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21 Bisimplicial sets

A bisimplicial set X is a simplicial object

X : ∆
op→ sSet

in simplicial sets, or equivalently a functor

X : ∆
op×∆

op→ Set.

I write
Xm,n = X(m,n)

for the set of bisimplices in bidgree (m,n) and

Xm = Xm,∗

for the vertical simplicial set in horiz. degree m.

Morphisms X → Y of bisimplicial sets are natural
transformations.

s2Set is the category of bisimplicial sets.

Examples:

1) ∆p,q is the contravariant representable functor

∆
p,q = hom( ,(p,q))
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on ∆×∆.

∆
p,q
m =

⊔
m→p

∆
q.

The maps ∆p,q→ X classify bisimplices in Xp,q.

The bisimplex category (∆×∆)/X has the bisim-
plices of X as objects, with morphisms the inci-
dence relations

∆p,q

''

��
X

∆r,s

77

2) Suppose K and L are simplicial sets.

The bisimplicial set K×̃L has bisimplices

(K×̃L)p,q = Kp×Lq.

The object K×̃L is the external product of K and
L.

There is a natural isomorphism

∆
p,q ∼= ∆

p×̃∆
q.

3) Suppose I is a small category and that X : I→
sSet is an I-diagram in simplicial sets.

Recall (Lecture 04) that there is a bisimplicial set
holim−−−→ IX (“the” homotopy colimit) with vertical sim-
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plicial sets ⊔
i0→···→in

X(i0)

in horizontal degrees n.

The transformation X → ∗ induces a bisimplicial
set map

π :
⊔

i0→···→in

X(i0)→
⊔

i0→···→in

∗= BIn,

where the set BIn has been identified with the dis-
crete simplicial set K(BIn,0) in each horizontal de-
gree.

Example: Suppose that G is a group, and that X is
a simplicial set with a G-action G×X→ X . If G is
identified with a one-object groupoid, then the G-
action defines a functor X : G→ sSet which sends
the single object of G to X .

The corresponding bisimplicial set has vertical sim-
plicial sets of the form⊔

∗
g1−→∗ g2−→∗... gn−→∗

X ∼= G×n×X ,

which is a model in bisimplicial sets for the Borel
construction EG×G X .

Applying the diagonal functor (see below) gives
the Borel construction in simplicial sets.
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Every simplicial set X determines bisimplicial sets
which are constant in each vertical degree or each
horizontal degree. We write X for the constant
bisimplicial set determined by X either horizon-
tally or vertically.

From this point of view, the canonical map π is a
map of bisimplicial sets

π : holim−−−→ IX → BI.

The diagonal simplicial set d(X) for bisimplicial
set X has simplices

d(X)n = Xn,n

with simplicial structure maps

(θ ,θ)∗ : Xn,n→ Xm,m

for ordinal number maps θ : m→ n.

This construction defines a functor

d : s2Set→ sSet.

Recall that Xn denotes the vertical simplicial set in
horizontal degree n for a bisimplicial set X . The
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maps
Xn×∆m 1×θ //

θ∗×1
��

Xn×∆n

Xm×∆m

associated to the ordinal number maps θ : m→ n
determine morphisms⊔

θ :m→n
Xn×∆

m ⇒
⊔
n≥0

Xn×∆
n. (1)

There are simplicial set maps

γn : Xn×∆
n→ d(X)

defined on r-simplices by

γn(x,τ : r→ n) = τ
∗(x) ∈ Xr,r.

The maps in (1) above and the morphisms γn, n≥ 0
together determine a diagram⊔

θ :m→n
Xn×∆

m ⇒
⊔
n≥0

Xn×∆
n γ−→ d(X). (2)

Exercise: Show that the diagram (2) is a coequal-
izer in simplicial sets.

Example: There are natural isomorphisms

d(K×̃L)∼= K×L.

In particular, there are isomorphisms

d(∆p,q)∼= ∆
p×∆

q.
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The diagonal simplicial set d(X) has a filtration by
subobjects d(X)(n), n≥ 0, where

d(X)(n) = image of
⊔
p≤n

Xp×∆
p in d(X).

