Contents

32 Postnikov towers	1
33 The Hurewicz Theorem	7
34 Freudenthal Suspension Theorem	14

32 Postnikov towers

Suppose *X* is a simplicial set, and that $x, y : \Delta^n \to X$ are *n*-simplices of *X*.

Say that x is k-equivalent to y and write $x \sim_k y$ if there is a commutative diagram

$$\begin{array}{ccc} \operatorname{Sk}_k \Delta^n & \xrightarrow{i} & \Delta^n \\ \downarrow i & & \downarrow y \\ \Delta^n & \xrightarrow{\chi} & X \end{array}$$

or if

$$x|_{\operatorname{sk}_k\Delta^n} = y|_{\operatorname{sk}_k\Delta^n}.$$

Write $X(k)_n$ for the set of equivalence classes of n-simplices of $X_n \mod k$ -equivalence.

Every morphism $\Delta^m \to \Delta^n$ induces a morphism $\mathrm{sk}_k \Delta^m \to \mathrm{sk}_k \Delta^n$. Thus, if $x \sim_k y$ then $\theta^*(x) \sim_k \theta^*(y)$.

The sets $X(k)_m$, $m \ge 0$, therefore assemble into a simplicial set X(k).

The map

$$\pi_k: X \to X(k)$$

is the canonical surjection. It is natural in simplicial sets X, and is defined for $k \ge 0$.

X(k) is the k^{th} **Postnikov section** of X.

If $x \sim_{k+1} y$ then $x \sim_k y$. It follows that there are natural commutative diagrams

$$X \xrightarrow{\pi_{k+1}} X(k+1)$$
 \downarrow^p
 $X(k)$

The system of simplicial set maps

$$X(0) \stackrel{p}{\leftarrow} X(1) \stackrel{p}{\leftarrow} X(2) \stackrel{p}{\leftarrow} \dots$$

is called the **Postnikov tower** of X.

The map $\pi_k : X_n \to X(k)_n$ of *n*-simplices is a bijection for $n \le k$, since $\operatorname{sk}_k \Delta^n = \Delta^n$ in that case.

It follows that the induced map

$$X \to \varprojlim_{k} X(k)$$

is an isomorphism of simplicial sets.

Lemma 32.1. Suppose X is a Kan complex. Then

- 1) $\pi_k: X \to X(k)$ is a fibration and X(k) is a Kan complex for $k \ge 0$.
- 2) $\pi_k: X \to X(k)$ induces a bijection $\pi_0(X) \cong \pi_0 X(k)$ and isomorphisms

$$\pi_i(X,x) \xrightarrow{\cong} \pi_i(X(k),x)$$

for $1 \le i \le k$.

3) $\pi_i(X(k), x) = 0$ for i > k.

Proof. Suppose given a commutative diagram

$$\Lambda_r^n \xrightarrow{(x_0, \dots, \hat{x}_r, \dots, x_n)} X \\
\downarrow \qquad \qquad \downarrow \pi_k \\
\Delta^n \xrightarrow{[y]} X(k)$$

If $n \le k$ the lift $y : \Delta^n \to X$ exists because π_k is an isomorphism in degrees $\le k$.

If n = k + 1 then $d_i(y) = d_i([y]) = x_i$ for $i \neq r$, so that the representative y is again a suitable lift.

If n > k + 1 there is a simplex $x \in X_n$ such that $d_i x = x_i$ for $i \neq r$, since X is a Kan complex.

There is an identity $\operatorname{sk}_k(\Lambda_r^n) = \operatorname{sk}_k(\Delta^n)$ for since $n \ge k+2$, and it follows that [x] = [y].

We have proved that π_k is a Kan fibration.

Generally, if $p: X \to Y$ is a surjective fibration and X is a Kan complex, then Y is a Kan complex (exercise).

It follows that all Postnikov sections X(k) are Kan complexes.

