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24 Bisimplicial abelian groups, derived functors

Homology
Suppose A : I→Ab is a diagram of abelian groups,
defined on a small category I.

There is a simplicial abelian group EIA, with

EIAn =
⊕

σ :i0→···→in

A(i0)

and with simplicial structure maps θ ∗ defined for
θ : m→ n by the commutative diagrams

A(i0)
α∗ //

inσ
��

A(iθ(0))
inθ∗(σ)
��⊕

σ :i0→···→in A(i0)
θ∗
//
⊕

γ: j0→···→ jm A( j0)

where α : i0→ iθ(0) is the morphism of I defined
by θ .

The simplicial abelian group EIA defines the ho-
motopy colimit within simplicial abelian groups.
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Specifically, every diagram B : I→ sAb of simpli-
cial abelian groups determines a bisimplicial abelian
group EIB with horizontal objects

EIBn =
⊕

σ :i0→···→in

B(i0).

There is a projective model structure on sAbI,
for which f : A→B is a weak equivalence (respec-
tively fibration) if and only if each map f : Ai→ Bi

is a weak equivalence (respectively fibration) of
simplicial abelian groups (exercise).

Lemma 24.1. The canonical map

EIB→ lim−→
I

B,

induces a weak equivalence of simplicial abelian
groups

π : d(EIB)→ lim−→
I

B

if B is projective cofibrant.

Proof. The generating projective cofibrations are
induced from the generating projective cofibrations

j×1 : K×hom(i, )→ L×hom(i, )

of I-diagrams of simplicial sets by applying the
free abelian group functor.
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There is an isomorphism

EIZ(X)∼= Z(holim−−−→ IX)

for all I-diagrams of simplicial sets X .

The map

EIZ(hom(i, )×K)→ lim−→
I
Z(hom(i, )×K)

is the result of applying the free abelian group func-
tor to a diagonal weak equivalence of bisimplicial
sets.

Every pointwise weak equivalence of I-diagrams
A→ B induces a diagonal weak equivalence

d(EIA)→ d(EIB).

This is a consequence of Lemma 24.2.

Lemma 24.2. Every level weak equivalence A→
B of bisimplicial abelian groups induces a weak
equivalence d(A)→ d(B).

Lemma 24.2 follows from Lemma 21.1 (the bisim-
plicial sets result).

Corollary 24.3. Suppose the level weak equiva-
lence p : A→ B is a projective cofibrant replace-
ment of an I-diagram B.
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Then there are weak equivalences

d(EIB)
'←− d(EIA)

'−→ lim−→ IA.

Example: Suppose A : I → Ab is a diagram of
abelian groups. Write AbI for the category of such
I-diagrams and natural transformations.

AbI has a set of projective generators, ie. all func-
tors Z(hom(i, )) obtained by applying the free abelian
group functor to the functors hom(i, ), i ∈Ob(I).

It follows that every I-diagram A : I→Ab of abelian
groups has a projective resolution

· · · → P1→ P0→ A→ 0.

The I-diagram Γ(P∗) of simplicial abelian groups
is projective cofibrant (exercise), so there are weak
equivalences of simplicial abelian groups

EIA= d(EIA)
'←− d(EIΓ(P∗))

'−→ lim−→ IΓ(P∗)∼=Γ(lim−→ IP∗).

Thus, there are isomorphisms

πk(EIA)∼= πk(Γ(lim−→ IP∗))∼= Hk(lim−→ IP∗).

We have proved the following:

Lemma 24.4. There are natural isomorphisms

πk(EIA)∼= L(lim−→ I)k(A)

for all I-diagrams of abelian groups A.
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In other words, the homotopy (or homology) groups
of EIA coincide with the left derived functors of
the colimit functor in abelian groups.

Remark: Exactly the same script works for dia-
grams of simplicial modules over an arbitrary com-
mutative unitary ring R.

Example: Suppose G is a group, and let R(G)

be the corresponding group-algebra over R. An
R(G)-module, or simply a G-module in R−Mod,
is a diagram

M : G→ R−Mod,
and the higher derived functors of lim−→G

for M are
the group homology groups Hn(G,M), as defined
classically.

In effect, one can show that there is an isomor-
phism of simplicial R-modules

L(lim−→
G

)k(M) = Hk(EGM)

∼= Hk(R(EG)⊗G M) = Hk(G,M).

Here, EG = B(∗/G) is the standard contractible
cover of BG so R(EG)→ R is a free G-resolution
of the trivial G-module R.

R(EG)⊗G M is the Borel construction for the G-
module M.
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The R-module lim−→G
M is the module of coinvari-

ants of the G-module M, and it is common to write

M/G = lim−→GM.