The (horizontal) degenerate part of the vertical sim-
plicial set Xn+1 is filtered by subobjects

s[r]Xn =
⋃

0≤i≤r

si(Xn)⊂ Xn+1

where r ≤ n. There are natural pushout diagrams
of cofibrations

s[r]Xn−1
sr+1 //

��

s[r]Xn

��

Xn sr+1
// s[r+1]Xn

(3)

and

(s[n]Xn×∆n+1)∪ (Xn+1×∂∆n+1) //

��

d(X)(n)

��

Xn+1×∆n+1 // d(X)(n+1)

(4)
in which all vertical maps are cofibrations.

The natural filtration {d(X)(n)} of d(X) and the
natural pushout diagrams (3) and (4) are used with
glueing lemma arguments to show the following:
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Lemma 21.1. Suppose f : X→Y is a map of bisim-
plicial sets such that all maps Xn→ Yn, n ≥ 0, of
vertical simplicial sets are weak equivalences.

Then the induced map d(X) → d(Y ) is a weak
equivalence of diagonal simplicial sets.

Example: Suppose that G×X→ X is an action of
a group G on a simplicial set X . The bisimplicial
set ⊔

∗
g1−→∗ g2−→∗... gn−→∗

X ∼= G×n×X

has horizontal path components X/G, and the map
to path components defines a simplicial set map

π : EG×G X → X/G,

which is natural in G-sets X .
If the action G× X → X is free, then the path
components the simplicial sets EG×G Xn are iso-
morphic to copies of the contractible space EG =

EG×G G. It follows that the map π is a weak
equivalence in this case.
If the action G× X → X is free and X is con-
tractible, then we have weak equivalences

EG×G X '
π //

p '
��

X/G

BG

7



Model structures
There are multiple closed model structures for bisim-
plicial sets. Here are three of them:

1) The projective structure, for which a map X→
Y of bisimplicial sets is a weak equivalence (re-
spectively projective fibration) if all maps Xn→Yn

are weak equivalences (respectively fibrations) of
simplicial sets. The cofibrations for this structure
are called the projective cofibrations.

2) The injective structure, for which X → Y is a
weak equivalence (respectively cofibration) if all
maps Xn→Yn are weak equivalences (respectively
cofibrations) of simplicial sets. The fibrations for
this theory are called the injective fibrations.

3) There is a diagonal model structure on s2Set
for which a map X → Y is a weak equivalence if
it is a diagonal weak equivalence ie. that the map
d(X)→ d(Y ) of simplicial sets is a weak equiva-
lence, and the cofibrations are the monomorphisms
of bisimplicial sets as in 2).

The existence of the diagonal structure is origi-
nally due to Joyal and Tierney, but they did not
publish the result. A proof appears in [3].

The projective structure is a special case of the
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projective structure for I-diagrams of simplicial
sets of Lemma 19.1 (Lecture 07) — it is called
the Bousfield-Kan structure in [2, IV.3.1].

The injective structure is similarly a special case
of the injective structure for I-diagrams, of Theo-
rem 19.3.

The injective structure is also an instance of the
Reedy structure for simplicial objects in a model
category [2, IV.3.2,VII.2].

The weak equivalences for both the projective and
injective structures are called level equivalences.

Lemma 21.1 says that every level equivalence is a
diagonal equivalence.

The diagonal functor X 7→ d(X) is left adjoint to a
“singular functor” X 7→ d∗(X), where

d∗(X)p,q = hom(∆p×∆
q,X).

One can show, by verifying a (countable) bounded
cofibration condition, that a bisimplicial set map
p : X → Y is a fibration for the diagonal model
structure if and only if it has the right lifting prop-
erty with respect to all trivial cofibrations A→ B
which are countable in the sense that all sets of
bisimplices Bp,q are countable.
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The bounded cofibration condition is a somewhat
tough exercise to prove — one uses the fact that
the diagonal functor has a left adjoint as well as a
right adjoint.

