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41 Suspensions and shift

The suspension X ∧S1 and the fake suspension ΣX
of a spectrum X were defined in Section 35 — the
constructions differ by a non-trivial twist of bond-
ing maps.

The loop spectrum for X is the function complex
object

hom∗(S1,X).

There is a natural bijection

hom(X ∧S1,Y )∼= hom(X ,hom∗(S1,Y ))

so that the suspension and loop functors are ad-
joint.

The fake loop spectrum ΩY for a spectrum Y con-
sists of the pointed spaces ΩY n, n≥ 0, with adjoint
bonding maps

Ωσ∗ : ΩY n→Ω
2Y n+1.
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There is a natural bijection

hom(ΣX ,Y )∼= hom(X ,ΩY ),

so the fake suspension functor is left adjoint to
fake loops.

The adjoint bonding maps σ∗ : Y n→ΩY n+1 define
a natural map

γ : Y →ΩY [1].

for spectra Y .

The map ω : Y → Ω∞Y of the last section is the
filtered colimit of the maps

Y
γ−→ΩY [1]

Ωγ[1]−−−→Ω
2Y [2]

Ω2γ[2]−−−→ . . .

Recall the statement of the Freudenthal suspen-
sion theorem (Theorem 34.2):

Theorem 41.1. Suppose that a pointed space X is
n-connected, where n≥ 0.

Then the homotopy fibre F of the canonical map
η : X →Ω(X ∧S1) is 2n-connected.
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In particular, the suspension homomorphism

πiX → πi(Ω(X ∧S1))∼= πi+1(X ∧S1)

is an isomorphism for i ≤ 2n and is an epimor-
phism for i= 2n+1, provided that X is connected.

In general (ie. with no connectivity assumptions
on Y ), the space Sn ∧Y is (n− 1)-connected, by
Lemma 31.5 and Corollary 34.1.

Thus, the suspension homomorphism

πi+k(Sn+k∧Y )→ πi+k+1(Sn+k+1∧Y )

is an isomorphism if i≤ 2n−2+ k, and it follows
that the map

πi(Sn∧Y )→ π
s
i−n(Σ

∞Y )

is an isomorphism for i≤ 2(n−1).

Here’s an easy observation:

Lemma 41.2. The natural map γ : X → ΩX [1] is
a stable equivalence if X is strictly fibrant.

Proof. This is a cofinality argument, which uses
the fact that Ω∞X is the filtered colimit of the sys-
tem

X →ΩX [1]→Ω
2X [2]→ . . .
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Lemma 41.3. Suppose that Y is a pointed space.

Then the canonical map

η : Σ
∞Y →ΩΣ(Σ∞Y )

is a stable homotopy equivalence.

Proof. The map

πk(Sn∧Y )→ π
s
k−n(Σ

∞Y )

is an isomorphism for k ≤ 2(n−1).

Similarly (exercise), the map

πk(Ω(Sn+1∧X))→ π
s
k−n(ΩΣ(Σ∞X))

is an isomorphism for k+1≤ 2n or k ≤ 2n−1.
There is a commutative diagram

πk(Sn∧Y )
∼= //

∼=
��

πs
k−n(Σ

∞Y )

��

πk(Ω(Sn+1∧Y )) ∼=
// πs

k−n(ΩΣ(Σ∞Y ))

in which the indicated maps are isomorphisms for
k ≤ 2(n−1).

It follows that the map

π
s
p(Σ

∞Y )→ π
s
p(ΩΣ(Σ∞Y ))

is an isomorphism for p≤ n−2.

Finish by letting n vary.
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Remark: What we’ve really shown in Lemma 41.3
is that the composite

Σ
∞X

η−→ΩΣ(Σ∞X)
Ω j−→ΩF(Σ(Σ∞X))

is a natural stable equivalence.

Lemma 41.4. Suppose that Y is a spectrum. Then
the composite

Y
η−→ΩΣY

Ω j−→ΩF(ΣY )

is a stable equivalence.

Proof. We show that the maps

LnY
η−→ΩΣLnY

Ω j−→ΩF(ΣLnY )

arising from the layer filtration for Y are stable
equivalences.
In the layer filtration

LnY : Y 0, . . . ,Y n,S1∧Y n,S2∧Y n, . . .

the maps
(Σ∞Y n[−n])r→ LnY r

are isomorphisms for r ≥ n.

Thus, the maps

(ΩF(Σ(Σ∞Y n[−n])))r→ΩF(Σ(LnY ))r
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are weak equivalences for r ≥ n, so that

ΩF(Σ(Σ∞Y n[−n]))→ΩF(Σ(LnY ))

is a stable equivalence.

The map η : X →ΩΣX respects shifts, so Lemma
41.3 implies that the composite

Σ
∞Y n[−n]→ΩΣ(Σ∞Y n[−n])→ΩF(Σ(Σ∞Y n[−n]))

is a stable equivalence.

Theorem 41.5. Suppose that X is a spectrum.

Then the canonical map

σ : ΣX → X [1]

is a stable equivalence.

Proof. The map σ is adjoint to the map σ∗ : X →
ΩX [1], so that there is a commutative diagram

X η
//

σ∗ ""

ΩΣX
Ωσ
��

Ω j
//ΩF(ΣX)

ΩFσ
��

ΩX [1]
Ω j
//ΩF(X [1])

where j : ΣX → F(ΣX) is a strictly fibrant model.

The composite

X σ∗−→ΩX [1]
Ω j[1]−−−→Ω(FX)[1]
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is a stable equivalence by Lemma 41.2, and the
shifted map j[1] : X [1]→ (FX)[1] is a strictly fi-
brant model of X [1].

