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24 Bisimplicial abelian groups, derived functors

Homology

Suppose A : I — Ab is a diagram of abelian groups,
defined on a small category /.

There is a simplicial abelian group E;A, with
EA,= € Ali)
O:ig—>—>ip
and with simplicial structure maps 0* defined for
0 : m — n by the commutative diagrams

Alip) = A(ig(0))
mcl line*(c)
@c:i0—>---—>inA(i0) o @y:joﬁ---aij(jO)
where & : ip — ig(o) 1S the morphism of / defined
by 6.
The simplicial abelian group E;A defines the ho-
motopy colimit within simplicial abelian groups.




Specifically, every diagram B : I — sAb of simpli-
cial abelian groups determines a bisimplicial abelian
group E;B with horizontal objects

EB,= & B

O:ig——>ip

There is a projective model structure on sAb’,
for which f : A — Bis a weak equivalence (respec-
tively fibration) if and only if each map f: A; — B;
1s a weak equivalence (respectively fibration) of
simplicial abelian groups (exercise).

Lemma 24.1. The canonical map

EB — ling,

I
induces a weak equivalence of simplicial abelian
groups
w:d(E;B) — limB
I

if B is projective cofibrant.

Proof. The generating projective cofibrations are
induced from the generating projective cofibrations

jx1:Kxhom(i, ) — L xhom(i, )

of I-diagrams of simplicial sets by applying the
free abelian group functor.
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There is an isomorphism
E/Z(X) = Z(holig 1X)
for all 7-diagrams of simplicial sets X.

The map
EiZ(hom(i, ) x K) — lim Z(hom(i, ) x K)
I

is the result of applying the free abelian group func-
tor to a diagonal weak equivalence of bisimplicial
sets.

Every pointwise weak equivalence of /-diagrams
A — B induces a diagonal weak equivalence

d(E/A) — d(E|B).
This is a consequence of Lemma 24.2. []

Lemma 24.2. Every level weak equivalence A —»
B of bisimplicial abelian groups induces a weak
equivalence d(A) — d(B).

Lemma 24.2 follows from Lemma 21.1 (the bisim-

plicial sets result).

Corollary 24.3. Suppose the level weak equiva-
lence p : A — B is a projective cofibrant replace-
ment of an I-diagram B.



Then there are weak equivalences
d(EB) < d(E;A) = lim,A.

Example: Suppose A : I — Ab is a diagram of
abelian groups. Write Ab’ for the category of such
[-diagrams and natural transformations.

ADb’ has a set of projective generators, ie. all func-
tors Z(hom(i, )) obtained by applying the free abelian
group functor to the functors hom(i, ), i € Ob(I).

It follows that every /-diagram A : [ — Ab of abelian
groups has a projective resolution

=P =P —A—=0.

The I-diagram I'(P,) of simplicial abelian groups
is projective cofibrant (exercise), so there are weak
equivalences of simplicial abelian groups

E/A=d(EA) < d(E[T(P.)) — lim /T(P.) = T(lim P.).
Thus, there are isomorphisms

T (EjA) = nk(F(liglP*)) = Hk(hgllP*).
We have proved the following:

Lemma 24.4. There are natural isomorphisms
m(EiA) = L(lim ) (A)
for all I-diagrams of abelian groups A.
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In other words, the homotopy (or homology) groups
of E;A coincide with the left derived functors of
the colimit functor in abelian groups.

Remark: Exactly the same script works for dia-
grams of simplicial modules over an arbitrary com-
mutative unitary ring R.

Example: Suppose G is a group, and let R(G)
be the corresponding group-algebra over R. An
R(G)-module, or simply a G-module in R — Maod,
is a diagram

M : G — R—Mod,

and the higher derived functors of lim . for M are
the group homology groups H,(G,M), as defined
classically.

In effect, one can show that there is an isomor-
phism of simplicial R-modules

L(lim)y(M) = Hy(EGM)

= H(R(EG) ®6 M) = Hi(G,M).
Here, EG = B(*/G) is the standard contractible

cover of BG so R(EG) — R is a free G-resolution
of the trivial G-module R.

R(EG) ®¢ M is the Borel construction for the G-
module M.