22 Homotopy colimits and limits (revisited)

Suppose X : I→ sSet is an I-diagram which takes
values in Kan complexes.

Following [1], one writes

holim←−−− IX = hom(B(I/?),X),

where the function complex is standard, and B(I/?)
is the functor i 7→ B(I/i).

Suppose Y is a simplicial set, and X is still our
prototypical I-diagram.

Homotopy colimits
The assignment i 7→ hom(X(i),Y ) defines an Iop-
diagram

hom(X ,Y ) : Iop→ sSet.

There is a natural isomorphism of function spaces

hom(holim−−−→ IX ,Y )∼= holim←−−− Iophom(X ,Y ),
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where holim−−−→ IX is defined by the coequalizer⊔
α:i→ j in I

B( j/I)×X(i)⇒
⊔

i∈Ob(I)

B(i/I)×X(i)→ holim−−−→ IX .

By looking at maps

holim−−−→ IX → Y,

one shows (exercise) that holim−−−→ IX is the diagonal
of the bisimplicial set, with vertical n-simplices⊔

i0→···→in

X(i0),

up to isomorphism.

This is the (standard) description of the homotopy
colimit of X that was introduced in Section 9.

This definition of homotopy colimit coincides up
to equivalence with the “colimit of projective cofi-
brant model” description of Section 20.

Here is the key to comparing the two:

Lemma 22.1. Suppose X : I→ sSet is a projective
cofibrant I-diagram. Then the canonical map

holim−−−→ IX → lim−→
I

X

is a weak equivalence.
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Proof. lim−→I
Xm is the set of path components of the

simplicial set ⊔
i0→···→in

X(i0)m,

so lim−→I
X can be identified with the simplicial set

of horizontal path components of the bisimplicial
set holim−−−→ I X .

The space B(i/I) is contractible since the category
i/I has an initial object. Thus, every projection

B(i/I)×K→ K

is a weak equivalence.

The simplicial set B(i/I)×K is the homotopy col-
imit of the I diagram hom(i, )×K and the projec-
tion is isomorphic to the map

holim−−−→ I(hom(i, )×K)→ lim−→
I
(hom(i, )×K)

Thus, all diagrams hom(i, )×K are members of
the class of I-diagrams X for which the map

holim−−−→ IX → lim−→
I

X (5)

is a weak equivalence.
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Suppose given a pushout diagram

hom(i, )×K //

1× j
��

X

��

hom(i, )×L //Y

of I-diagrams, where j is a cofibration. Suppose
also that the map (5) is a weak equivalence. Then
the induced map

holim−−−→ IY → lim−→
I

Y

is a weak equivalence.

For this, the induced diagram

lim−→I
(hom(i, )×K) //

��

lim−→I
X

��

lim−→I
(hom(i, )×L) // lim−→I

Y

is a pushout, and one uses the glueing lemma to
see the desired weak equivalence.

Suppose given a diagram of cofibrations of I-diagrams

X0→ X1→ . . .

such that all maps

holim−−−→ IXs→ lim−→
I

Xs
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are weak equivalences. Then the map

holim−−−→ I(lim−→
s

Xs)→ lim−→
I
(lim−→

s
Xs)

is a weak equivalence.

In effect, the colimit and homotopy colimit func-
tors commute, and filtered colimits preserve weak
equivalences in sSet.
A small object argument shows that, for every I-
diagram Y , there is a trivial projective fibration p :
X → Y such that X is projective cofibrant and the
map (5) is a weak equivalence.

If Y is projective cofibrant, then Y is a retract of
the covering X , so the map

holim−−−→ IY → lim−→
I

Y

is a weak equivalence.

