Contents

28 The fundamental groupoid, revisited 1
29 The Serre spectral sequence 9
30 The transgression 18
31 The path-loop fibre sequence 23

28 The fundamental groupoid, revisited

The path category PX for a simplicial set X is
the category generated by the graph X; = X of 1-
simplices x : d} (x) — dp(x), subject to the relations

di (o) =dy(o)-dy(0)
given by the 2-simplices o of X.
There is a natural bijection
hom(PX,C) = hom(X,BC),
so the functor P : sSet — cat is left adjoint to the
nerve functor.

Write GPX for the groupoid freely associated to
the path category. The functor X — GP(X) is left
adjoint to the nerve functor

B : Gpd — sSet.

Say that a functor f : G — H between groupoids is
a weak equivalence if the induced map f : BG —
BH 1s a weak equivalence of simplicial sets.
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Observe that sk (X) C X induces an isomorphism
P(sky(X)) = P(X), and hence an isomorphism
GP(sky(X)) = GP(X).

Nerves of groupoids are Kan complexes, so f :
G — H is a weak equivalence if and only if

1) f induces bijections

f +hom(a,b) —hom(f(a), f(b))
for all objects a,b of G, (ie. f is full and faith-
ful) and

2) for every object ¢ of H there is a morphism
¢ — f(a) in H for some object a of G (f is
surjective on 7).

Thus, f is a weak equivalence of groupoids if and
only if it is a categorical equivalence (exercise).

Lemma 28.1. The functor X — GP(X) takes weak
equivalences of simplicial sets to weak equivalences
of groupoids.

Proof. 1) Claim: The inclusion Aj; C A" induces an
isomorphism GP(A}) = GP(A") if n > 2.

This is obvious if n > 3, for then sk, (A}) = sk (A").



If n =2, then GP(A;) has a contracting homo-
topy onto the vertex k (exercise). It follows that
GP(A?) — GP(A?) is an isomorphism.

If n =1, then A,l is a point, and GPA,l is a strong
deformation retraction of GP(A!).

2) In all cases, GP(A}) is a strong deformation re-
traction of GP(A").

Strong deformation retractions are closed under
pushout in the groupoid category (exercise).

Thus, every trivial cofibration i : A — B induces a
weak equivalence GP(A) — GP(B), so every weak
equivalence X — Y induces a weak equivalence
GP(X) — GP(Y). []

Suppose Y 1s a Kan complex, and recall that the
fundamental groupoid 7 (Y) for Y has objects given
by the vertices of Y, morphisms given by homo-
topy classes of paths (1-simplices) x — y rel end
points, and composition law defined by extending
maps

(B, ,o) :A% —Y
tomaps 0 : A* = Y: [di(0)] = [B] - [«].
There 1s a natural functor

GP(Y)— n(Y)
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which is the identity on vertices and takes a sim-
plex A! =Y to the corresponding homotopy class.
This functor is an isomorphism of groupoids (ex-
ercise).

If X is a topological space then the combinato-
rial fundamental groupoid 7(S(X)) coincides up

to isomorphism with the usual fundamental groupoid
m(X) of X.

Corollary 28.2. Suppose i : X — Z is a weak equiv-
alence, such that Z is a Kan complex.

Then i induces a weak equivalence of groupoids
GP(X) % GP(Z) = n(Z).
There is a functor
ux : GP(X) — G(A/X)

that takes a 1-simplex @ : di(®) — do(®) to the
morphism (d°)~!(d') in G(A/X) defined by the
diagram

A0 _d'_ Al _d° A0

o

This assignment takes 2-simplices to composition
laws of G(A/X) [1, p.141].



There 1s a functor
vx : G(A/X) — GP(X)

which associates to each object o : A" — X its last
vertex

A5 AT S X
Then any map between simplices of A/X is mapped
to a canonically defined path between last vertices,
and compositions of A/X determine 2-simplices
relating last vertices.

Then vyuy is the identity on GP(X) and the maps
AO

on

A”/‘;

determine a natural isomorphism (aka. homotopy)
uxvx = lga/x)-
We have proved
Lemma 28.3. There is an equivalence of groupoids
uy : GP(X) S G(A/X) : vy,

which is natural in simplicial sets X.