The R-module lim .M is the module of coinvari-
ants of the G-module M, and it is common to write

Example: Suppose that A : A°’ — sAb is a bisim-
plicial abelian group.

The colimit mn A, 1s the coequalizer
A = Ag — A = lim A,

of the face maps dy,d; : A| — Ao.

The bisimplicial set A" X K has (horizontal) colimit
71'()An X K=K.
It follows that the map
Z(A"XK) — 1_113 Z(A}, x K)
p
is a levelwise equivalence (in vertical degrees) of

bisimplicial abelian groups. This implies that the
bisimplicial abelian group map

A— mA =lim 4,

is a weak equivalence in all vertical degrees for
all projective cofibrant objects A, and therefore in-
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duces a diagonal weak equivalence
d(A) = lim A,
for all such objects A.

It follows that if A — B is a projective cofibrant
resolution of a bisimplicial abelian group B, then
there are weak equivalences

d(B) < d(A) = lim A,,

and so the diagonal d(B) is naturally equivalent to
the homotopy colimit of the simplicial object A.
Cohomology

There 1s a cohomological version of the theory
presented so far in this section. A little more tech-
nology is involved.

1) The category Ab’ of I-diagrams of abelian groups
has enough injectives.

2) If A is an I-diagram of abelian groups, then
there is an isomorphism of cochain complexes

hom(B(1/?),A NH*A

3) The functor hom( ,J) is exact if J is injective
(exercise), and thus takes weak equivalences X —
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Y of I-diagrams of simplicial sets to cohomology
isomorphisms hom(Y,J) — hom(X,J).

The canonical map B(I/?) — * is a weak equiva-
lence of I-diagrams, so the morphism

hom(x,J) — hom(B(1/?),J)

is a cohomology isomorphism if J is injective. Thus,
there are isomorphisms

HkH*J ~ @IJ if k=0, and
0 if k> 0.

4) More generally, there are isomorphisms
HkH*A = R(@I)kA =: @fA
for k > 0 and for all /-diagrams A.

In effect, A has an injective resolution A — J* and
both (cohomological) spectral sequences for the
bicomplex []*J* collapse.

5) If A is an I-diagram of abelian groups, then
there 1s an isomorphism

[« K(A,n)] = lim}(4), (1)

where | , | denotes morphisms in the homotopy
category of /-diagrams of simplicial sets.

The best argument that I know of for the isomor-
phism (1) appears in [4] (also [5]).
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The theory of higher right derived functors of in-
verse limit is a type of sheaf cohomology theory.

6) There are isomorphisms

7o holim ;K (A, n) = myholim ,Z
= Tolim;Z
> [x,7Z]
[, K(A,n)]
lim A,
where K(A,n) — Z is an injective fibrant model of
K(A,n).
The object K(A,n) is a de-looping of K(A,n— 1),
so there are isomorphisms

112

112

lim7™ A if 0 <k <n, and

mcholim K (A, n) = {0

ifk>n

25 Spectral sequences for a bicomplex

This section contains a very basic introduction to
spectral sequences.

We shall only explicitly discuss the spectral se-
quences in homology which are associated to a bi-
complex.



These spectral sequences, their cohomological analogs
(used at the end of Section 24), and the Bousfield-
Kan spectral sequence for a tower of fibrations [1],

are the most common prototypes for spectral se-
quences that one meets in nature.

Most of the material of this section in Mac Lane’s
“Homology” [6]. There are many other sources.

A bicomplex C consists of an array of abelian
groups C, 4, p,q > 0 and morphisms

d,:Cpy—>Cpy1 and 9,:Cp, — Cp_1 4,

such that
0> =07 =0 and

2,0y, + 9,0, = 0.
A morphism f : C — D of bicomplexes consists

of morphisms f: C,, — D, , that respect the dif-
ferentials.

Write Ch%r for the corresponding category.

There 1s a functor
Tot : Chi — Ch.,

taking values in ordinary chain complexes with

Tot(C), = @ Cpyg

p+q=n
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and with differential o : Tot(C),, — Tot(C),_; de-
fined on the summand C, , by

d(x) = d,(x) + du(x).
Every bicomplex C has two filtrations, horizontal
and vertical.
The p'" stage F,C of the horizontal filtration has
C., ifr<p,and
F, pCr,s — ’ )
0 if r > p.

