is the contravariant representable functor

A?4 =hom( , (p,q))
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on A X A.

ARt = | | A,
m—p

The maps A”¢ — X classify bisimplices in X, ,.

The bisimplex category (A x A)/X has the bisim-
plices of X as objects, with morphisms the inci-
dence relations

AP+

\X

/
A

2) Suppose K and L are simplicial sets.

The bisimplicial set K x L has bisimplices
(KXL)pg=Kpx Ly.

The object K XL is the external product of K and
L.

There is a natural isomorphism
AP AP AL,

3) Suppose I is a small category and that X : [ —
sSet is an /-diagram in simplicial sets.

Recall (Lecture 04) that there is a bisimplicial set
holi@ X (“the” homotopy colimit) with vertical sim-
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plicial sets

in horizontal degrees n.

The transformation X — * induces a bisimplicial
set map
m: || XG)— || ==B8BlIL,
ig—>—>ip ig—>—>ip
where the set Bl, has been identified with the dis-
crete simplicial set K(BI,,0) in each horizontal de-
gree.

Example: Suppose that G is a group, and that X is
a simplicial set with a G-action G X X — X. I[f G is
identified with a one-object groupoid, then the G-
action defines a functor X : G — sSet which sends
the single object of G to X.

The corresponding bisimplicial set has vertical sim-
plicial sets of the form

| | X=G"xX,

which is a model in bisimplicial sets for the Borel
construction EG X X.

Applying the diagonal functor (see below) gives
the Borel construction in simplicial sets.
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Every simplicial set X determines bisimplicial sets
which are constant in each vertical degree or each
horizontal degree. We write X for the constant
bisimplicial set determined by X either horizon-
tally or vertically.

From this point of view, the canonical map 7 is a
map of bisimplicial sets

T: holing — BI.

The diagonal simplicial set d(X) for bisimplicial
set X has simplices

d(X)n =X
with simplicial structure maps
(0,0)" : Xyn — Xonm
for ordinal number maps 6 : m — n.

This construction defines a functor

d : s’Set — sSet.

Recall that X;, denotes the vertical simplicial set in
horizontal degree n for a bisimplicial set X. The



maps
X, x A" %Xn x A"
0" x1 i
X, X A"
associated to the ordinal number maps 6 : m — n
determine morphisms

|| XoxA" = | | X, x A" (1)

6:m—n n>0

There are simplicial set maps
Yo Xy X A" — d(X)
defined on r-simplices by
Yo(x,T:r—mn) =1"(x) € X,

The maps in (1) above and the morphisms 7, n > 0
together determine a diagram

|| XoxAa"= | | X xA" 5 d(X). ()

0:m—n n>0
Exercise: Show that the diagram (2) is a coequal-
izer in simplicial sets.

Example: There are natural isomorphisms
d(KXL) =K x L.

In particular, there are isomorphisms
d(AP7) = AP x A1,
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The diagonal simplicial set d(X) has a filtration by
subobjects d (X )(”), n > 0, where

d(X)™ = image of | | X, x A” in d(X).
p=n

The (horizontal) degenerate part of the vertical sim-
plicial set X,,,; is filtered by subobjects

S[r]Xn — U Si(Xn) C Xut1

0<i<r

where r < n. There are natural pushout diagrams
of cofibrations

S[r]Xn—l sri)S[r]Xn (3)

and

(57X X A" U (X1 X A" ——d(X)™

| l

X1 x A1 d(X)tD
4)

in which all vertical maps are cofibrations.

The natural filtration {d(X)™} of d(X) and the
natural pushout diagrams (3) and (4) are used with
glueing lemma arguments to show the following:
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Lemma 21.1. Suppose f : X — Y is a map of bisim-
plicial sets such that all maps X, —Y,, n > 0, of
vertical simplicial sets are weak equivalences.

Then the induced map d(X) — d(Y) is a weak
equivalence of diagonal simplicial sets.