Example: Suppose that A : ∆op→ sAb is a bisim-
plicial abelian group.

The colimit lim−→n An is the coequalizer

A1 ⇒ A0→ π0A = lim−→
n

An

of the face maps d0,d1 : A1→ A0.

The bisimplicial set ∆n×̃K has (horizontal) colimit

π0∆
n×K ∼= K.

It follows that the map

Z(∆n×̃K)→ lim−→
p

Z(∆n
p×K)

is a levelwise equivalence (in vertical degrees) of
bisimplicial abelian groups. This implies that the
bisimplicial abelian group map

A→ π0A = lim−→
n

An

is a weak equivalence in all vertical degrees for
all projective cofibrant objects A, and therefore in-
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duces a diagonal weak equivalence

d(A) '−→ lim−→
n

An

for all such objects A.

It follows that if A→ B is a projective cofibrant
resolution of a bisimplicial abelian group B, then
there are weak equivalences

d(B) '←− d(A) '−→ lim−→
n

An,

and so the diagonal d(B) is naturally equivalent to
the homotopy colimit of the simplicial object A.

Cohomology
There is a cohomological version of the theory
presented so far in this section. A little more tech-
nology is involved.

1) The category AbI of I-diagrams of abelian groups
has enough injectives.

2) If A is an I-diagram of abelian groups, then
there is an isomorphism of cochain complexes

hom(B(I/?),A)∼= ∏
∗A.

3) The functor hom( ,J) is exact if J is injective
(exercise), and thus takes weak equivalences X →
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Y of I-diagrams of simplicial sets to cohomology
isomorphisms hom(Y,J)→ hom(X ,J).

The canonical map B(I/?)→ ∗ is a weak equiva-
lence of I-diagrams, so the morphism

hom(∗,J)→ hom(B(I/?),J)

is a cohomology isomorphism if J is injective. Thus,
there are isomorphisms

Hk
∏
∗J ∼=

{
lim←−I

J if k = 0, and

0 if k > 0.

4) More generally, there are isomorphisms

Hk
∏
∗A∼= R(lim←− I)

kA =: lim←−
k
I A

for k ≥ 0 and for all I-diagrams A.

In effect, A has an injective resolution A→ J∗ and
both (cohomological) spectral sequences for the
bicomplex ∏

∗J∗ collapse.

5) If A is an I-diagram of abelian groups, then
there is an isomorphism

[∗,K(A,n)]∼= lim←−
n
I (A), (1)

where [ , ] denotes morphisms in the homotopy
category of I-diagrams of simplicial sets.

The best argument that I know of for the isomor-
phism (1) appears in [4] (also [5]).
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The theory of higher right derived functors of in-
verse limit is a type of sheaf cohomology theory.

6) There are isomorphisms

π0 holim←−−− IK(A,n)∼= π0 holim←−−− IZ
∼= π0 lim←− IZ
∼= [∗,Z]
∼= [∗,K(A,n)]
∼= lim←−

n
I A,

where K(A,n)→ Z is an injective fibrant model of
K(A,n).

The object K(A,n) is a de-looping of K(A,n−1),
so there are isomorphisms

πk holim←−−− IK(A,n)∼=

{
lim←−

n−k
I A if 0≤ k ≤ n, and

0 if k > n

25 Spectral sequences for a bicomplex

This section contains a very basic introduction to
spectral sequences.

We shall only explicitly discuss the spectral se-
quences in homology which are associated to a bi-
complex.
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These spectral sequences, their cohomological analogs
(used at the end of Section 24), and the Bousfield-
Kan spectral sequence for a tower of fibrations [1],
are the most common prototypes for spectral se-
quences that one meets in nature.

Most of the material of this section in Mac Lane’s
“Homology” [6]. There are many other sources.

A bicomplex C consists of an array of abelian
groups Cp,q, p,q≥ 0 and morphisms

∂v : Cp,q→Cp,q−1 and ∂h : Cp,q→Cp−1,q,

such that
∂

2
v = ∂

2
h = 0 and

∂v∂h+∂h∂v = 0.
A morphism f : C→ D of bicomplexes consists
of morphisms f : Cp,q→ Dp,q that respect the dif-
ferentials.

Write Ch2
+ for the corresponding category.

There is a functor

Tot : Ch2
+→Ch+

taking values in ordinary chain complexes with

Tot(C)n =
⊕

p+q=n

Cp,q
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and with differential ∂ : Tot(C)n→ Tot(C)n−1 de-
fined on the summand Cp,q by

∂ (x) = ∂v(x)+∂h(x).

Every bicomplex C has two filtrations, horizontal
and vertical.

The pth stage FpC of the horizontal filtration has

FpCr,s =

{
Cr,s if r ≤ p, and

0 if r > p.