Then
O=F CCKRCCHKCC...

and
UJF,(C)=cC

The functor C — Tot(C) is exact, so this filtration
on C induces a filtration on Tot(C).

One filters Tot(C), in finitely many stages:
0= F, Tot(C), C FyTot(C), C --- C F, Tot(C), = Tot(C),.

Generally, the long exact segences in homology
associated to the exact sequences

0— F,_1C5 F,C% F,C/F,_i1C—0
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arising from a filtration {F,C} on a chain complex
C fit together to define a spectral sequence for the
filtered complex.

This spectral sequence arises from the “ladder di-
agram”

Hp+q(Fp—2) Hp g1 (Fp—S)
iy iy

Hpq(Fp-1) Hpiq1(Fp—2) —— Hpig1 (Fp—2/Fp-3)
Isx Is

Px ad

Hpig(Fp) —— Hpyq(Fp/Fp-1) —> Hpyg-1(Fp-1)

ix ix

Px
Hpy14(Fpi1) Hpyg1(Fp) —— Hpig-1(Fp/Fp1)
i i
Hpiq (€) Hp g1 (©)
Set

ZM = {x € Hpyq(Fp/Fp-1) | d(x) € im(ii_l)}

and
BY? = p,(ker(i, 1)),

r
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and then define

p.q
Epvq — Zr
r BP,‘]'
r

for r > 1. Here, we adopt the convention that i’ =

1, so that
Efyq = Hpy4(Fp/Fp-1)

This is cheating slightly (this only works for bi-
complexes), but set

P _ ker(d)
” ps(ker(Hy o(Fp) = Hpiy(C)))

Finally, define
FyH, 1 4(C) =im(H) 4 (F)p) — Hp14(C)).

Given [x] € EP represented by x € Z choose
y € Hy,,(F,_,) such that i, '(y) = d(x). Then the
assignment [x| — [p.(y)] defines a homomorphism

. P4 p—rg+r—1
d,: EP?T — E} :

and this homomorphism is natural in filtered com-
plexes.
Then we have the following:
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Lemma 25.1. 1) We have the relation d* =0, and
there is an isomorphism

_ ker(d, : EP4 — EP—ratr—1
+1 =~ —r1 :
’ (d,: EFT7 & EP9)

2) There are isomorphisms
EP4 > EPA
forr>p,qg+2.
3) There are short exact sequences
0—F, 1Hy,(C)— F,H, ,(C) = EL"—0.
The proof is an exercise — chase some elements.

In general (ie. for general filtered complexes),

qu Hp+q( p/Fp 1)

and E5 is the homology of the complex with dif-
ferentials E/4 — E~"? given by the composites

d x
Hy i g(Fy/Fp1) 2 Hyig 1 (Fp1) =5 Hpig1(Fpo1/Fp2)

In the case of the horizontal filtration ), Tot(C) for
a bicomplex C, there is a natural isomorphism

F,Tot(C)/F,_ Tot(C) = C,.[p],
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so there is an isomorphism
E7"=H,(Cp,)
The differential d; is the homomorphism

O
Hq<Cp,*) =5 Hq(cp—l,*)
which is induced by the horizontal differential.

It follows, that for the horizontal filtration on the
total complex Tot(C) of a bicomplex C, there is a
spectral sequence with

EfY = H}(H)C) = H,4(Tot(C)).

In particular, the spectral sequence converges to
H,(Tot(C)) in the sense that the filtration quotients
EP4 determine H,(Tot(C)).

Here’s an example of how it all works:

Lemma 25.2. Suppose f : C — D is a morphism of
bicomplexes such that for some r > 1 the induced
morphisms EP4(C) — EP4(D) are isomorphisms
forall p,q > 0.

Then the induced map Tot(C) — Tot(D) is a ho-
mology isomorphism.

Lemma 25.2 is sometimes called the Zeeman com-
parison theorem.