Corollary 22.2. Suppose X : I→ sSet is an I-diagram
of simplicial sets, and let π : U → X be a projec-
tive cofibrant model of X. Then there are weak
equivalences

holim−−−→ IX
'←−
π∗

holim−−−→ IU
'−→ lim−→

I
U.
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Proof. Generally, if f : X → Y is a weak equiva-
lence of I-diagrams, then the induced maps⊔

i0→···→in

X(i0)→
⊔

i0→···→in

Y (i0)

is a weak equivalence of simplicial sets for each
vertical degree n, and it follows from Lemma 21.1
that the induced map

holim−−−→ IX → holim−−−→ IY

is a weak equivalence.

It follows that the map

holim−−−→ IX
π∗←− holim−−−→ IU

is a weak equivalence, and Lemma 22.1 shows that

holim−−−→ IU → lim−→
I

U

is a weak equivalence.

Homotopy limits
Each slice category I/i has a terminal object, so
B(I/i) is contractible, and the map

B(I/?)→∗

of I-diagrams is a weak equivalence.
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If Z is an injective fibrant I-diagram, then the in-
duced map

lim←−
I

Z∼=hom(∗,Z)→hom(B(I/?),Z)=: holim←−−− I Z

is a weak equivalence.

Here’s the interesting thing to prove:

Proposition 22.3. Suppose p : X → Y is a projec-
tive fibration (resp. trivial projective fibration).
Then

p∗ : holim←−−− IX → holim←−−− IY

is a fibration (resp. trivial fibration) of sSet.

There are a few concepts involved in the proof of
Proposition 22.3.

1) Every I-diagram Y has an associated cosimpli-
cial space (aka. ∆-diagram in simplicial sets) ∏

∗Y
with

∏
nY = ∏

∗Y (n) = ∏
i0→···→in

Y (in),

and with cosimplicial structure map θ∗ : ∏
mY →

∏
nY defined for an ordinal number map θ : m→ n
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defined by the picture

∏γ: j0→···→ jm Y ( jm)
θ∗ //

prθ∗(σ)
��

∏σ :i0→···→in Y (in)
prσ

��

Y (iθ(m)) //Y (in)

in which the bottom horizontal map is induced by
the morphism iθ(m)→ in of I.

2) There is a cosimplicial space ∆ consisting of the
standard n-simplices and the maps between them,
and there is a natural bijection

hom(∆,∏
∗Y )∼= hom(B(I/?),Y )

This bijection induces a natural isomorphism of
simplicial sets

hom(∆,∏
∗Y )∼= hom(B(I/?),Y ) = holim←−−− IY.

Bousfield and Kan call this isomorphism “cosim-
plicial replacement of diagrams” in [1].

3) We also use the “matching spaces” MnZ for a
cosimplicial space Z. Explicitly,

MnZ ⊂
n

∏
i=0

Zn

is the set of (n + 1)-tuples (z0, . . . ,zn) such that
s jzi = siz j+1 for i≤ j.
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There is a natural simplicial set map

s : Zn+1→MnZ

defined by s(z) = (s0z,s1z, . . . ,snz).

Lemma 22.4. Suppose X is an I-diagram of sets.
Then the map

s : ∏
n+1X = ∏

σ :i0→···→in+1

X(in+1)→Mn
∏
∗X

factors through a bijection

∏
σ :i0→···→in+1∈D(BI)n+1

X(in+1)
∼=−→Mn

∏
∗X ,

where D(BI)n+1 is the set of degenerate simplices
in BIn+1.

Proof. Write X =
⊔

i∈Ob(I)X(i), and let π : X →
Ob(I) be the canonical map.

An element α of ∏
mX is a commutative diagram

BIm
α //

vm ##

X

π||

Ob(I)

where vm is induced by the inclusion {m} ⊂m of
the vertex m.

If s : m→ n is an ordinal number epimorphism
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then the diagram

BIn
s∗(α)

//

s∗

$$

vn

��

X

π

��

BIm

α

;;

vm
��

Ob(I)

commutes.

The degeneracies si : BIn → BIn+1 take values in
DBIn+1 and the simplicial identities sis j = s j+1si,
i≤ j determine a coequalizer⊔

i≤ j

BIn−1 ⇒
n⊔

i=0

BIn→ DBIn+1.