Example: Suppose that G x X — X is an action of
a group G on a simplicial set X. The bisimplicial
set

| | X=2G"xX
has horizontal path components X /G, and the map
to path components defines a simplicial set map

n:EGxsX — X/G,
which is natural in G-sets X.
If the action G X X — X is free, then the path
components the simplicial sets EG X g X,, are 1so-
morphic to copies of the contractible space EG =

EG X G. 1t follows that the map 7 i1s a weak
equivalence in this case.

If the action G x X — X 1s free and X 1s con-
tractible, then we have weak equivalences

EG XGX%X/G

p|=

BG



Model structures

There are multiple closed model structures for bisim-
plicial sets. Here are three of them:

1) The projective structure, for which a map X —
Y of bisimplicial sets is a weak equivalence (re-
spectively projective fibration) if all maps X,, — ¥,
are weak equivalences (respectively fibrations) of
simplicial sets. The cofibrations for this structure
are called the projective cofibrations.

2) The injective structure, for which X — Y is a
weak equivalence (respectively cofibration) if all
maps X,, — Y,, are weak equivalences (respectively
cofibrations) of simplicial sets. The fibrations for
this theory are called the injective fibrations.

3) There is a diagonal model structure on s’Set
for which a map X — Y is a weak equivalence if
it is a diagonal weak equivalence ie. that the map
d(X) — d(Y) of simplicial sets is a weak equiva-
lence, and the cofibrations are the monomorphisms
of bisimplicial sets as in 2).

The existence of the diagonal structure is origi-
nally due to Joyal and Tierney, but they did not
publish the result. A proof appears in [3].

The projective structure is a special case of the
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projective structure for /-diagrams of simplicial
sets of Lemma 19.1 (Lecture 07) — it is called
the Bousfield-Kan structure in [2, IV.3.1].

The injective structure is similarly a special case
of the injective structure for /-diagrams, of Theo-
rem 19.3.

The injective structure is also an instance of the
Reedy structure for simplicial objects in a model
category [2, IV.3.2,VIL.2].

The weak equivalences for both the projective and
injective structures are called level equivalences.

Lemma 21.1 says that every level equivalence is a
diagonal equivalence.

The diagonal functor X — d(X) is left adjoint to a
“singular functor” X — d,(X), where

d.(X),,=hom(A” x A7, X).

One can show, by verifying a (countable) bounded
cofibration condition, that a bisimplicial set map
p: X — Y is a fibration for the diagonal model
structure if and only if it has the right lifting prop-
erty with respect to all trivial cofibrations A — B
which are countable in the sense that all sets of
bisimplices B, , are countable.
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The bounded cofibration condition is a somewhat
tough exercise to prove — one uses the fact that
the diagonal functor has a left adjoint as well as a
right adjoint.

22 Homotopy colimits and limits (revisited)

Suppose X : I — sSet is an /-diagram which takes
values in Kan complexes.

Following [1], one writes

holim X = hom(B(//?),X),

where the function complex is standard, and B(1/?)
is the functor i — B(I/i).

Suppose Y is a simplicial set, and X is still our
prototypical /-diagram.

Homotopy colimits

The assignment i — hom(X (i),Y) defines an I°7-
diagram

hom(X,Y) : I°? — sSet.
There is a natural isomorphism of function spaces

hom (holim,X,Y) = holim yhom(X,Y),
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where holig /X 1s defined by the coequalizer
|| BG/DxX(i)= || B(i/I)xX(i) — holim X.
a:i—jinl i€0b(1)

By looking at maps

hOllIII[X — Y,

one shows (exercise) that holig /X 1s the diagonal
of the bisimplicial set, with vertical n-simplices

L] X(i),
ig—>—>ip
up to isomorphism.

This is the (standard) description of the homotopy
colimit of X that was introduced in Section 9.

This definition of homotopy colimit coincides up
to equivalence with the “colimit of projective cofi-
brant model” description of Section 20.