15



Proof. The map f induces isomorphisms
EP9(C) = EL(D)

for all s > r (because all such E;-terms are com-
puted by taking homology groups, inductively in
s > r—+ 1. It follows that all induced maps

EL9(C) — ELY(D)

are isomorphisms. But then, starting with the mor-
phism

E%r+a(C) = _FEO0rtq (D)
| =
FoH,+o(Tot(C)) — Fo, o (Tot(D))

and using the fact that the induced maps on suc-
cessive filtration quotients are the isomorphisms

ERPT4T(C) S ERPTOT(D),
one shows inductively that all maps
FHy o (Tot(C)) — F:Hpy,(Tot(D))

are isomorphisms, including the case r = p 4+ ¢
which is the map

Hpo(TOL(C)) — Hyq(Tot(D)).

This is true for all total degrees p + g, so the map
Tot(C) — Tot(D) is a quasi-isomorphism. N
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Example: Suppose A is a bisimplicial abelian group.
Then the Generalized Eilenberg-Zilber Theorem
(Theorem 26.1) asserts that there is a natural chain
homotopy equivalence of chain complexes

d(A) ~ Tot(A)

where Tot(A) is the total complex of the associated
(Moore) bicomplex. Filtering A in the horizontal
direction therefore gives a spectral sequence with

EY =i (7 (A)) = Mpeqd(A). 2)

This spectral sequence is natural in bisimplicial
abelian groups A.

This spectral sequence can be used to give an al-
ternate proof of Lemma 24.4. If A — B is a level
equivalence of bisimplicial abelian groups, then
there is an E;-level isomophism

Ty (Apx) = Ty(Bp.x)

for all p,qg > 0.

L

Use Lemma 25.2 for the spectral sequence (2) to
show that the map d(A) — d(B) is a weak equiva-
lence.
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Application: The Lyndon-Hochschild-Serre spec-
tral sequence

Suppose f : C — D is a functor between small cat-
egories, and recall the bisimplicial set map

|| B(f/do) = BC
do—--—dy
of Section 23. Lemma 23.3 says that this map is a
diagonal weak equivalence.

The free abelian group functor preserves diagonal
weak equivalences, so there is a spectral sequence

EP = L(lim),H,(B(f/?),Z) = Hp+y(BC.Z).
(3)

The derived colimit functors are computed over
the base category D.

In the special case where f is a surjective group
homomorphism G — H with kernel K, this is a
form of the Lyndon-Hochschild-Serre spectral se-
quence

E{*=H,H,H,(BK,Z)) = H,,(BG,Z). (4)
We can put in other coefficients if we want.

To see that the E,-term of (4) has the indicated
form, take a set-theoretic section ¢ : H — G of the
group homomorphism f such that o(e) = e.
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Conjugation x — o(h)xco(h)~!, defines a group
isomorphism c¢4(;) : K — K and hence an isomor-
phism

h.:H.BK,Z)— H.(BK,Z)
in homology. The map A, is independent of the
choice of section ¢ because any two pre-images of

h determine homotopic maps K — K (ie. the two

isomorphisms differ by conjugation by an element
of K).

This action of H on H,(BK,Z) is the one appear-
ing in the description of the E,-term of (4).

The objects of f/x are the elements of H, and a
morphism g : h — A’ in f/x is an element g € G
such that 4’ f(g) = h.

There is a functor K — f/« defined by sending
k € K to the morphism k : e — e.

There is a functor f/* — K which is defined by
sending the morphism g : 4 — /' to the element

o(h)go(h)™L.
o (e) = e, so the composite functor
K— f/x—K

is the identity, while the elements o (h), h € H de-
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fine a homotopy from the composite

f/x—K— f/x
to the identity on f/x.

Finally, composition with o« € H defines the func-
tor o, : f/* — f/* in the decription of the bisim-
plicial set for f : G — H, and there is a homotopy
commutative diagram

K—f/x

Cc(oc)l lOC*

K—f/x

Thus, the action of @ on H,(B(f/*),Z) coincides
with the morphism «. : H.(BK,Z) — H,(BK,Z)
displayed above, up to isomorphism.

Example: Consider the short exact sequence
0—-7Z—-Q—Q/Z—0.