If n > k, $x \in X_0 = X(k)_0$ and the picture

$$\partial \Delta^n$$
 $\int_{\alpha}^{x} X(k)$

defines an element of $\pi_n(X(k),x)$, then all faces of the representative $\alpha: \Delta^n \to X$ and all faces of the element $x: \Delta^n \to X$ have the same k-skeleton, α and x have the same k-skeleton, and so $[\alpha] = [x]$.

We have proved statements 1) and 3). Statement 2) is an exercise. \Box

The fibration trick used in the proof of Lemma 32.1 is a special case of the following:

Lemma 32.2. Suppose given a commutative diagram of simplicial set maps

such that p and q are fibrations and p is surjective in all degrees.

Then π is a fibration.

Proof. The proof is an exercise.

Remarks:

1) If *X* is a Kan complex, it follows from Lemma 32.1 and Lemma 32.2 that all maps

$$p: X(k+1) \rightarrow X(k)$$

in the Postnikov tower for *X* are fibrations.

2) There is a natural commutative diagram

$$X \stackrel{\eta}{\longrightarrow} B\pi(X) \ \stackrel{\scriptstyle{lpha_1}}{\underset{\scriptstyle{}}{\swarrow}} \sum \left| \pi_{1*} \atop \scriptstyle{\simeq \downarrow} \pi_{1*} \right| \ X(1) \stackrel{\scriptstyle{\simeq}}{\underset{\scriptstyle{}}{\longrightarrow}} B\pi(X(1))$$

for Kan complexes X, in which the indicated maps η and π_{1*} are weak equivalences by Lemma 28.5

3) Suppose that X is a connected Kan complex. The fibre $F_n(X)$ of the fibration $\pi_n : X \to X(n)$ is the n-connected cover of X. The space $F_n(X)$ is n-connected, and the maps

$$\pi_k(F_n(X),z) \to \pi_k(X,z)$$

are isomorphisms for $k \ge n + 1$, by Lemma 32.1.

The homotopy fibres of the map $\pi_1: X \to X(1)$, equivalently of the map $X \to B(\pi(X))$ are the **universal covers** of X.

All universal covers of X are simply connected, and are weakly equivalent because X is connected.

More is true. Replace $\eta: X \to B\pi(X)$ by a fibration $p: Z \to B(\pi(X))$, and form the pullbacks

$$p^{-1}(x) \longrightarrow Z$$

$$\downarrow p$$

$$B(\pi(X)/x) \longrightarrow B\pi(X)$$

All spaces $p^{-1}(x)$ are universal covers, and there are weak equivalences

$$\underset{x \in \pi(X)}{\underline{\operatorname{holim}}}_{x \in \pi(X)} \ p^{-1}(x) \xrightarrow{\cong} Z \xleftarrow{\simeq} X.$$

Thus, every space X is a homotopy colimit of universal covers, indexed over its fundamental groupoid $\pi(X)$.

33 The Hurewicz Theorem

Suppose *X* is a pointed space.

The **Hurewicz map** for *X* is the composite

$$X \xrightarrow{\eta} \mathbb{Z}(X) \to \mathbb{Z}(X)/\mathbb{Z}(*)$$

where * denotes the base point of X.

The homology groups of the quotient

$$\tilde{\mathbb{Z}}(X) := \mathbb{Z}(X)/\mathbb{Z}(*)$$

are the **reduced homology groups** of X, and one writes

$$\tilde{H}_n(X) = H_n(\tilde{\mathbb{Z}}(X)).$$

The reduced homology groups $\tilde{H}_n(X,A)$ are defined by

$$\tilde{H}_n(X,A) = H_n(\tilde{\mathbb{Z}}(X) \otimes A)$$

for any abelian group A.

The Hurewicz map is denoted by h. We have

$$h: X \to \tilde{\mathbb{Z}}(X)$$
.

Lemma 33.1. Suppose that π is a group.

The homomorphism

$$h_*:\pi_1(B\pi) o ilde{H}_1(B\pi)$$

is isomorphic to the homomorphism

$$\pi o \pi/[\pi,\pi]$$
.