Here’s a summary. Suppose X is a simplicial set
with fibrant model i : X — Z. Then there is a pic-
ture of natural equivalences

>~

GP(X)—~GP(Z)—=—m(Z)
uxl: :TS*
G(A/X) n(S|Z]) == (|2])
You need the Milnor theorem (Theorem 13.2) to

show that &, is an equivalence.

I refer to any of the three equivalent models 7(Z),
GP(X) or G(A/X) as the fundamental groupoid
of X, and write (X) to denote any of these ob-
jects.

The adjunction map X — BGP(X) is often written
n:X — Br(X).
Lemma 28.4. Suppose C is a small category.
Then there is an isomorphism
GP(BC) = G(C),
which is natural in C.

Proof. The adjunction functor € : P(BC) — Cis an
isomorphism (exercise). []



Remark: This result leads to a fast existence proof
for the isomorphism

7 (BOM,0) = Ky(M)

(due to Quillen [3]) for an exact category M, in
algebraic K-theory.

It also follows that the adjunction functor
€:GP(BG)— G

is an isomorphism for all groupoids G.

Lemma 28.5. Suppose X is a Kan complex.

Then the adjunction map 1 : X — BGP(X) induces

a bijection my(X ) = my(BGP(X)) and isomorphisms
(X, x) = m (BGP(X),x)

for each vertex x of X.

Proof. This result is another corollary of Lemma
28.4.

There is a commutative diagram

a(X)— " r(BGP(X))
gT GP(n) Tg
GP(X) GPBGP(X)

\ >

GP(X)



It follows that 1) induces an isomorphism

n(n): n(X) = n(BGPX).
Finish by comparing path components and auto-
morphism groups, respectively. []

Say that a morphism p : G — H of groupoids is a
fibration if the induced map BG — BH is a fibra-
tion of simplicial sets.

Exercise: Show that a functor p is a fibration if
and only if it has the path lifting property in the
sense that all lifting problems

0%

ol
11—
(involving functors) can be solved.

Cofibrations of groupoids are defined by a left
lifting property in the usual way.

There is a function complex construction hom (G, H)
for groupoids, with

hom(G,H) := hom(BG,BH).
Lemma 28.6. /) With these definitions, the cate-
gory Gpd satisfies the axioms for a closed simpli-

cial model category. This model structure is cofi-
brantly generated and right proper.
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2) The functors
GP : sSet = Gpd : B
form a Quillen adjunction.

Proof. Use Lemma 28.1 and its proof. []

29 The Serre spectral sequence

Suppose f : X — Y is a map of simplicial sets, and
consider all pullback diagrams

f(o)—x

)

A" Y

o
defined by the simplices of Y.

We know (Lemma 23.1) that the bisimplicial set
map

|_| f_l(G()) — X

Op——0p

defines a (diagonal) weak equivalence

holim 5.4y f ' (0) = X

where the homotopy colimit defined on the sim-
plex category A/Y.



The induced bisimplicial abelian group map
D Z(f (o) = Z(X)
0p—++—0p
is also a diagonal weak equivalence.

It follows (see Lemma 24.4) that there is a spectral
sequence with

EPY =L( lim ),H,(f~'(0)) = Hpi4(X,Z),
oA"Y
(1)

often called the Grothendieck spectral sequence.

Making sense of the spectral sequence (1) usually
requires more assumptions on the map f.
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A) Suppose f: X — Y is a fibration and that Y is
connected.

By properness, the maps
0.:f'(c) = (1)

induced by simplex morphisms 0 : ¢ — T are weak
equivalences, and the maps

0. : Hi(f~'(0),Z) — H(f (), 2)
are isomorphisms.
It follows that the functors H; : A/Y — Ab which
are defined by
c— H(f '(0),Z)

factor through an action of the fundamental groupoid
of Y, in the sense that these functors extend uniquely
to functors

Hi: G(A/Y) — Ab.

Suppose x is a vertex of Y, and write F = p~!(x)
for the fibre of f over x.

Since Y is connected there is a morphism @g : x —
o in G(A/Y) for each object ¢ of the simplex cat-
egory. The maps w, induce isomorphisms

Wos : Hi(F,Z) — Hi(f ' (0),7Z),
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and hence define a functor

H\(F,Z):G(A/Y) — Ab
which is naturally isomorphic to the functor H;.
It follows that the spectral sequence (1) is isomor-

phic to

EPY = L(lim), H,(F,Z)) = Hyoy(X.Z) ()
AJY

under the assumption that f : X — Y is a fibration
and Y is connected.