Then
0 = F−1C ⊂ F0C ⊂ F1C ⊂ . . .

and ⋃
p

Fp(C) =C

The functor C 7→ Tot(C) is exact, so this filtration
on C induces a filtration on Tot(C).

One filters Tot(C)n in finitely many stages:

0=F1 Tot(C)n⊂F0 Tot(C)n⊂ ·· ·⊂Fn Tot(C)n =Tot(C)n.

Generally, the long exact seqences in homology
associated to the exact sequences

0→ Fp−1C
i−→ FpC

p−→ FpC/Fp−1C→ 0
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arising from a filtration {FpC} on a chain complex
C fit together to define a spectral sequence for the
filtered complex.

This spectral sequence arises from the “ladder di-
agram”

...

��

...

��
Hp+q(Fp−2)

i∗
��

Hp+q−1(Fp−3)

i∗
��

Hp+q(Fp−1)

i∗
��

Hp+q−1(Fp−2)

i∗
��

// Hp+q−1(Fp−2/Fp−3)

Hp+q(Fp)
p∗ //

i∗
��

Hp+q(Fp/Fp−1)
∂ // Hp+q−1(Fp−1)

i∗
��

Hp+q(Fp+1)

i∗ ��

Hp+q−1(Fp)

i∗��

p∗ // Hp+q−1(Fp/Fp−1)

...

��

...

��
Hp+q(C) Hp+q−1(C)

Set

Zp,q
r = {x ∈ Hp+q(Fp/Fp−1) | ∂ (x) ∈ im(ir−1

∗ )}

and
Bp,q

r = p∗(ker(ir−1
∗ )),
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and then define

E p,q
r =

Zp,q
r

Bp,q
r

.

for r ≥ 1. Here, we adopt the convention that i0∗ =
1, so that

E p,q
1 = Hp+q(Fp/Fp−1)

This is cheating slightly (this only works for bi-
complexes), but set

E p,q
∞ =

ker(∂ )
p∗(ker(Hp+q(Fp)→ Hp+q(C)))

.

Finally, define

FpHp+q(C) = im(Hp+q(Fp)→ Hp+q(C)).

Given [x] ∈ E p,q
r represented by x ∈ Zp,q

r choose
y ∈Hp+q(Fp−r) such that ir−1

∗ (y) = ∂ (x). Then the
assignment [x] 7→ [p∗(y)] defines a homomorphism

dr : E p,q
r → E p−r,q+r−1

r ,

and this homomorphism is natural in filtered com-
plexes.
Then we have the following:
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Lemma 25.1. 1) We have the relation d2
r = 0, and

there is an isomorphism

E p,q
r+1
∼=

ker(dr : E p,q
r → E p−r,q+r−1

r )

im(dr : E p+r,q−r+1
r → E p,q

r )
.

2) There are isomorphisms

E p,q
r
∼= E p,q

∞

for r > p,q+2.

3) There are short exact sequences

0→ Fp−1Hp+q(C)→ FpHp+q(C)→ E p,q
∞ → 0.

The proof is an exercise — chase some elements.

In general (ie. for general filtered complexes),

E p,q
1 = Hp+q(Fp/Fp−1),

and E p,q
2 is the homology of the complex with dif-

ferentials E p,q
1 → E p−1,q

1 given by the composites

Hp+q(Fp/Fp−1)
∂−→Hp+q−1(Fp−1)

p∗−→Hp+q−1(Fp−1/Fp−2)

In the case of the horizontal filtration Fp Tot(C) for
a bicomplex C, there is a natural isomorphism

Fp Tot(C)/Fp−1 Tot(C)∼=Cp,∗[p],
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so there is an isomorphism

E p,q
1
∼= Hq(Cp,∗)

The differential d1 is the homomorphism

Hq(Cp,∗)
∂h∗−→ Hq(Cp−1,∗)

which is induced by the horizontal differential.

It follows, that for the horizontal filtration on the
total complex Tot(C) of a bicomplex C, there is a
spectral sequence with

E p,q
2 = Hh

p(H
v
qC)⇒ Hp+q(Tot(C)).

In particular, the spectral sequence converges to
H∗(Tot(C)) in the sense that the filtration quotients
E p,q

∞ determine H∗(Tot(C)).

Here’s an example of how it all works:

Lemma 25.2. Suppose f : C→D is a morphism of
bicomplexes such that for some r ≥ 1 the induced
morphisms E p,q

r (C)→ E p,q
r (D) are isomorphisms

for all p,q≥ 0.

Then the induced map Tot(C)→ Tot(D) is a ho-
mology isomorphism.