Proof. From the Moore chain complex $\mathbb{Z}(B\pi)$, the group $H_1(B\pi) = \tilde{H}_1(B\pi)$ is the free abelian group $\mathbb{Z}(\pi)$ on the elements of π modulo the relations $g_1g_2 - g_1 - g_2$ and e = 0.

The composite

$$\pi \xrightarrow{\cong} \pi_1(B\pi) \xrightarrow{h_*} H_1(B\pi)$$

is the canonical map.

Consequence: If A is an abelian group, the map

$$h_*:\pi_1(BA)\to \tilde{H}_1(BA)$$

is an isomorphism.

Lemma 33.2. Suppose X is a connected pointed space.

Then $\eta: X \to B\pi(X)$ induces an isomorphism

$$H_1(X) \stackrel{\cong}{\to} H_1(B\pi(X)).$$

Proof. The homotopy fibre F of η is simply connected, so $H_1(F) = 0$ by Lemma 33.1 (or otherwise — exercise).

It follows that $E_2^{0,1} = 0$ in the (general) Serre spectral sequence for the fibre sequence

$$F \to X \to B\pi(X)$$

Thus, $E_{\infty}^{0,1} = 0$, while $E_2^{1,0} = E_{\infty}^{1,0} = H_1(B\pi(X))$.

The edge homomorphism

$$H_1(X) \to H_1(B\pi(X)) = E_{\infty}^{1,0}$$

is therefore an isomorphism.

The proof of the following result is an exercise:

Corollary 33.3. Suppose X is a connected pointed Kan complex.

The Hurewicz homomorphism

$$h_*:\pi_1(X) o ilde{H}_1(X)$$

is an isomorphism if $\pi_1(X)$ is abelian.

The following result gives the relation between the path-loop fibre sequence and the Hurewicz map.

Lemma 33.4. Suppose Y is an n-connected pointed Kan complex, with $n \ge 1$.

For $2 \le i \le 2n$ there is a commutative diagram

$$\pi_i(Y) \xrightarrow{\partial} \pi_{i-1}(\Omega Y)$$
 $h*\downarrow \qquad \qquad \downarrow h*$
 $ilde{H}_i(Y) \xrightarrow{\cong} ilde{H}_{i-1}(\Omega Y)$

Proof. Form the diagram

$$\tilde{\mathbb{Z}}(\Omega Y) = \tilde{\mathbb{Z}}(\Omega Y) \stackrel{h}{\longleftarrow} \Omega Y \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\tilde{\mathbb{Z}}(C\Omega Y) \longrightarrow \tilde{\mathbb{Z}}(PY) \stackrel{h}{\longleftarrow} PY \\
\downarrow \qquad \qquad \downarrow p_* \qquad \qquad \downarrow p \\
\tilde{\mathbb{Z}}(\Sigma \Omega Y) \xrightarrow{\varepsilon_*} \tilde{\mathbb{Z}}(Y) \stackrel{h}{\longleftarrow} Y$$

By replacing p_* by a fibration one finds a comparison diagram of fibre sequences and there is an induced diagram

$$\pi_i(Y) \xrightarrow{\partial} \pi_{i-1}(\Omega Y)$$
 $\downarrow_{h_*} \downarrow \qquad \qquad \downarrow_{h_*}$
 $\tilde{H}_i(Y) \stackrel{\cong}{\leftarrow} \tilde{H}_i(\Sigma \Omega Y) \stackrel{\cong}{\longrightarrow} \tilde{H}_{i-1}(\Omega Y)$

The bottom composite is the transgression d_i by Corollary 31.4.

Theorem 33.5 (Hurewicz Theorem). *Suppose X* is an n-connected pointed Kan complex, and that n > 1.

Then the Hurewicz homomorphism

$$h_*:\pi_i(X) o ilde{H}_i(X)$$

is an isomorphism if i = n + 1 and is an epimorphism if i = n + 2.