Here is the key to comparing the two:

Lemma 22.1. Suppose X : I — sSet is a projective
cofibrant I-diagram. Then the canonical map

holim ;X — hng
I

is a weak equivalence.
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Proof. ligIXm 1s the set of path components of the
simplicial set

so lim X can be identified with the simplicial set
of horizontal path components of the bisimplicial
set holim; X.

The space B(i/I) is contractible since the category
i/I has an initial object. Thus, every projection

B(i/I) x K - K
is a weak equivalence.

The simplicial set B(i/I) x K is the homotopy col-
imit of the 7 diagram hom(i, ) X K and the projec-
tion 1s isomorphic to the map

holim ;(hom(i, ) x K)) — lim(hom(i, ) x K)

Thus, all diagrams hom(i, ) x K are members of
the class of /-diagrams X for which the map

holim ;X — limX (5)
1

is a weak equivalence.
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Suppose given a pushout diagram

hom(i, ) x K—X

1] L

hom(i, ) x L—Y

of I-diagrams, where j is a cofibration. Suppose
also that the map (5) is a weak equivalence. Then
the induced map

holim ;¥ — @Y
I
is a weak equivalence.

For this, the induced diagram

lim (hom(i, ) x K) —lim X

ngl(homl(i, )% L) ngiy

is a pushout, and one uses the glueing lemma to
see the desired weak equivalence.

Suppose given a diagram of cofibrations of /-diagrams
Xo— X1 — ...

such that all maps
holig Xy — @XS
I
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are weak equivalences. Then the map

holim (lim X,) — lim lim X,)
S I s

is a weak equivalence.

In effect, the colimit and homotopy colimit func-
tors commute, and filtered colimits preserve weak
equivalences in sSet.

A small object argument shows that, for every I-
diagram Y, there is a trivial projective fibration p :
X — Y such that X is projective cofibrant and the
map (5) is a weak equivalence.

If Y is projective cofibrant, then Y is a retract of
the covering X, so the map

holim ;Y — lim ¥
I
1s a weak equivalence. []

Corollary 22.2. Suppose X : I — sSet is an I-diagram
of simplicial sets, and let w: U — X be a projec-
tive cofibrant model of X. Then there are weak
equivalences

hohg 1X ne* hohg U = I%U :
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Proof. Generally, if f: X — Y is a weak equiva-
lence of I-diagrams, then the induced maps

|| XGo)— || Y(o)
ig—>—>ip ig—>—>ip

is a weak equivalence of simplicial sets for each
vertical degree n, and it follows from Lemma 21.1
that the induced map

holig X — holig 1Y
is a weak equivalence.

It follows that the map

holim ;X ¢ holim U
1s a weak equivalence, and Lemma 22.1 shows that
holig U — HQU
I
1s a weak equivalence. []

Homotopy limits

Each slice category //i has a terminal object, so
B(1/i) is contractible, and the map

B(I/?) — #

of I-diagrams is a weak equivalence.
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If Z is an injective fibrant /-diagram, then the in-
duced map

lim Z=hom(x,Z) — hom(B(//?),Z) =:holim, Z

is a weak equivalence.

Here’s the interesting thing to prove:

Proposition 22.3. Suppose p : X — Y is a projec-
tive fibration (resp. trivial projective fibration).

Then
Dx : QolimIX — QolimIY

is a fibration (resp. trivial fibration) of sSet.
There are a few concepts involved in the proof of

Proposition 22.3.

1) Every I-diagram Y has an associated cosimpli-
cial space (aka. A-diagram in simplicial sets) [T"Y
with
[I'Yy=]Tvm)= [] YG),
ig—>—>ip

and with cosimplicial structure map 6, : [["Y —
[1"Y defined for an ordinal number map 6 : m — n
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defined by the picture

. 0 .
Hy:j0—>---—>ij(JM) HHG::’O—»--—ﬂnY(lﬂ)
Pre*(c)l lpro
Y (ig(m)) Y (iy)

in which the bottom horizontal map is induced by
the morphism ig () — i, of I.