This is the general form of the Serre spectral se-
quence.

This form of the Serre spectral sequence is used,
but calculations often involve more assumptions.

B) The fundamental groupoid G(A/Y) acts triv-
ially on the homology fibres Hy(f~!(0),Z) of f
if any two morphisms &, : 6 — 7in G(A/Y) in-
duce the same map

o= B.: Hi(f7'(0),Z) = Hi(f (%), Z)
for all £ > 0.

This happens, for example, if the fundamental group
(or groupoid) of Y is trivial.

12



In that case, all maps x — x in G(A/Y) induce the
identity
Hk(F7 Z) — Hk(F7 Z)
for all k > 0, and there are isomorphisms (exer-
cise)
L(lim),H, (F,Z) = H,(B(A/Y), H,(F.Z))
~ H,(Y,H,(F,Z)).
Thus, we have the following:
Theorem 29.1. Suppose f : X — Y is a fibration

withY connected, and let I be the fibre of f over a

vertex x of Y. Suppose the fundamental groupoid
G(A/Y) of Y acts trivially on the homology fibres

of f.
Then there is a spectral sequence with

Ey* =Hy(Y,Hy(F,Z)) = Hp14(X,Z). (3

This spectral sequence is natural in all such fibre
sequences.

The spectral sequence given by Theorem 29.1 is
the standard form of the homology Serre spectral
sequence for a fibration.

Integral coefficients were used in the statement of
Theorem 29.1 for display purposes — Z can be
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replaced by an arbitrary abelian group of coeffi-
cients.

Examples: Eilenberg-Mac Lanes spaces

Say that X is n-connected (n > 0) if mHX = *, and
7 (X, x) = 0 for all k£ < n and all vertices x.

One often says that X is simply connected if it is
I-connected.

X is simply connected if and only if it has a trivial
fundamental groupoid 7(X) (exercise).

Here’s a general fact:

Lemma 29.2. Suppose X is a Kan complex, n > 0,
and that X is n-connected. Pick a vertex x € X.

Then X has a subcomplex Y such that Y, = {x} for
k <n, andY is a strong deformation retract of X.

The proof is an exercise.

Corollary 29.3. Suppose X is n-connected. Then
there are isomorphisms
7 ifk=0,

Hi(X,Z)
{X7) {o if0<k<n.
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Example: There is a fibre sequence
K(Z,1) - WK(Z,1) — K(Z,2) (4)
such that WK (Z,1) ~ x.

K(Z,2) is simply connected, so the Serre spectral
sequence for (4) has the form

Hy(K(Z2,2),Hy(K(Z,1),2)) = Hy.y(,Z).
1) H,(K(Z,2),A) =0by Corollary 29.3, s0 E, =
0 for all g.
2) K(Z,1)~S", so E}"=0forq > 1.
The quotient of the differential
dr By — Ey' 27

survives to EX! C Hy(%) = 0, so d, is surjective.
The kernel of d, survives to EZ? =0, so d5 is an
isomorphism and

H>(K(Z,2),Z) = 7.
Inductively, we find isomorphisms

Z itn=2k,k>0,and

H,(K(Z,2),Z) = .
0 ifn=2k+1,k>0.
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Example: There is a fibre sequence

K(Z/n,1) > WK(Z/n,1) - K(Z/n,2) (5)
such that WK(Z/n, 1) >~ x.
K(Z/n,2) is simply connected, so the Serre spec-
tral sequence for (5) has the form
H,y(K(Z/n,2),H(K(Z/n,1),Z)) = Hysy(+,2).

We showed (see (6) of Section 25) that there are

isomorphisms
)

7 p=0,

H,(BZ/n,Z) = < 0 if p=2n,n> 0, and
Z/n ifp=2n+1,n>0.
\

There are isomorphisms
E, 120
for g > 0 and
Hy(K(Z./n,2),Z) % Hi(K(Z/n,1),Z) = Z/n.