All three groups are abelian, so all conjugation ac-
tions are trivial and there is a spectral sequence
with

Ey" = H,(B(Q/Z),Hy(BZ,Q)) = Hp+,(BQ, Q).
S ~ BZ, so there are isomorphisms

Q ifg=0,1,and

H,(BZ.Q) = {o ifg>1
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The group Q/Z is all torsion, so that

Hy(B(Q/Z),Q) =0
forg > 1.

The E,-term for the spectral sequence therefore
collapses, so the “edge homomorphism”

H.(BZ,Q) — H.(BQ,Q)

is an isomorphism.

To see the claim about torsion groups, observe that
torsion abelian groups are filtered colimits of finitely
generated torsion abelian groups, and a finitely gen-
erated torsion abelian group is a finite direct sum
of cyclic groups.

It therefore suffices, by a Kiinneth formula argu-
ment (see (11) below) to show that

H,(Z/n,Q) =H,(B(Z/n),Q) =0
for p > 0.

The abelian group Z, as a trivial Z /n-module, has
a free resolution by Z/n-modules

Az S n(zim) -2 -0 5)

where 1 —¢ is multiplication by group-ring ele-
ment 1 —¢ and ¢ is the generator of the group Z/n.

21



The map N i1s multiplication by the “norm ele-
ment”

N=1+t+t7+-+1"L
Tensoring the resolution with the trivial Z /n-module
Z gives the chain complex

IR/ AN ANy AN/ Ny

and 1t follows that

(

7 p=0,
H,(BZ/n,Z)= < 0 if p=2n,n>0, and
\Z/n ifp=2n+1,n>0.
(6)

Tensoring with Q (which is exact) therefore shows
that H,(BZ/n,Q) = 0 for p > 0.

We could equally well tensor the resolution (5)
with the trivial Z/n-module QQ and get the same
answer, because QQ is uniquely n-divisible.

26 The Eilenberg-Zilber Theorem

Every bisimplicial abelian group A has a naturally
associated bicomplex M(A) with

M(A)m,n — Am,na
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and with horizontal boundaries

m

8h = Z(—l)idl’ IAm’n %Am—l,n
i=0

and vertical boundaries

n

8V = Z(—l)m+idi IAm,n — Am,n—l-
i=0

One checks that

0,0, + 0,0, =0
in all bidegrees — the signs were put in to achieve
this formula.

Here is the Generalized Eilenberg-Zilber Theorem
of Dold-Puppe [2], [3, IV.2.2]:

Theorem 26.1 (Dold-Puppe). Suppose that A is a
bisimplicial abelian group.

Then the chain complexes d(A) and Tot(A) are
naturally chain homotopy equivalent.

Proof. The standard Eilenberg-Zilber Theorem says
that there are natural chain maps

f:Z(KxL)— Tot(Z(K) R Z(L))
(Moore complexes) and
g:Tot(Z(K)RZ(L)) — Z(K X L),

23



and there are natural chain homotopies fg ~ 1 and
gf ~ 1 for simplicial sets K and L.

The Eilenberg-Zilber Theorem specializes to (is
equivalent to — exercise) the existence of chain
maps
d(Z(AP1)) =Z(AP x A7) EN Tot(Z(A?) R Z(A?)) = Tot(Z(AP))
and
g Tot(Z(AP9)) — d(Z(AP?))

and chain homotopies fg ~ 1 and gf ~ 1 which
are natural in bisimplices AP,

Every bisimplicial abelian group A is a natural col-
imit of the diagrams

Apg®L (Ar’s) M’)Ap,q ® Z(A‘D’q)
(y,e)*®li
A ® Z(A™)

where (7,0) : (r,s) — (p,q) varies over the mor-
phisms of A x A, and the maps

Vog i Apg QL(ATT) — A

given by (a,(y,0)) — (v,0)*(a) define the col-
imit.
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There are isomorphisms
d(BRA)=ZB®d(A),
Tot(B®A) = B Tot(A)
for bisimplicial abelian groups A and abelian groups

B, and these isomorphisms are natural in both A
and B. The functors Tot and d are also right exact.

It follows that f and g induce natural chain maps
fi:d(A) — Tot(A), g, : Tot(A) — d(A)
for all simplicial abelian groups A.