Lemma 25.2 is sometimes called the Zeeman com-
parison theorem.
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Proof. The map f induces isomorphisms

E p,q
s (C)

∼=−→ E p,q
s (D)

for all s ≥ r (because all such Es-terms are com-
puted by taking homology groups, inductively in
s≥ r+1. It follows that all induced maps

E p,q
∞ (C)→ E p,q

∞ (D)

are isomorphisms. But then, starting with the mor-
phism

E0,p+q
∞ (C)
∼= ��

∼= //E0,p+q
∞ (D)

∼=��
F0Hp+q(Tot(C)) //F0Hp+q(Tot(D))

and using the fact that the induced maps on suc-
cessive filtration quotients are the isomorphisms

Er,p+q−r
∞ (C)

∼=−→ Er,p+q−r
∞ (D),

one shows inductively that all maps

FrHp+q(Tot(C))→ FrHp+q(Tot(D))

are isomorphisms, including the case r = p + q
which is the map

Hp+q(Tot(C))→ Hp+q(Tot(D)).

This is true for all total degrees p+q, so the map
Tot(C)→ Tot(D) is a quasi-isomorphism.
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Example: Suppose A is a bisimplicial abelian group.
Then the Generalized Eilenberg-Zilber Theorem
(Theorem 26.1) asserts that there is a natural chain
homotopy equivalence of chain complexes

d(A)' Tot(A)

where Tot(A) is the total complex of the associated
(Moore) bicomplex. Filtering A in the horizontal
direction therefore gives a spectral sequence with

E p,q
2 = π

h
p(π

v
q(A))⇒ πp+qd(A). (2)

This spectral sequence is natural in bisimplicial
abelian groups A.

This spectral sequence can be used to give an al-
ternate proof of Lemma 24.4. If A→ B is a level
equivalence of bisimplicial abelian groups, then
there is an E1-level isomophism

πq(Ap,∗)
∼=−→ πq(Bp,∗)

for all p,q≥ 0.

Use Lemma 25.2 for the spectral sequence (2) to
show that the map d(A)→ d(B) is a weak equiva-
lence.
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Application: The Lyndon-Hochschild-Serre spec-
tral sequence

Suppose f : C→D is a functor between small cat-
egories, and recall the bisimplicial set map⊔

d0→···→dn

B( f/d0)→ BC

of Section 23. Lemma 23.3 says that this map is a
diagonal weak equivalence.

The free abelian group functor preserves diagonal
weak equivalences, so there is a spectral sequence

E p,q
2 = L(lim−→)pHq(B( f/?),Z)⇒ Hp+q(BC,Z).

(3)
The derived colimit functors are computed over
the base category D.

In the special case where f is a surjective group
homomorphism G→ H with kernel K, this is a
form of the Lyndon-Hochschild-Serre spectral se-
quence

E p,q
2 = Hp(H,Hq(BK,Z))⇒ Hp+q(BG,Z). (4)

We can put in other coefficients if we want.

To see that the E2-term of (4) has the indicated
form, take a set-theoretic section σ : H→G of the
group homomorphism f such that σ(e) = e.
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Conjugation x 7→ σ(h)xσ(h)−1, defines a group
isomorphism cσ(h) : K→ K and hence an isomor-
phism

h∗ : H∗(BK,Z)→ H∗(BK,Z)

in homology. The map h∗ is independent of the
choice of section σ because any two pre-images of
h determine homotopic maps K→ K (ie. the two
isomorphisms differ by conjugation by an element
of K).

This action of H on H∗(BK,Z) is the one appear-
ing in the description of the E2-term of (4).

The objects of f/∗ are the elements of H, and a
morphism g : h→ h′ in f/∗ is an element g ∈ G
such that h′ f (g) = h.

There is a functor K → f/∗ defined by sending
k ∈ K to the morphism k : e→ e.

There is a functor f/∗ → K which is defined by
sending the morphism g : h→ h′ to the element
σ(h′)gσ(h)−1.

σ(e) = e, so the composite functor

K→ f/∗→ K

is the identity, while the elements σ(h), h ∈H de-
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fine a homotopy from the composite

f/∗→ K→ f/∗
to the identity on f/∗.
Finally, composition with α ∈H defines the func-
tor α∗ : f/∗ → f/∗ in the decription of the bisim-
plicial set for f : G→ H, and there is a homotopy
commutative diagram

K //

cσ(α)
��

f/∗
α∗
��

K // f/∗
Thus, the action of α on H∗(B( f/∗),Z) coincides
with the morphism α∗ : H∗(BK,Z)→ H∗(BK,Z)
displayed above, up to isomorphism.

Example: Consider the short exact sequence

0→ Z→Q→Q/Z→ 0.