The proof of the Hurewicz Theorem requires some preliminary observations about Eilenberg-Mac Lane spaces:

The **good truncation** T_mC for a chain complex C is the chain complex

$$C_0 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} C_{m-1} \stackrel{\partial^*}{\leftarrow} C_m / \partial(C_{m+1}) \leftarrow 0 \dots$$

The canonical map

$$C \to T_m(C)$$

induces isomorphisms $H_i(C) \cong H_i(T_m(C))$ for $i \leq m$, while $H_i(T_m(C)) = 0$ for i > m.

The isomorphism $H_m(C) \cong H_m(T_m(C))$ is the "goodness". It means that the functor $C \mapsto T_m(C)$ preserves homology isomorphisms.

It follows that the composite

$$Y \xrightarrow{h_*} \tilde{\mathbb{Z}}(Y) \cong \Gamma N \tilde{\mathbb{Z}}(Y) \to \Gamma T_m N \tilde{\mathbb{Z}}(Y)$$

is a weak equivalence for a space Y of type K(A, m), if A is abelian.

For this, we need to show that h_* induces an isomorphism $\pi_m(Y) \to \tilde{H}_m(Y)$.

This seems like a special case of the Hurewicz theorem, but it is true for m = 1 by Corollary 33.3, and then true for all $m \ge 1$ by an inductive argument that uses Lemma 33.4.

We have shown that there is a weak equivalence $Y \to B$ where B is a simplicial abelian group of type K(A, m).

It is an exercise to show that *B* is weakly equivalent as a simplicial abelian group to the simplicial abelian group

$$K(A,m) = \Gamma(A(m)).$$

Proof of Theorem 33.5. The space X(n+1) is an Eilenberg-Mac Lane space of type K(A, n+1), where $A = \pi_{n+1}(X)$.

The Hurewicz map

$$h_*:\pi_m(Y) o ilde{H}_m(Y)$$

is an isomorphism for all spaces Y of type K(A, m), for all $m \ge 1$.

We know from Lemma 29.5 and the remarks above that there is an isomorphism

$$H_{m+1}(Y) = 0$$

for all spaces Y of type K(A, m), for all $m \ge 2$. It follows that

$$H_{n+2}(X(n+1)) = 0.$$

Now suppose that F is the homotopy fibre of the map $\pi_{n+1}: X \to X(n+1)$.

There are diagrams

$$\pi_{n+1}(X) \xrightarrow{\cong} \pi_{n+1}(X(n+1))$$
 $\pi_{n+2}(F) \xrightarrow{\cong} \pi_{n+2}(X)$
 $\pi_{n+2}(X) \xrightarrow{\cong} \pi_{n+2}(X)$
 $\pi_{n+1}(X) \xrightarrow{\cong} \pi_{n+1}(X(n+1))$
 $\pi_{n+2}(F) \xrightarrow{\cong} \pi_{n+2}(X)$
 $\pi_{n+2}(X) \xrightarrow{\cong} \pi_{n+2}(X)$

The Serre spectral sequence for the fibre sequence

$$F \rightarrow X \rightarrow X(n+1)$$

is used to show that

- 1) the map $H_{n+1}(X) \to H_{n+1}(X(n+1))$ is an isomorphism since F is (n+1)-connected, and
- 2) the map $H_{n+2}(F) \rightarrow H_{n+2}(X)$ is surjective, since $H_{n+2}(X(n+1)) = 0$.

The isomorphism statement in the Theorem is a consequence of statement 1).

It follows that the map $h_*: \pi_{n+2}(F) \to \tilde{H}_{n+2}(F)$ is an isomorphism since F is (n+1)-connected.

The surjectivity statement of the Theorem is then a consequence of statement 2). \Box

34 Freudenthal Suspension Theorem

Here's a first consequence of the Hurewicz Theorem (Theorem 33.5):

Corollary 34.1. Suppose X is an n-connected space where n > 0.

Then the suspension $\Sigma(X)$ is (n+1)-connected.