2) There 1s a cosimplicial space A consisting of the
standard n-simplices and the maps between them,
and there 1s a natural bijection

hom(A, H*Y) =hom(B(1/?),Y)

This bijection induces a natural isomorphism of
simplicial sets

hom(A, [ [*Y) = hom(B(1/?),Y) = holim,Y.
Bousfield and Kan call this isomorphism “cosim-

plicial replacement of diagrams™ in [1].

3) We also use the “matching spaces” M"Z for a
cosimplicial space Z. Explicitly,

M"Z C ﬁZ”
=0

1

is the set of (n+ 1)-tuples (zo,...,2z,) such that
SjZi — SiZj_H fori < ]
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There is a natural simplicial set map
s: 2" s M"Z
defined by s(z) = (s%,s'z,...,5"2).

Lemma 22.4. Suppose X is an I-diagram of sets.
Then the map

s [["'x=[I XGu)—=M]]'X

G:i0—>-~~—>in+1
factors through a bijection
I1 X (ins1) = M']'X,
G:i0—>'~~—>in+1€D(BI)n+1

where D(BI ), .1 is the set of degenerate simplices
in BI, . |.

Proof. Write X = | |icon() X (i), and let 7 : X —
Ob(7) be the canonical map.

An element o of [["X 1s a commutative diagram

BI, o X

DN

Ob(1)

where v,, is induced by the inclusion {m} C m of
the vertex m.

If s : m — n is an ordinal number epimorphism
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then the diagram

Ob(1)
commutes.

The degeneracies s; : Bl, — Bl take values in
DBI, | and the simplicial identities s;5; = §,415;,
i < j determine a coequalizer

| |BlLi-1 = | |Bl, — DBI, .

i<j i=0

Write py, p» for the maps defining the coequalizer.

An element of M,,J[*X i1s a map

L[’ BI, ! X
D~ A
Ob(1)

fibred over Ob([), such that f- p; = f - p,. It fol-
lows that f factors uniquely through a function
DBI,. 1 — X, fibred over Ob(I). O
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Proof of Proposition 22.3. By an adjointness argu-
ment and cosimplicial replacement of diagrams,
showing that the map @n X — m 1Y has the
RLP wrt an inclusion i : K C L of simplicial sets
amounts to solving a lifting problem

AxK—JI*X

AXL—]II"Y
in cosimplicial spaces.

One solves such lifting problems inductively in
cosimplicial degrees by solving lifting problems

(Lx dA™ YU (K x A™1) —I1"'X
l ” l(p,S)
LXAI/H_IN ‘ Hn+1Y XMnH*YMnH*X

By Lemma 22.4, solving this lifting problem amounts
to solving lifting problems

(Lx AU (K x A1) ——=X (in1)

l ip

Lx A1 Y (ipet)
one for each non-degenerate simplex o : ip — -+ - —
iny1 of Bl,. 1. This can be done if either K C L is
anodyne or if p is trivial, since p is a projective
fibration. i
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Corollary 22.5. Suppose X is a projective fibrant
[-diagram and that X — Z is an injective fibrant
model of X. Then there are weak equivalences

QolimIX = QolimIZ v @Z.
I
Example: Every bisimplicial set X is a functor

X : AP — sSet.
The homotopy colimit holig aorX 1s defined by the

coend (ie. colimit of all diagrams)
B(m/A?) x X, % B(m/AP) x X,,
.
B(n/A%) x X,
and therefore by the coend
B(A/m) x X, ““B(A/m) x X,,
o1
B(A/n) x X,
There is a natural map of cosimplicial categories
h:A/mn—n
(the “last vertex map”’) which takes an object « :
k —ntoalk) €n.

This map induces a morphism of coends
B(A/n) x X, AT x X,
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and therefore induces a natural map
h.. : holim xorX — d(X).
Claim: This map 4., is a weak equivalence.

Both functors involved in & preserve levelwise weak

equivalences in X, so we can assume that X is pro-

jective cofibrant. If Y is a Kan complex, then the

induced map

hom(d(X),Y) — hom(holim rerX,Y)

can be identified up to isomorphism with the map

hom(X,hom(A,Y)) — hom(X,hom(B(A/?),Y)).
(6)

The map

hom(A,Y) — hom(B(A/?),Y)

1s a weak equivalence of projective fibrant simpli-
cial spaces, so the map in (6) is a weak equivalence
since X 1s projective cofibrant.