All three groups are abelian, so all conjugation ac-
tions are trivial and there is a spectral sequence
with

E p,q
2 = Hp(B(Q/Z),Hq(BZ,Q))⇒ Hp+q(BQ,Q).

S1 ' BZ, so there are isomorphisms

Hq(BZ,Q)∼=

{
Q if q = 0,1, and

0 if q > 1.
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The group Q/Z is all torsion, so that

Hq(B(Q/Z),Q) = 0

for q≥ 1.

The E2-term for the spectral sequence therefore
collapses, so the “edge homomorphism”

H∗(BZ,Q)→ H∗(BQ,Q)

is an isomorphism.

To see the claim about torsion groups, observe that
torsion abelian groups are filtered colimits of finitely
generated torsion abelian groups, and a finitely gen-
erated torsion abelian group is a finite direct sum
of cyclic groups.

It therefore suffices, by a Künneth formula argu-
ment (see (11) below) to show that

Hp(Z/n,Q) = Hp(B(Z/n),Q) = 0

for p > 0.

The abelian group Z, as a trivial Z/n-module, has
a free resolution by Z/n-modules

. . .
N−→ Z(Z/n) 1−t−−→ Z(Z/n)→ Z→ 0 (5)

where 1− t is multiplication by group-ring ele-
ment 1− t and t is the generator of the group Z/n.
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The map N is multiplication by the “norm ele-
ment”

N = 1+ t + t2+ · · ·+ tn−1.

Tensoring the resolution with the trivial Z/n-module
Z gives the chain complex

. . .
0−→ Z n−→ Z 0−→ Z n−→ Z 0−→ Z,

and it follows that

Hp(BZ/n,Z)∼=


Z p = 0,

0 if p = 2n, n > 0, and

Z/n if p = 2n+1, n≥ 0.
(6)

Tensoring with Q (which is exact) therefore shows
that Hp(BZ/n,Q) = 0 for p > 0.

We could equally well tensor the resolution (5)
with the trivial Z/n-module Q and get the same
answer, because Q is uniquely n-divisible.

26 The Eilenberg-Zilber Theorem

Every bisimplicial abelian group A has a naturally
associated bicomplex M(A) with

M(A)m,n = Am,n,

22



and with horizontal boundaries

∂h =
m

∑
i=0

(−1)idi : Am,n→ Am−1,n

and vertical boundaries

∂v =
n

∑
i=0

(−1)m+idi : Am,n→ Am,n−1.

One checks that

∂h∂v+∂v∂h = 0

in all bidegrees — the signs were put in to achieve
this formula.

Here is the Generalized Eilenberg-Zilber Theorem
of Dold-Puppe [2], [3, IV.2.2]:

Theorem 26.1 (Dold-Puppe). Suppose that A is a
bisimplicial abelian group.

Then the chain complexes d(A) and Tot(A) are
naturally chain homotopy equivalent.

Proof. The standard Eilenberg-Zilber Theorem says
that there are natural chain maps

f : Z(K×L)→ Tot(Z(K)⊗Z(L))

(Moore complexes) and

g : Tot(Z(K)⊗Z(L))→ Z(K×L),
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and there are natural chain homotopies f g' 1 and
g f ' 1 for simplicial sets K and L.

The Eilenberg-Zilber Theorem specializes to (is
equivalent to — exercise) the existence of chain
maps

d(Z(∆p,q))=Z(∆p×∆
q)

f−→Tot(Z(∆p)⊗Z(∆q))=Tot(Z(∆p,q))

and
g : Tot(Z(∆p,q))→ d(Z(∆p,q))

and chain homotopies f g ' 1 and g f ' 1 which
are natural in bisimplices ∆p,q.

Every bisimplicial abelian group A is a natural col-
imit of the diagrams

Ap,q⊗Z(∆r,s)
1⊗(γ,θ)

//

(γ,θ)∗⊗1
��

Ap,q⊗Z(∆p,q)

Ar,s⊗Z(∆r,s)

where (γ,θ) : (r,s)→ (p,q) varies over the mor-
phisms of ∆×∆, and the maps

γp,q : Ap,q⊗Z(∆p,q)→ A

given by (a,(γ,θ)) 7→ (γ,θ)∗(a) define the col-
imit.
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There are isomorphisms

d(B⊗A)∼= B⊗d(A),
Tot(B⊗A)∼= B⊗Tot(A)

for bisimplicial abelian groups A and abelian groups
B, and these isomorphisms are natural in both A
and B. The functors Tot and d are also right exact.

It follows that f and g induce natural chain maps

f∗ : d(A)→ Tot(A), g∗ : Tot(A)→ d(A)

for all simplicial abelian groups A.