Proof. The case n = 0 has already been done, as an exercise. Suppose that $n \ge 1$.

Then ΣX is at least simply connected since X is connected, and $\tilde{H}_k(\Sigma X) = 0$ for $k \le n + 1$.

Thus, the first non-vanishing homotopy group $\pi_r(\Sigma X)$ is in degree at least n+2.

Theorem 34.2. [Freudenthal Suspension Theorem] Suppose X is an n-connected pointed Kan complex where $n \ge 0$.

The homotopy fibre F of the canonical map

$$\eta: X \to \Omega \Sigma X$$

is 2n-connected.

Remark: "The canonical map" in the statement of the Theorem is actually the "derived" map, meaning the composite

$$X \to \Omega(\Sigma X) \xrightarrow{j_*} \Omega(\Sigma X_f),$$

where $j: \Sigma X \to \Sigma X_f$ is a fibrant model, ie. a weak equivalence such that ΣX_f is fibrant.

Proof. In the triangle identity

$$\Sigma X \xrightarrow{\Sigma \eta} \Sigma \Omega \Sigma(X)$$

$$\downarrow \varepsilon$$

$$\Sigma X$$

the space ΣX is (n+1)-connected (Corollary 34.1) so that the map ε induces isomorphisms

$$\tilde{H}_i(\Sigma\Omega\Sigma X) \xrightarrow{\cong} \tilde{H}_i(\Sigma X)$$

for $i \le 2n + 2$, by Corollary 31.4.

It follows that η induces isomorphisms

$$\tilde{H}_i(X) \xrightarrow{\cong} \tilde{H}_i(\Omega \Sigma X)$$
 (1)

for i < 2n + 1.

In the diagram

$$egin{aligned} \pi_{n+1}(X) & \stackrel{\eta_*}{\longrightarrow} \pi_{n+1}(\Omega \Sigma X) \ & \downarrow h \ H_{n+1}(X) & \stackrel{\cong}{\longrightarrow} H_{n+1}(\Omega \Sigma X) \end{aligned}$$

the indicated Hurewicz map is an isomorphism for n > 0 since $\pi_1(\Omega \Sigma X)$ is abelian (Corollary 33.3), while the map $h : \pi_1(X) \to H_1(X)$ is surjective by Lemma 33.1 and Lemma 33.2. It follows that $\eta_* : \pi_{n+1}(X) \to \pi_{n+1}(\Omega \Sigma X)$ is surjective, so F is n-connected.

A Serre spectral sequence argument for the fibre sequence

$$F \to X \xrightarrow{\eta} \Omega \Sigma X$$

shows that that $\tilde{H}_i(F) = 0$ for $i \le 2n$, so the Hurewicz Theorem implies that F is 2n-connected.

In effect, $E_2^{i,0} \cong E_{\infty}^{i,0}$ for $i \leq 2n+1$ and $E_{\infty}^{p,q} = 0$ for q > 0 and $p+q \leq 2n+1$, all by the isomorphisms in (1).

It follows that the first non-vanishing $H_k(F)$ is in degree greater than 2n.

Example: The suspension homomorphism

$$\Sigma: \pi_i(S^n) \to \pi_i(\Omega(S^{n+1})) \cong \pi_{i+1}(S^{n+1})$$

is an isomorphism if $i \le 2(n-1)$ and is an epimorphism if i = 2n-1.

In effect, the homotopy fibre of $S^n \to \Omega S^{n+1}$ is (2n-1)-connected.

In particular, the maps $\Sigma : \pi_{n+k}(S^n) \to \pi_{n+1+k}(S^{n+1})$ are isomorphisms (ie. the groups stabilize) for $n \ge k+2$, ie. $n+k \le 2n-2$.

References

- [1] Hans Freudenthal. Über die Klassen der Sphärenabbildungen I. Große Dimensionen. *Compositio Math.*, 5:299–314, 1938.
- [2] P. G. Goerss and J. F. Jardine. *Simplicial Homotopy Theory*, volume 174 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 1999.