The chain homotopies fg ~ 1 and gf ~ 1 induce
natural chain homotopies
fig« = 1:Tot(A) — Tot(A),
gfi=1:d(A) = d(A)
for all bisimplicial abelian groups A. []
Remarks: 1) The proof of Theorem 26.1 which

appears in [3, p.205] contains an error: the se-
quence

Pzar)—» P Z(AM) A —0
T—0 AP4d—A

1S not exact, which means that A is not a colimit
of its bisimplices in general. The problem is fixed
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by using the co-end description of A that you see
above.

2) The maps f and g have classical explicit mod-
els, namely the Alexander-Whitney map and shuf-
fle map, respectively. See [6, VIIL.8] for a full dis-
cussion.

Recall that M(A) denotes the Moore chain com-
plex of a simplicial abelian group A.

The Alexander-Whitney map
f:MARB) — Tot(M(A)@M(B)) (7)

is defined, for simplicial abelian groups A and B
by

f(d@b) - Z a|[0,...,p] ®b‘[p,,n]

0<p<n

Here, a € A, and b € B,, are n-simplices. The
“front p-face” al . p) is defined by

L NYVNY

The “back (n — p)-face” b|(, ., is defined by

An—p P An b g

The Eilenberg-Zilber Theorem follows from
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Lemma 26.2. 1) The object
(p,q) — Z(A” x A7)
is a projective cofibrant (A x A)-diagram of
simplicial abelian groups.
2) The object
(p,q) — Tot(NZ(AP) @ NZ(A7))
is a projective cofibrant (A x A)-diagram of
chain complexes.

To see that Lemma 26.2 implies the Eilenberg-
Zilber Theorem, observe that there is a natural chain
homotopy equivalence

Tot(NZ(AP) QNZ(AT)) ~ Tot(MZ(A?)  MZ(A7))

of bicosimplicial chain complexes which is induced
by the natural chain homotopy equivalence of The-
orem 15.4 (Lecture 06) between normalized and
Moore chain complexes.

There is a similar natural chain homotopy equiva-
lence

MZ(A? x AT) ~ NZ(AP x A?).

Finally, there is a natural chain homotopy equiva-
lence

NZ(A? x A?) ~ Tot(NZ(A”) @ NZ(A?)),
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since both objects are projective cofibrant resolu-
tions of the constant diagram of chain complexes
Z,(0) on A x A by Lemma 26.2.

We use the following result to prove Lemma 26.2:

Lemma 26.3. Suppose p : A — B is a trivial pro-
jective fibration of cosimplicial simplicial abelian
groups. Then all induced maps

(p,S) :An+1 — Bn+1 XMnBMnA
are trivial fibrations of simplicial abelian groups.

Proof. The map s : B*™! — M"B is surjective for
all cosimplicial abelian groups B. In effect, if x =
(0,...,0,x;,...,x,) € M"B then

s(d™'x;) = (0,...,0,%, Yit1s-- 1 Vn),
and x — s(d"1x;) is of the form
x—s(d %) =(0,...,0,2i41,...,20) =: 2.
Thus, inductively, if z = s(v) for some v € A""!
then x = s(d™x; +v).
Write
M?O,i)A ={(x0, .-, %) | x; EA”,sixj = s/ Ixfori< j}.

Then M"A = M

(O,n)A7 and there are pullback dia-
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grams

M?o,iﬂ) ‘T

|

n n—1
M(O,i) gl M(O,i)A

in which the two unnamed arrows are projections.

Suppose K is a cosimplicial object in sAb such
that all objects K" are acyclic.

Then under the inductive assumption that s : K" —
M E"O_l.;K is a trivial fibration we see that the projec-
tion M E"O ; +1)K — K™ 1s a trivial fibration, and so the

. pn+l n
map s: K" — M(OJ.Jrl

This 1s true for all i < n, and it follows that the
map s : K" — M"K is a trivial fibration.

)K is a weak equivalence.