Write p1, p2 for the maps defining the coequalizer.

An element of Mn ∏
∗X is a map⊔n

i=0 BIn
f

//

(vn) %%

X

π||

Ob(I)

fibred over Ob(I), such that f · p1 = f · p2. It fol-
lows that f factors uniquely through a function
DBIn+1→ X , fibred over Ob(I).
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Proof of Proposition 22.3. By an adjointness argu-
ment and cosimplicial replacement of diagrams,
showing that the map holim←−−− IX→ holim←−−− IY has the
RLP wrt an inclusion i : K ⊂ L of simplicial sets
amounts to solving a lifting problem

∆×K //

1×i
��

∏
∗X

��

∆×L //

::

∏
∗Y

in cosimplicial spaces.

One solves such lifting problems inductively in
cosimplicial degrees by solving lifting problems

(L×∂∆n+1)∪ (K×∆n+1) //

��

∏
n+1X
(p,s)
��

L×∆n+1 //

33

∏
n+1Y ×Mn ∏∗Y Mn

∏
∗X

By Lemma 22.4, solving this lifting problem amounts
to solving lifting problems

(L×∂∆n+1)∪ (K×∆n+1) //

��

X(in+1)
p
��

L×∆n+1 //

44

Y (in+1)

one for each non-degenerate simplex σ : i0→···→
in+1 of BIn+1. This can be done if either K ⊂ L is
anodyne or if p is trivial, since p is a projective
fibration.
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Corollary 22.5. Suppose X is a projective fibrant
I-diagram and that X → Z is an injective fibrant
model of X. Then there are weak equivalences

holim←−−− IX
'−→ holim←−−− IZ

'←− lim←−
I

Z.

Example: Every bisimplicial set X is a functor

X : ∆
op→ sSet.

The homotopy colimit holim−−−→∆opX is defined by the
coend (ie. colimit of all diagrams)

B(m/∆op)×Xn
1×θ∗//

θ∗×1
��

B(m/∆op)×Xm

B(n/∆op)×Xn

and therefore by the coend

B(∆/m)×Xn
1×θ∗//

θ×1
��

B(∆/m)×Xm

B(∆/n)×Xn

There is a natural map of cosimplicial categories

h : ∆/n→ n

(the “last vertex map”) which takes an object α :
k→ n to α(k) ∈ n.

This map induces a morphism of coends

B(∆/n)×Xn
h×1−−→ ∆

n×Xn,
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and therefore induces a natural map

h∗ : holim−−−→∆opX → d(X).

Claim: This map h∗ is a weak equivalence.

Both functors involved in h preserve levelwise weak
equivalences in X , so we can assume that X is pro-
jective cofibrant. If Y is a Kan complex, then the
induced map

hom(d(X),Y )→ hom(holim−−−→∆opX ,Y )

can be identified up to isomorphism with the map

hom(X ,hom(∆,Y ))→hom(X ,hom(B(∆/?),Y )).
(6)

The map

hom(∆,Y )→ hom(B(∆/?),Y )

is a weak equivalence of projective fibrant simpli-
cial spaces, so the map in (6) is a weak equivalence
since X is projective cofibrant.

This is true for all Kan complexes Y , so h∗ is a
weak equivalence as claimed.

Example: Suppose Y is an injective fibrant cosim-
plicial space. Then the weak equivalence h in-
duces a weak equivalence

hom(∆,Y ) h∗−→ hom(B(∆/?),Y ) = holim←−−−∆Y.
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This is also true if the cosimplicial space Y is Bousfield-
Kan fibrant [1] in the sense that all maps

s : Y n+1→MnY

are fibrations — see [1, X.4] or [2]. Every in-
jective fibrant cosimplicial space is fibrant in this
sense.

Following [1], the space hom(∆,Y ) is usually de-
noted by Tot(Y ).

23 Applications, Quillen’s Theorem B

Suppose p : X→Y is a map of simplicial sets, and
choose pullbacks

p−1(σ) //

��

X
p
��

∆n
σ

//Y

for all simplices σ : ∆n→ Y of the base Y .