The chain homotopies f g ' 1 and g f ' 1 induce
natural chain homotopies

f∗g∗ ' 1 : Tot(A)→ Tot(A),
g∗ f∗ ' 1 : d(A)→ d(A)

for all bisimplicial abelian groups A.

Remarks: 1) The proof of Theorem 26.1 which
appears in [3, p.205] contains an error: the se-
quence⊕

τ→σ

Z(∆r,s)→
⊕

∆p,q→A

Z(∆p,q)→ A→ 0

is not exact, which means that A is not a colimit
of its bisimplices in general. The problem is fixed
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by using the co-end description of A that you see
above.

2) The maps f and g have classical explicit mod-
els, namely the Alexander-Whitney map and shuf-
fle map, respectively. See [6, VIII.8] for a full dis-
cussion.

Recall that M(A) denotes the Moore chain com-
plex of a simplicial abelian group A.

The Alexander-Whitney map

f : M(A⊗B)→ Tot(M(A)⊗M(B)) (7)

is defined, for simplicial abelian groups A and B
by

f (a⊗b) = ∑
0≤p≤n

a|[0,...,p]⊗b|[p,...,n].

Here, a ∈ An and b ∈ Bn are n-simplices. The
“front p-face” a|[0,...,p] is defined by

∆
p [0,...,p]−−−→ ∆

n a−→ A.

The “back (n− p)-face” b|[p,...,n] is defined by

∆
n−p [p,...,n]−−−→ ∆

n b−→ B.

The Eilenberg-Zilber Theorem follows from
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Lemma 26.2. 1) The object

(p,q) 7→ Z(∆p×∆
q)

is a projective cofibrant (∆× ∆)-diagram of
simplicial abelian groups.

2) The object

(p,q) 7→ Tot(NZ(∆p)⊗NZ(∆q))

is a projective cofibrant (∆× ∆)-diagram of
chain complexes.

To see that Lemma 26.2 implies the Eilenberg-
Zilber Theorem, observe that there is a natural chain
homotopy equivalence

Tot(NZ(∆p)⊗NZ(∆q))'Tot(MZ(∆p)⊗MZ(∆q))

of bicosimplicial chain complexes which is induced
by the natural chain homotopy equivalence of The-
orem 15.4 (Lecture 06) between normalized and
Moore chain complexes.

There is a similar natural chain homotopy equiva-
lence

MZ(∆p×∆
q)' NZ(∆p×∆

q).

Finally, there is a natural chain homotopy equiva-
lence

NZ(∆p×∆
q)' Tot(NZ(∆p)⊗NZ(∆q)),
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since both objects are projective cofibrant resolu-
tions of the constant diagram of chain complexes
Z(0) on ∆×∆ by Lemma 26.2.

We use the following result to prove Lemma 26.2:

Lemma 26.3. Suppose p : A→ B is a trivial pro-
jective fibration of cosimplicial simplicial abelian
groups. Then all induced maps

(p,s) : An+1→ Bn+1×MnB MnA

are trivial fibrations of simplicial abelian groups.

Proof. The map s : Bn+1 → MnB is surjective for
all cosimplicial abelian groups B. In effect, if x =
(0, . . . ,0,xi, . . . ,xn) ∈MnB then

s(di+1xi) = (0, . . . ,0,xi,yi+1, . . . ,yn),

and x− s(di+1xi) is of the form

x− s(di+1xi) = (0, . . . ,0,zi+1, . . . ,zn) =: z.

Thus, inductively, if z = s(v) for some v ∈ An+1

then x = s(di+1xi+ v).

Write

Mn
(0,i)A= {(x0, . . . ,xi) | xi∈An,six j = s j−1xifor i < j }.

Then MnA = Mn
(0,n)A, and there are pullback dia-
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grams
Mn

(0,i+1)
//

��

An

s
��

Mn
(0,i) si

//Mn−1
(0,i)A

in which the two unnamed arrows are projections.

Suppose K is a cosimplicial object in sAb such
that all objects Kn are acyclic.

Then under the inductive assumption that s : Kn→
Mn−1

(0,i)K is a trivial fibration we see that the projec-
tion Mn

(0,i+1)K→Kn is a trivial fibration, and so the
map s : Kn+1→Mn

(0,i+1)K is a weak equivalence.

This is true for all i < n, and it follows that the
map s : Kn+1→MnK is a trivial fibration.

If K is the kernel of the projective trivial fibration
p : A→ B, then there is an induced comparison of
short exact sequences

O //Kn+1 //

s
��

An+1 //

(p,s)
��

Bn+1 //

1
��

0

0 //MnK //Bn+1×MnB MnA //Bn+1 // 0

so the map (p,s) is a weak equivalence.