If K is the kernel of the projective trivial fibration
p : A — B, then there is an induced comparison of
short exact sequences

0*>Kn+1 —>An—l—1 —>Bn—l—l — 0

y (v9)] h

0—M"K —B""! xympM"A—B""1 —-0
so the map (p,s) is a weak equivalence. O

Corollary 26.4. The cosimplicial simplicial abel-
ian group n — Z(A") is projective cofibrant.
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Proof. Suppose p : A — B is a projective trivial fi-
bration. Solving a lifting problem

A
Z(A)— 1£p

amounts to inductively solving lifting problems

aAn—f—l An—H

l 7 i(p,S)

An—f—l ;)Bn—i-l XMnBMnA

and this can be done by the previous Lemma. []

Proof of Lemma 26.2. Suppose q : C — D is a pro-
jective trivial fibration of (A x A)-diagrams of sim-
plicial abelian groups. Then all maps

(g,8) : C"™' = D" ymp M™C

are projective trivial fibrations of cosimplicial sim-
plicial abelian groups, by Lemma 26.3.

Write A x A for the bicosimplicial diagram
(p,q) = A" x A

of simplicial sets.
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Then lifting problems
C

AXA——~D
can be solved by inductively solving the lifting
problems

Z(A X aAn—l—l) %:Cw—l

l i(q,@

Z(A X An_H) 4>Dn+1 X Mmnp M"'C
in cosimplicial simplicial abelian groups.
For that, it suffices to show that the map

Z(A x A1) — Z(A x A1)

is a projective cofibration, but this follows from
the observation that the maps

Z(QA" x A"™TYUZ(A™ x A1) — Z(A" x A1)
are cofibrations of simplicial abelian groups xfor
m > 0, with Lemma 26.3.

We have proved statement 1) of Lemma 26.2.

The second statement of Lemma 26.2 has a very
similar proof. If ¢ : C — D is a projective trivial
fibration of bicosimplicial chain complexes, then
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all maps
(p,s): C""' — D" < ymp MC

are projective trivial fibrations of cosimplicial chain
complexes, by Lemma 26.3. Write

Tot(NZ(A) @ NZ(A))
for the bicosimplicial chain complex
(p,q) — Tot(NZ(AP) @ NZ(A?)).
Then solving lifting problems
.C

o l q
Tot(NZ(A) @ NZ(A)) — D
amounts to inductively solving lifting problems

Tot(NZ(A) @ NZ(A™')) —= "+

Tot(NZ(A) @ NZ(A™ 1)) —— D" x ymp M"C

For this, we show that all maps i are projective

cofibrations of cosimplicial chain complexes, but

this reduces to showing that each of the maps

Tot(NZ(A™) @ NZ(dA" 1)) UTot(NZ(IA™) @ NZ(A"1))
— Tot(NZ(A™) @ NZ(A™™))
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are cofibrations of chain complexes.
This last morphism is defined by freely adjoining
the chain 1,, ® 1,,, so it is a cofibration. []

Remark: The proof of the Eilenberg-Zilber Theo-
rem that one finds in old textbooks uses the method
of acyclic models.

27 Universal coefficients, Kiinneth formula

Suppose X i1s a simplicial set, and that A is an
abelian group.

Recall that the n"* homology group H,(X,A) of X
with coefficients in A is defined by
H,(X,A) =H,(Z(X)®zA),

where Z(X ) denotes both a free simplicial abelian
group and its associated Moore complex.

The ring Z is a principal ideal domain, so A (a Z-
module) has a free resolution

All abelian groups Z(X,) are free, and tensoring
with a free abelian group is exact, so there is a
short exact sequence of chain complexes

05 Z(X)®F -5 Z(X)®F —5 Z(X) A — 0.
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The long exact sequence in H, has the form

(X B) S g xR LEP

There are commutative diagrams

(11)

H,(X,F)

-

Hn(X7Z)®FZT®l>Hn(an)®FI

Hn(XaFl)
|

I

It follows that there are short exact sequences

0— Hy(X,Z)®A — Hy(X,A) — Tor(H,_1(X,Z),A)
8)

These are the universal coefficients exact sequences.