E)* = Hy,(K(Z/n,1),Z) = 0, so all differentials
on E;" are trivial. Thus, E;° = E3° = 0 because
H;(x) =0, and

H3(K(Z/n,2),Z) = E;* = 0.
We shall need the following later:
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Lemma 29.4. Suppose A is an abelian group. Then
there is an isomorphism

H5(K(A,2),Z) 0.

Proof. Suppose X and Y are connected spaces such
that
H(X,7Z)=0=H;(Y,Z)

for i = 1,3. Then a Kiinneth formula argument
(exercise — use Theorem 27.2) shows that X XY
has the same property.

The spaces K(Z,2) and K(Z/n,2) are connected
and have vanishing integral H, and H3, so the same
holds for all K(A,2) if A is finitely generated.

Every abelian group is a filtered colimit of its finitely
generated subgroups, and the functors H,( ,Z) pre-
serve filtered colimits. []

Lemma 29.5. Suppose A is an abelian group and
that n > 2. Then there is an isomorphism

Hyor (K (A1), Z) 20,

Proof. The proof is by induction on n. The case
n = 2 follows from Lemma 29.4.

Consider the fibre sequence
K(A,n) > WK(A,n) > K(A,n+ 1),
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with contractible total space WK (A, n).

EP"™'7P =0 for p < n+1 (the case p = 0 is the

inductive assumption). All differentials defined on

2,0
E;“L " are therefore 0 maps, so

H,2(K(A,n+1),2) = Ey P = EL20 — 0,

since EY is a quotient of H,, ., (x) = 0. (]

30 The transgression

Suppose p : X — Y is a fibration with connected
base space Y, and let F = p~!(x) be the fibre of p
over some vertex * of Y. Suppose that F' is con-
nected.

Consider the bicomplex

D Zp (o0)

Cp——0p

defining the Serre spectral sequence for H,(X,Z),
and write F), for its horizontal filtration stages.

Z(F) is a subobject of F.
The differential d, : E™® — E%"~! is called the
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transgresssion, and is represented by the picture

H,_\Fy—~H,_1(Fy/F_) —E>""
Lx

Hy(Fy/Fa-1) 5~ Hy1Fy

Here,
Ey" =97 (im(i))/im(ker(i.)),
EX" ' = H, |(K)/ker(i,),

and d,([x]) = [y] where i,(y) = d(x).

One says (in old language) that [x] transgresses to

it du([x]) = [y]-
Note that

EY '~ H, (F)/ker(i,).

Given [x] € E™ and z € EX"!, then d,([x]) = z if
and only if there is an element y € H,_{(Fp) such
that i,(y) = d(x) and y — z under the composite

H, (Fy)) = H,_(Fy/F_;) — E>" !,

The inclusion j : Z(F) C F, induces a composite
map

j i H, ((F)— m H, 1(Fy) = Eg,n—l N E}?,n—l)
(o2

and j' is surjective since Y is connected (exercise).
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Suppose x € H,(F,/F,_1) represents an element of
E™Y. Then d(x) = i.(y) for some y € H, |(F).
Write z for the image of y in E>" 1.

Choose v € H,_(F) such that j/(v) =z. Then
j«(v) and y have the same image in E>" ! 501, j.(z) =
i,(y) in H,_{(F,_1). This means that d(x) is in the
image of the map H,_(F) — H,_1(F,_1).

It follows from the comparison of exact sequences

Hn(Fn)—>Hn(Fn/F) 0 Hn—l(F)—> n—l(Fn)

-] | i =

Hn(Fn) HHn(Fn/Fn—l) THn—l(Fn—l) *> n—l(Fn)

that x is in the image of the map
H,(Fy/F) = Hy(Fy/Fy-1).
In particular, the induced map
H,(F,/F) = E}°
1S surjective.

Thus, d,(x) =y if and only if there is an element w
of H,(F,/F) such that w maps to x and y, respec-
tively, under the maps

E™ « H,(F,/F) % H,_\(F) % E*".
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H,(F,) — H,(X) is surjective, and H, _(F;,) — H,_1(X)
1s an isomorphism, so a comparison of long exact
sequences also shows that the map

H,(F,/F)— H,(X/F)
is surjective.

In summary, there is a commutative diagram

Ey° B H,(Fy/F) -2~ H,(F) L~ Eo"!
A |
E"0——H,(X)—H,(X F)
(6)

This diagram is natural in fibrations p.