This is true for all Kan complexes Y, so A, is a
weak equivalence as claimed.

Example: Suppose Y is an injective fibrant cosim-
plicial space. Then the weak equivalence & in-
duces a weak equivalence

hom(A,Y) ~ hom(B(A/?),Y) = holim Y.
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This is also true if the cosimplicial space Y is Bousfield-
Kan fibrant [1] in the sense that all maps

s: Y™ S My

are fibrations — see [1, X.4] or [2]. Every in-
jective fibrant cosimplicial space is fibrant in this
sense.

Following [1], the space hom(A,Y) is usually de-
noted by Tot(Y).

23 Applications, Quillen’s Theorem B

Suppose p : X — Y i1s a map of simplicial sets, and
choose pullbacks

p~ (o) —X

.

A" Y

o

for all simplices ¢ : A" — Y of the base Y.

A morphism & : 6 — Tin A/Y of Y induces a sim-
plicial set map p~!(o) — p~!(7), and we have a
functor

p 'iAJY — sSet.

The maps p~!(o) — X induce maps of simplicial
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sets
o: || p (o) —X

0p—++—0p
or rather a morphism of bisimplicial sets
® : holim p~'(c) = X.
oA"Y
Lemma 23.1. The bisimplicial set map
® : holim p~'(0) = X
oA"Y

is a diagonal weak equivalence.

Proof. The simplicial set Y is a colimit of its sim-
plices in the sense that the canonical map

lim A" —Y

A=Y
is an isomorphism. The pullback functor is exact,
so the canonical map

lim p~'(c) = X

A=Y
1s an isomorphism.
Take T € X,,. Then fibre @~ !(7) over 7 for the
simplicial set map

o: || p(00)m— Xn

Oy—>—0p,
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is the nerve of a category C; whose objects consist
of pairs (0,y), where ¢ : A" — Y is a simplex of
Y and y € p~!(0),, such that y — 7 under the map
p (o) —X.

A morphism (o,y) — (¥,z) of C; isamap ¢ — ¥
of the simplex category A/Y such that y — z under
the map p~' (o) = p~'(¥).

There is an element x; € p~!(p(7)) such that x; —
7 € X and x; — 1,, € A™. The element (p(7),x;)
is initial in C; (exercise), and this is true for all
T € X,;, so the map ® is a weak equivalence in
each vertical degree m.

Finish the proof by using Lemma 21.1. []

Here’s a first consequence, originally due to Kan
and Thurston [4]:

Corollary 23.2. There are natural weak equiva-
lences
B(A/X) < holim A" = X
A'—X
for each simplicial set X.

Proof. The map
holim an_,x A" — B(A/X)

is induced by the weak equivalence of diagrams
A" — x on the simplex category.
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The other map is a weak equivalence, by Lemma
23.1 applied to the identity map X — X. []

Suppose f : C — D is a functor between small cat-
egories, and consider the pullback squares of func-

tors
fld—C

|

D/d—D
for d € Ob(D).

Here, f/d is the category whose objects are pairs
(c,a) where ¢ € Ob(C) and & : f(c) — d is a mor-
phism of D.

A morphism ¥ : (¢,a) — (¢, B) is a morphism 7 :
¢ — ¢ of C such that the diagram
[ d
/
f(e)
commutes in D.

Any morphism d — d’ of D induces a functor f/d —
f/d', and there is a D-diagram in simplicial sets

d— B(f/d).
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The forgetful functors f/d — C (with (¢, @) — ¢
define a map of bisimplicial sets

w: || B(f/dy)— BC.
do—-—dy

Then we have the following categorical analogue
of Lemma 23.1:

Lemma 23.3 (Quillen [5]). The map ® induces a
weak equivalence of diagonal simplicial sets.