Both Z, (n-cycles) and B, (n-boundaries) are free
abelian groups, and so there is a map ¢, : B, —
Z.(X )n+1 such that the diagram of abelian group
homomorphisms

By " Z(X) 1 9)

jl |

commutes, where i and j are canonical inclusions.
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Write Z, for the chain complex which is concen-
trated in degrees n and n + 1 and with boundary
morphism given by the inclusion j.

The diagram (9) defines a chain map
O : Z, — Z(X),
which induces an isomorphism
H,(Z,) = H\(Z(X)),
while Hy(Z,) = 0 for k # n.

Adding up the maps ¢, therefore determines a (non-
natural) weak equivalence

0Pz, — Z(X).
n>0

The two complexes are cofibrant, so ¢ is a chain
homotopy equivalence and in particular there is a
chain homotopy inverse

y:Z(X) > EPZ.

n>0

The map y and projection onto the complex Z,
therefore determine a chain map

Z(X) QA =7, A

35



Comparing universal coefficients sequences gives
a commutative diagram

H,(X)A——H,(X,A)

. |

H,(X)®A—=-H,(Z,®A)
It follows that the natural map
H,(X)®A — H,(X,A)
from the universal coefficients sequence (8) is non-

naturally split.
We have proved

Theorem 27.1 (Universal Coefficients Theorem).
Suppose X is a simplicial set and A is an abelian

group.
There is a short exact sequence
0 —>H,(X,Z)®A — H,(X,A)
— Tor(H,—1(X,Z),A) — 0.

for each n > 1. This sequence is natural in X, and
has a non-natural splitting.
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Here’s a different take on universal coefficients:

The chain complex Z, ® A has homology
(
Tor(H,(X),A) iftk=n-+1,
H(Z,®A) =< H,(X)®A if k =n,
0 iftk#nn+1,

\
and the chain homotopy equivalence ¢ induces iso-
morphisms

H,\(X,A) = H,(DZ,®A)
n>0

= (H,(X)®A)®Tor(H,_1(X),A).

Remark: The simplicial set underlying a simpli-
cial abelian group has the homotopy type (non-

naturally) of a product of Eilenberg-Mac Lane spaces
— see [3, 1I1.2.20].

Suppose C is a chain complex.

Then the chain homotopy equivalence ¢ induces a
homology isomorphism

Tot((P Z,) ® C) = Tot(Z(X) @ C).

We can assume that C 1s cofibrant, even free in
each degree.
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Form cofibrant chain complexes F;C and maps F;,C —
C such that the maps H; F;.C — H;C are isomor-
phisms, and such that H,(F;C) = 0 for p # k.

It follows that there is a chain homotopy equiva-
lence

¢ rCc=cC.

k>0
There are isomorphisms

(H,(X)QH(C)  ifp=n-+k,
H,(Z, 0 FC) =< Tor(H,(X),Hi(C)) ifp=n+k+1,

0 otherwise

\
Exercise: Do you need a spectral sequence?
Hint: Filter F;C.

Adding up these isomorphisms gives split short
exact sequences

0 —H,(X)®H(C) — H,;Tot(Z,2C)
— Tor(H,(X),H;_1(C)) — 0

for k > 0, and H; Tot(Z, ® C) = 0 for k < 0.

Taking a direct sum of the sequences (10) (and

(10)
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reindexing) gives short exact sequences

0— & H,p(X)®H,(C) — H, Tot(Z(X) ®C))
N D Tor(Hu1-4(X),Hy(C)) —0

0<g<n—1
(11)
The sequence (11) and the Eilenberg-Zilber Theo-
rem (Theorem 26.1) together imply the following
result:

Theorem 27.2 (Kiinneth Theorem). Suppose X and
Y are simplicial sets. Then there is a natural short
exact sequence
0= & Hyp(X)QH,(Y) = H,(X X Y)
0<p<n
— P Tor(Hi1-4(X),H,(Y)) — 0.
0<g<n—1

This sequence splits, but not naturally.

The coefficient ring Z in the statement of Theorem
277.2 can be replaced by a principal ideal domain

R. The same theorem holds for H,(X x Y,R), with
the same proof.
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If R = F 1is a field, all F'-modules are free and the
Tor terms in the Theorem vanish, so

H,X xY,F)= @ H, ,(X,F)®rH,(Y,F).
0<p<n

(12)
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