There is a comparison of Serre spectral sequences
arising from the diagram

XLy (7)

p,

All fibres of p are connected, so it follows that the
map
pst ESY — Hy(Y)

1s an isomorphism.
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Write F,,(Y) and EP4(Y) for the filtration and spec-
tral sequences, respectively, for the total complex
associated tothemap 1: Y — Y.

There is a commutative diagram
n,() n
E2 <—<E‘n70
gi lp*
Ey°(Y) = E}°(Y)

that is induced by the comparison (7).
It follows that p, : E™® — E™9(Y) injective, and
that E™0 is identified with a subobject of H,, (Y /*)
via the composite
EM C EM(Y) & EMY) & Hy(Y) S Ho(Y /).

Lemma 30.1. Suppose p : X — Y is a fibration
with connected base Y and connected fibre I over
x € Yo. Suppose x € E™® C H,(Y /%), n > 1, and
thaty € E>" 1,

Then d,(x) =y if and only if there is an element
z € H,(X/F) such that p.(z) = x € H,(Y /*) and
Z+— y under the composite
Hy(X/F) % H,_(F) L EOn !,
Proof. Use the fact that the map
H,(F,/F)— H,(X/F)
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is surjective, and chase elements through the com-
parison induced by (7) of the diagram (6) with the
diagram

EO(Y) H,(F\(Y)/*)

~

I

H,(F\(Y))

|

EXY) <~z H,(Y)—5—~H,(Y /%)

to prove the result. []

31 The path-loop fibre sequence

We will use the model structure for the category
s.Set of pointed simplicial sets (aka. pointed spaces).

This model structure is easily constructed, since
s, Set = x/sSet is a slice category: a pointed sim-
plicial set is a simplicial set map * — X, and a
pointed map is a diagram

X (8)

In general, if ./ is a closed model category, with
object A, then the slice category A /. has a closed

23



model structure, for which a morphism

is a weak equivalence (resp. fibration, cofibration)
if the map f : X — Y is a weak equivalence (resp.
fibration, cofibration).

Exercise: 1) Verify the existence of the model struc-
ture for the slice category A/ . .

2) The dual assertion is the existence of a model
structure for the category . /B for all objects B €
A . Formulate the result.

Warning: A map g : X — Y of pointed simplicial

sets 1s a weak equivalence if and only if it induces

a bijection m(X) = my(Y') and isomorphisms
(X ,2) = (Y, 8(2))

for all base points z € X.

The model structure for s, Set is a closed simplicial

model structure, with function complex hom, (X,Y)
defined by

hom,(X,Y), =hom(X AA",Y),
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where
AL =AU {*}
is the simplex A" with a disjoint base point.

The smash product of pointed spaces X, Y is de-

fined by
X XY

XVY’
where the wedge X VY or one-point union of X

and Y is the coproduct of X and Y in the pointed
category.

XNY =

The loop space QX of a pointed Kan complex X
is the pointed function complex

QX = hom,(S',X),
where S' = Al /dA! is the simplicial circle with the
obvious choice of base point.

Write Al for the simplex Al, pointed by the vertex
1, and let
" =0A' ={0,1},

pointed by 1. Then the cofibre sequence
SOcaAl Lt 9)

of pointed spaces induces a fibre sequence

QX =hom, (S',X) — hom, (AL, X) £ hom, (5°,X) = X

(10)
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provided X is fibrant.

The pointed inclusion {1} C Al is a weak equiva-
lence, so the space

PX = hom, (A}, X)
1s contractible 1f X 1s fibrant.

The simplicial set PX is the pointed path space
for X, and the fibre sequence (10) is the path-loop
fibre sequence for X.

It follows that, if X 1s fibrant and * denotes the
base point for all spaces in the fibre sequence (10),
then there are isomorphisms

T, (X, %) = 1, (QX, %)
for n > 2 and a bijection
71'1(X,>l<) = ﬂo(QX)

Dually, one can take a pointed space Y and smash
with the cofibre sequence (9) to form a natural
cofibre sequence

Y 2SONY - ALAY = ST AY.

The space AL AY is contractible (exercise) — it is
the pointed cone for Y, and one writes

CX =X AAL
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One often writes
X =XASh

This object is called the suspension of X, although
saying this is a bit dangerous because there’s more
than one suspension construction for simplicial sets
—see [1, II1.5], [2, 4.4].