Corollary 26.4. The cosimplicial simplicial abel-
ian group n 7→ Z(∆n) is projective cofibrant.
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Proof. Suppose p : A→ B is a projective trivial fi-
bration. Solving a lifting problem

A
p
��

Z(∆) //

<<

B

amounts to inductively solving lifting problems

∂∆n+1 //

��

An+1

(p,s)
��

∆n+1 //

66

Bn+1×MnB MnA

and this can be done by the previous Lemma.

Proof of Lemma 26.2. Suppose q : C→D is a pro-
jective trivial fibration of (∆×∆)-diagrams of sim-
plicial abelian groups. Then all maps

(q,s) : Cn+1→ Dn+1×MnD MnC

are projective trivial fibrations of cosimplicial sim-
plicial abelian groups, by Lemma 26.3.

Write ∆×∆ for the bicosimplicial diagram

(p,q) 7→ ∆
p×∆

q

of simplicial sets.
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Then lifting problems

C
q
��

∆×∆ //

;;

D

can be solved by inductively solving the lifting
problems

Z(∆×∂∆n+1) //

��

Cn+1

(q,s)
��

Z(∆×∆n+1) //

55

Dn+1×MnD MnC

in cosimplicial simplicial abelian groups.

For that, it suffices to show that the map

Z(∆×∂∆
n+1)→ Z(∆×∆

n+1)

is a projective cofibration, but this follows from
the observation that the maps

Z(∂∆
m×∆

n+1)∪Z(∆m×∂∆
m+1)→Z(∆m×∆

n+1)

are cofibrations of simplicial abelian groups xfor
m≥ 0, with Lemma 26.3.

We have proved statement 1) of Lemma 26.2.

The second statement of Lemma 26.2 has a very
similar proof. If q : C→ D is a projective trivial
fibration of bicosimplicial chain complexes, then
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all maps

(p,s) : Cn+1→ Dn+1×MnD MnC

are projective trivial fibrations of cosimplicial chain
complexes, by Lemma 26.3. Write

Tot(NZ(∆)⊗NZ(∆))

for the bicosimplicial chain complex

(p,q) 7→ Tot(NZ(∆p)⊗NZ(∆q)).

Then solving lifting problems

C
q
��

Tot(NZ(∆)⊗NZ(∆)) //

55

D

amounts to inductively solving lifting problems

Tot(NZ(∆)⊗NZ(∂∆n+1)) //

i
��

Cn+1

(q,s)
��

Tot(NZ(∆)⊗NZ(∆n+1)) //

33

Dn+1×MnD MnC

For this, we show that all maps i are projective
cofibrations of cosimplicial chain complexes, but
this reduces to showing that each of the maps

Tot(NZ(∆m)⊗NZ(∂∆
n+1))∪Tot(NZ(∂∆

m)⊗NZ(∆n+1))

→ Tot(NZ(∆m)⊗NZ(∆n+1))
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are cofibrations of chain complexes.

This last morphism is defined by freely adjoining
the chain ιm⊗ ιn, so it is a cofibration.

Remark: The proof of the Eilenberg-Zilber Theo-
rem that one finds in old textbooks uses the method
of acyclic models.

27 Universal coefficients, Künneth formula

Suppose X is a simplicial set, and that A is an
abelian group.

Recall that the nth homology group Hn(X ,A) of X
with coefficients in A is defined by

Hn(X ,A) = Hn(Z(X)⊗Z A),

where Z(X) denotes both a free simplicial abelian
group and its associated Moore complex.

The ring Z is a principal ideal domain, so A (a Z-
module) has a free resolution

0→ F2
i−→ F1

p−→ A→ 0.

All abelian groups Z(Xn) are free, and tensoring
with a free abelian group is exact, so there is a
short exact sequence of chain complexes

0→Z(X)⊗F2
1⊗i−−→Z(X)⊗F1

1⊗p−−→Z(X)⊗A→ 0.
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The long exact sequence in H∗ has the form

. . .
∂−→Hn(X ,F2)

(1⊗i)∗−−−→Hn(X ,F1)
(1⊗p)∗−−−−→Hn(X ,A) ∂−→ . . .

There are commutative diagrams

Hn(X ,F2)
(1⊗i)∗ //

∼=
��

Hn(X ,F1)
∼=
��

Hn(X ,Z)⊗F2 1⊗i
//Hn(X ,Z)⊗F1

It follows that there are short exact sequences

0→Hn(X ,Z)⊗A→Hn(X ,A)→Tor(Hn−1(X ,Z),A)→ 0.
(8)

These are the universal coefficients exact sequences.

Both Zn (n-cycles) and Bn (n-boundaries) are free
abelian groups, and so there is a map φn : Bn →
Z(X)n+1 such that the diagram of abelian group
homomorphisms

Bn
φn //

j
��

Z(X)n+1

��

Zn i
//Z(X)n

(9)

commutes, where i and j are canonical inclusions.
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Write Z̃n for the chain complex which is concen-
trated in degrees n and n+ 1 and with boundary
morphism given by the inclusion j.