A morphism α : σ→ τ in ∆/Y of Y induces a sim-
plicial set map p−1(σ)→ p−1(τ), and we have a
functor

p−1 : ∆/Y → sSet.
The maps p−1(σ)→ X induce maps of simplicial
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sets
ω :

⊔
σ0→···→σn

p−1(σ0)→ X

or rather a morphism of bisimplicial sets

ω : holim−−−→
σ :∆n→Y

p−1(σ)→ X .

Lemma 23.1. The bisimplicial set map

ω : holim−−−→
σ :∆n→Y

p−1(σ)→ X

is a diagonal weak equivalence.

Proof. The simplicial set Y is a colimit of its sim-
plices in the sense that the canonical map

lim−→
∆n→Y

∆
n→ Y

is an isomorphism. The pullback functor is exact,
so the canonical map

lim−→
∆n→Y

p−1(σ)→ X

is an isomorphism.

Take τ ∈ Xm. Then fibre ω−1(τ) over τ for the
simplicial set map

ω :
⊔

σ0→···→σn

p−1(σ0)m→ Xm
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is the nerve of a category Cτ whose objects consist
of pairs (σ ,y), where σ : ∆n→ Y is a simplex of
Y and y ∈ p−1(σ)m such that y 7→ τ under the map
p−1(σ)→ X .

A morphism (σ ,y)→ (γ,z) of Cτ is a map σ → γ

of the simplex category ∆/Y such that y 7→ z under
the map p−1(σ)→ p−1(γ).

There is an element xτ ∈ p−1(p(τ)) such that xτ 7→
τ ∈ X and xτ 7→ ιm ∈ ∆m. The element (p(τ),xτ)

is initial in Cτ (exercise), and this is true for all
τ ∈ Xm, so the map ω is a weak equivalence in
each vertical degree m.

Finish the proof by using Lemma 21.1.

Here’s a first consequence, originally due to Kan
and Thurston [4]:

Corollary 23.2. There are natural weak equiva-
lences

B(∆/X)
'←− holim−−−→

∆n→X
∆

n '−→ X

for each simplicial set X.

Proof. The map

holim−−−→∆n→X ∆
n→ B(∆/X)

is induced by the weak equivalence of diagrams
∆n→∗ on the simplex category.
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The other map is a weak equivalence, by Lemma
23.1 applied to the identity map X → X .

Suppose f : C→D is a functor between small cat-
egories, and consider the pullback squares of func-
tors

f/d //

��

C

��

D/d //D

for d ∈ Ob(D).

Here, f/d is the category whose objects are pairs
(c,α) where c∈Ob(C) and α : f (c)→ d is a mor-
phism of D.

A morphism γ : (c,α)→ (c′,β ) is a morphism γ :
c→ c′ of C such that the diagram

f (c)
α

&&
f (γ)

��
d

f (c′) β

88

commutes in D.

Any morphism d→ d′ of D induces a functor f/d→
f/d′, and there is a D-diagram in simplicial sets
d 7→ B( f/d).
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The forgetful functors f/d → C (with (c,α) 7→ c
define a map of bisimplicial sets

ω :
⊔

d0→···→dn

B( f/d0)→ BC.

Then we have the following categorical analogue
of Lemma 23.1:

Lemma 23.3 (Quillen [5]). The map ω induces a
weak equivalence of diagonal simplicial sets.

Proof. The homotopy colimit in the statement of
the Lemma is the bisimplicial set with (n,m)-bisimplices
consisting of pairs

(c0→ ··· → cm, f (cm)→ d0→ ··· → dn)

of strings of arrows in C and D, respectively.

The fibre of ω over the m-simplex c0→ ··· → cm)

is the nerve B( f (cm)/D), which is contractible.

This is true for all elements of BCm so ω is a weak
equivalence in each vertical degree m, and is there-
fore a diagonal weak equivalence.