The suspension functor is left adjoint to the loop
functor. More generally, there is a natural isomor-
phism

hom,(X AK,Y) = hom, (K ,hom,(X,Y))
of pointed simplicial sets (exercise).

Lemma 31.1. Suppose f : X — QY is a pointed
map, and let f': X — Y denote its adjoint. Then
there is a commutative diagram

X——CX—XX
7l LG

QY ——PY Y

Proof. We’ll say how h(f) is defined. Checking
that the diagram commutes is an exercise.

The pointed map (contracting homotopy)
h:ALAAL = Al
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is defined by the relations
00—

1
-
Then the map

h(f):X AAL — hom,(Al,Y)
1s adjoint to the composite
XAALAAL 2 x A AL 22 hom, (S1,7) AA!
1% hom, (S',Y)AS' < Y
[]

Lemma 31.2. Suppose Y is a pointed Kan complex
which is n-connected for n > 1.

Then the transgression d; induces isomorphisms
H;(Y)= H; 1(QY)
for2 <i<2n.

Proof. Y is at least simply connected, and the ho-
motopy groups 7;(Y,*) vanish for i < n.

The Serre spectral sequence for the path-loop fi-
bration for ¥ has the form

EPY = H,(Y,H,(QY)) = H,,(PY).
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The space QY is (n— 1)-connected, so E5? =0
forO0<g<mn—1lor0<p<n.

Thus, the first possible non-trivial group off the
edges in the E)-term is in bidegree (n+ 1,n).

All differentials reduce total degree by 1 so

o the differentials d, : E/Y — EI=""~! vanish for
[ <2nandr <i,

o the differentials d, : E/~" — E%~! vanish for
r<iandi < 2n.

It follows that there is an exact sequence
0—EX 5 EY N EY ' 5 EY 1 50

for 0 < i <2n, and

EX = EY = H(Y), and

1

EX = EYT 2 H (QY)

for 0 < i <2n.
All groups E?+1 vanish for (p,q) # (0,0). [
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Lemma 31.3. Suppose f : X — QY is a map of
pointed simplicial sets, where Y is fibrant. Sup-
pose Y is n-connected, where n > 1.

Then for 2 < i < 2n there is a commutative dia-
gram
Hy(ZX) —2-H;1(X) (11)

ro |-
H;(Y) ——~H;-1(QY)

where f': XX — Y is the adjoint of f.

Proof. From the diagram of Lemma 31.1, there is
a commutative diagram

Hi(ZX /%) ~——H,(CX /X)—*—H; 1(X) (12)
7| () |
Hi(Y /%)~ Hi(PY /QY) ——~H;_1(QY)
After the standard identifications
E =2 H(Y /%), and
EX > H_ (QY).
and given x € H;(Y /x) and y € H; _{(QY ), Lemma

30.1 implies that d;(x) =y if there is a z € H;(PY /QY)
such that p,(z) = x and d(z) = y.

This is true for f.(v) and f.(d(v)) for v € H;(£X),
given the isomorphism in the diagram (12).
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The map d; is an isomorphism for 2 < i < 2n by
Lemma 31.2. 0 is always an isomorphism. []

Corollary 31.4. Suppose Y is an n-connected pointed
Kan complex with n > 1.

Then there is a commutative diagram

Hi(ZQY)-2-H, ,(QY)

e 3

H;(Y)
for2 <i<2n.

The adjunction map € : XQY — Y induces an iso-
morphism H;(£QY) = H;(Y) for 2 <i <2n.

Proof. This is the case f = lgy of Lemma 31.3.
[]

If Y 1s a 1-connected pointed Kan complex, then
QY is connected.

We can say more about the map &,. The following
result implies that XQY is simply connected, so
the adjunction map € in the statement of Corollary
31.4 induces isomorphisms

Hi(£QY) = Hi(Y)

for 0 <i < 2n.
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Lemma 31.5. Suppose X is a connected pointed
simplicial set.

Then the fundamental groupoid n(¥XX) is a trivial
groupoid.

Proof. The proof is an exercise.

Use the assumption that X is connected to show
that the functor 7(CX) — m(XX) is full. [
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