The diagram (9) defines a chain map

φn : Z̃n→ Z(X),

which induces an isomorphism

Hn(Z̃n)∼= Hn(Z(X)),

while Hk(Z̃n) = 0 for k 6= n.

Adding up the maps φn therefore determines a (non-
natural) weak equivalence

φ :
⊕
n≥0

Z̃n→ Z(X).

The two complexes are cofibrant, so φ is a chain
homotopy equivalence and in particular there is a
chain homotopy inverse

ψ : Z(X)→
⊕
n≥0

Z̃n.

The map ψ and projection onto the complex Z̃n

therefore determine a chain map

Z(X)⊗A→ Z̃n⊗A
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Comparing universal coefficients sequences gives
a commutative diagram

Hn(X)⊗A //

∼=
��

Hn(X ,A)

��

Hn(X)⊗A ∼=
//Hn(Z̃n⊗A)

It follows that the natural map

Hn(X)⊗A→ Hn(X ,A)

from the universal coefficients sequence (8) is non-
naturally split.

We have proved

Theorem 27.1 (Universal Coefficients Theorem).
Suppose X is a simplicial set and A is an abelian
group.

There is a short exact sequence

0→Hn(X ,Z)⊗A→ Hn(X ,A)
→ Tor(Hn−1(X ,Z),A)→ 0.

for each n≥ 1. This sequence is natural in X, and
has a non-natural splitting.
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Here’s a different take on universal coefficients:

The chain complex Z̃n⊗A has homology

Hk(Z̃n⊗A)∼=


Tor(Hn(X),A) if k = n+1,

Hn(X)⊗A if k = n,

0 if k 6= n,n+1,

and the chain homotopy equivalence φ induces iso-
morphisms

Hn(X ,A)∼= Hn(
⊕
n≥0

Z̃n⊗A)

∼= (Hn(X)⊗A)⊕Tor(Hn−1(X),A).

Remark: The simplicial set underlying a simpli-
cial abelian group has the homotopy type (non-
naturally) of a product of Eilenberg-Mac Lane spaces
— see [3, III.2.20].

Suppose C is a chain complex.

Then the chain homotopy equivalence φ induces a
homology isomorphism

Tot((
⊕
n≥0

Z̃n)⊗C)
'−→ Tot(Z(X)⊗C).

We can assume that C is cofibrant, even free in
each degree.
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Form cofibrant chain complexes FkC and maps FkC→
C such that the maps HkFkC → HkC are isomor-
phisms, and such that Hp(FkC) = 0 for p 6= k.

It follows that there is a chain homotopy equiva-
lence ⊕

k≥0

FkC
'−→C.

There are isomorphisms

Hp(Z̃n⊗FkC)∼=


Hn(X)⊗Hk(C) if p = n+ k,

Tor(Hn(X),Hk(C)) if p = n+ k+1,

0 otherwise

Exercise: Do you need a spectral sequence?
Hint: Filter FkC.

Adding up these isomorphisms gives split short
exact sequences

0→Hn(X)⊗Hk(C)→ Hn+k Tot(Z̃n⊗C)

→ Tor(Hn(X),Hk−1(C))→ 0
(10)

for k ≥ 0, and Hk Tot(Z̃n⊗C) = 0 for k < 0.

Taking a direct sum of the sequences (10) (and
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reindexing) gives short exact sequences

0→
⊕

0≤p≤n

Hn−p(X)⊗Hp(C)→ Hn Tot(Z(X)⊗C))

→
⊕

0≤q≤n−1

Tor(Hn−1−q(X),Hq(C))→ 0

(11)
The sequence (11) and the Eilenberg-Zilber Theo-
rem (Theorem 26.1) together imply the following
result:

Theorem 27.2 (Künneth Theorem). Suppose X and
Y are simplicial sets. Then there is a natural short
exact sequence

0→
⊕

0≤p≤n

Hn−p(X)⊗Hp(Y )→ Hn(X×Y )

→
⊕

0≤q≤n−1

Tor(Hn−1−q(X),Hq(Y ))→ 0.

This sequence splits, but not naturally.

The coefficient ring Z in the statement of Theorem
27.2 can be replaced by a principal ideal domain
R. The same theorem holds for H∗(X×Y,R), with
the same proof.
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If R = F is a field, all F-modules are free and the
Tor terms in the Theorem vanish, so

Hn(X×Y,F)∼=
⊕

0≤p≤n

Hn−p(X ,F)⊗F Hp(Y,F).

(12)
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