Proof. The homotopy colimit in the statement of
the Lemma is the bisimplicial set with (n, m)-bisimplices
consisting of pairs

(co—= = Cm flem) = do— - — dy)

of strings of arrows in C and D, respectively.

The fibre of @ over the m-simplex ¢y — -+ — ¢;)
is the nerve B(f(c,,)/D), which is contractible.

This 1s true for all elements of BC,, so m is a weak
equivalence in each vertical degree m, and is there-
fore a diagonal weak equivalence. []

Now here’s what we’re really after:

Theorem 23.4 (Quillen). Suppose X : I — sSet is
a diagram such that each map i — j of I induces
a weak equivalence X (i) — X ().
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Then all pullback diagrams

X (i) —holim ;X
l b
AY Bll

i
are homotopy cartesian.

Functors X : I — sSet which take all morphisms
of I to weak equivalences of simplicial sets are di-
agrams of equivalences.

If f:1— J is a functor between small categories
and X : J — sSet is a J-diagram of simplicial sets,
then the diagram

holim; X f —holim; X

BI 3 BJ

is a pullback (exercise).

In particular, the diagram in the statement of the
Theorem is a pullback.

Proof. There are two tricks in this proof:

e Factor the map i : AY — BI as the composite

A0 l' BI
j\U/p

28



such that p is a fibration and j is a trivial cofi-
bration, and show that the induced map X (i) —
U Xp; holig ; X 1s a weak equivalence.

e Use the fact that pullback along a simplicial set
map is exact (so it preserves all colimits and
monomorphisms), to reduce to showing that
every composite A} C A" — Bl induces a weak
equivalence

AZ X grholim; X — A" X grholim; X.
To finish off, the map A" — BI is induced by a
functor o : n — I, so there is an isomorphism
holianG = A" xgrholim; X.

The composite functor X ¢ is a diagram of equiv-
alences, and so the initial object 0 € n determines
a natural transformation

Xo(0) > Xo

of n-diagrams defined on a constant diagram which
1s a weak equivalence of diagrams.

The induced weak equivalence

Bn x X(0(0)) = holim, X(0(0)) — holim, Xo

pulls back to a weak equivalence

A;xX(0(0)) = Ay X gnholimy, X (0(0)) — Ay X pnholim Xo.
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It follows that there is a commutative diagram

A x X(6(0)) —=—~A"x X(c(0))

gl lg

AZ XB]hOh [XHAn XB]hOli [X.

so the bottom horizontal map is a weak equiva-
lence. []

It’s hard to overstate the importance of Theorem
23.4.

The conditions for the Theorem are always satis-
fied, for example, by diagrams defined on groupoids.
In particular, if G is a group and X is a space car-
rying a G-action, then there is a fibre sequence

X >EGXxgX = BG

defined by the Borel construction, aka. the homo-
topy colimit for the action of G on X.

Theorem 23.4 first appeared as a lemma in the
proof of Quillen’s “Theorem B in [5].

Theorem B is the homotopy-theoretic starting point
for Quillen’s description of higher algebraic K-
theory:

Theorem 23.5 (Quillen). Suppose f : C — D is
a functor between small categories such that all
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morphisms d — d’ of D induce weak equivalences
B(f/d) — B(f/d').
Then all diagrams
B(f/d)—BC
l lf*
B(D/d)—BD
of simplicial set maps are homotopy cartesian.

Proof. Form the diagram
B(f/d)—holiry B(f/d)~=-BC

| deD l . ‘

B(D/d)HLimB(D/d)?BD

N .
\

A° ——BD
The indicated horizontal maps are weak equiva-
lences by Lemma 23.3, while the indicated verti-
cal maps are weak equivalences since the spaces

B(D/d) are contractible.

Theorem 23.4 says that the composite diagram I+
III is homotopy cartesian, so Lemma 18.5 (Lec-
ture 07) implies that I is homotopy cartesian. It
follows, again from Lemma 18.5, that the com-
posite I 4 II is homotopy cartesian. []
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