Now here’s what we’re really after:

Theorem 23.4 (Quillen). Suppose X : I→ sSet is
a diagram such that each map i→ j of I induces
a weak equivalence X(i)→ X( j).
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Then all pullback diagrams

X(i) //

��

holim−−−→ IX
π
��

∆0
i

//BI

are homotopy cartesian.

Functors X : I → sSet which take all morphisms
of I to weak equivalences of simplicial sets are di-
agrams of equivalences.

If f : I→ J is a functor between small categories
and X : J→ sSet is a J-diagram of simplicial sets,
then the diagram

holim−−−→ I X f //

π
��

holim−−−→ J X
π
��

BI f∗
//BJ

is a pullback (exercise).

In particular, the diagram in the statement of the
Theorem is a pullback.

Proof. There are two tricks in this proof:

• Factor the map i : ∆0→ BI as the composite

∆0 i //

j %%

BI

U p
99
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such that p is a fibration and j is a trivial cofi-
bration, and show that the induced map X(i)→
U×BI holim−−−→ I X is a weak equivalence.

• Use the fact that pullback along a simplicial set
map is exact (so it preserves all colimits and
monomorphisms), to reduce to showing that
every composite Λn

k ⊂ ∆n→ BI induces a weak
equivalence

Λ
n
k×BI holim−−−→ I X → ∆

n×BI holim−−−→ I X .

To finish off, the map ∆n → BI is induced by a
functor σ : n→ I, so there is an isomorphism

holim−−−→n Xσ ∼= ∆
n×BI holim−−−→ I X .

The composite functor Xσ is a diagram of equiv-
alences, and so the initial object 0 ∈ n determines
a natural transformation

Xσ(0)→ Xσ

of n-diagrams defined on a constant diagram which
is a weak equivalence of diagrams.

The induced weak equivalence

Bn×X(σ(0))∼= holim−−−→n X(σ(0))→ holim−−−→n Xσ

pulls back to a weak equivalence

Λ
n
k×X(σ(0))∼=Λ

n
k×Bn holim−−−→n X(σ(0))→Λ

n
k×Bn holim−−−→ Xσ .
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It follows that there is a commutative diagram

Λn
k×X(σ(0)) ' //

'
��

∆n×X(σ(0))
'
��

Λn
k×BI holim−−−→ I X //∆n×BI holim−−−→ I X .

so the bottom horizontal map is a weak equiva-
lence.

It’s hard to overstate the importance of Theorem
23.4.

The conditions for the Theorem are always satis-
fied, for example, by diagrams defined on groupoids.
In particular, if G is a group and X is a space car-
rying a G-action, then there is a fibre sequence

X → EG×G X → BG

defined by the Borel construction, aka. the homo-
topy colimit for the action of G on X .

Theorem 23.4 first appeared as a lemma in the
proof of Quillen’s “Theorem B” in [5].

Theorem B is the homotopy-theoretic starting point
for Quillen’s description of higher algebraic K-
theory:

Theorem 23.5 (Quillen). Suppose f : C → D is
a functor between small categories such that all
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morphisms d→ d′ of D induce weak equivalences
B( f/d)→ B( f/d′).

Then all diagrams

B( f/d) //

��

BC
f∗
��

B(D/d) //BD
of simplicial set maps are homotopy cartesian.

Proof. Form the diagram

B( f/d) //

��

I

holim−−−→
d∈D

B( f/d) ' //

��

II

BC

��

B(D/d) //

'
��

III

holim−−−→
d∈D

B(D/d) ' //

'
��

BD

∆0
d

//BD

The indicated horizontal maps are weak equiva-
lences by Lemma 23.3, while the indicated verti-
cal maps are weak equivalences since the spaces
B(D/d) are contractible.

Theorem 23.4 says that the composite diagram I+
III is homotopy cartesian, so Lemma 18.5 (Lec-
ture 07) implies that I is homotopy cartesian. It
follows, again from Lemma 18.5, that the com-
posite I+ II is homotopy cartesian.
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