It follows that the composite

X σ∗−→ΩX [1]
Ω j−→ΩF(X [1])

is a stable equivalence.

The composite

X
η−→ΩΣX

Ω j−→ΩF(ΣX)

is a stable equivalence by Lemma 41.4.

The map ΩFσ is therefore a stable equivalence,
so Lemma 41.2 implies that

Fσ : F(ΣX)→ F(X [1])

is a stable equivalence.

Here’s another, still elementary but much fussier
result:

Theorem 41.6. The functors X 7→ X ∧S1 and X 7→
ΣX are naturally stably equivalent.

Sketch Proof: ([2], Lemma 1.9, p.7) The isomor-
phisms τ : S1∧Xn→Xn∧S1 and the bonding maps
σ ∧ S1 together define a spectrum with the space
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S1∧Xn in level n, and with bonding maps σ̃ de-
fined by the diagrams

S1∧S1∧Xn σ̃ //

S1∧τ
∼=��

S1∧Xn+1

τ∼= ��
S1∧Xn∧S1

σ∧S1
//Xn+1∧S1

There are commutative diagrams

S1∧S1∧Xn
S1∧σ

++

τ∧Xn

��
S1∧Xn+1

S1∧S1∧Xn σ̃

33

Composing then gives a diagram

S1∧S1∧S1∧Xn

(S1∧σ)(S1∧S1∧σ)

**

(3,2,1)∧Xn

��

S1∧Xn+2

S1∧S1∧S1∧Xn σ̃ ·(S1∧σ̃)

44

where (3,2,1) is induced on the smash factors mak-
ing up S3 by the corresponding cyclic permutation
of order 3.

The spaces S1∧X0,S1∧X2, . . . and the respective
composite bonding maps (S1∧σ)(S1∧S1∧σ) and
σ̃ · (S1 ∧ σ̃) define “partial” spectrum structures
from which the stable homotopy types of the orig-
inal spectra can be recovered.
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The self map (3,2,1) of the 3-sphere S3 has degree
1 and is therefore homotopic to the identity.

This homotopy can be used to describe a telescope
construction (see [2], p.11-15, and the next sec-
tion) which is stably equivalent to both of these
partial spectra.

Remark: The proof of Theorem 41.6 that is sketched
here is essentially classical. See Prop. 10.53 of [3]
for a more modern alternative.

Corollary 41.7. 1) The functors X 7→ X [1], X 7→
ΣX and X 7→ X ∧ S1 are naturally stably equiva-
lent.

2) The functors X 7→ X [−1], X 7→ ΩX and X 7→
hom∗(S1,X) are naturally stably equivalent.

Proof. Lemma 41.2 implies that the composite

X σ∗−→ΩX [1]
Ω j[1]−−−→ΩFX [1]

is a stable equivalence for all spectra X , where j :
X → FX is a strictly fibrant model.

Shift preserves stable equivalences, so the induced
composite

X [−1]
σ∗[−1]−−−→ΩX

Ω j−→ΩFX
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is a stable equivalence.

The natural stable equivalence ΣY 'Y ∧S1 induces
a natural stable equivalence

ΩX ' hom∗(S1,X)

for all strictly fibrant spectra X .

In other words, the suspension and loop functors
(real or fake) are equivalent to shift functors, and
define equivalences Ho(Spt)→Ho(Spt) of the sta-
ble category.

42 The telescope construction

Observe that a spectrum Y is cofibrant if and only
if all bonding maps σ : S1 ∧Y n → Y n+1 are cofi-
brations.

The telescope T X for a spectrum X is a natural
cofibrant replacement, equipped with a natural strict
equivalence s : T X → X .

The construction is an iterated mapping cylinder.
We find natural trivial cofibrations

X k jk−→CX k αk−→ T X k, k ≤ n,
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and tk : T X k→ X k such that tk ·(αk · jk) = 1 and the
maps tk define a strict weak equivalence of spectra
t : T X → X .

• X0 =CX0 = T X0 and j0 and α0 are identities,

• CXn is the mapping cylinder for σ : S1∧Xn→
Xn+1, meaning that there is a pushout diagram

S1∧Xn σ //

d0
��

Xn+1

jn+1
��

(S1∧Xn)∧∆1
+ ζn+1

//CXn+1

for each n.

Write σ∗ for the composite

S1∧Xn d1
−→ (S1∧Xn)∧∆

1
+

ζn+1−−→CXn+1

and observe that σ∗ is a cofibration.

The projection map

s : (S1∧Xn)∧∆
1
+→ S1∧Xn

satisfies s · d0 = 1 and induces a map sn+1 :
CXn+1→ Xn+1 such that sn+1 · jn+1 = 1. Fur-
ther sn+1 ·σ∗ = σ .
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• Form the pushout diagram

S1∧Xn σ∗ //

S1∧ jn ��

CXn+1

αn+1

��

S1∧CXn

S1∧αn ��

S1∧T Xn
σ̃

// T Xn+1

Then σ̃ is a cofibration, and the maps jn+1, αn+1

are trivial cofibrations.

The maps S1 ∧ tn and sn+1 together induce tn+1 :
T Xn+1 → Xn+1 such that tn+1 · (αn+1 · jn+1) = 1,
and the tk : T X k→ X k define a map of spectra up
to level n+1.

The projection maps s can be replaced with homo-
topies h : (S1∧Xn)∧∆1

+→ Zn in the construction
above, giving the following:

Lemma 42.1. Suppose X is a spectrum with bond-
ing maps σ : S1 ∧ Xn → Xn+1. Suppose X ′ is a
spectrum with the same objects as X, with bond-
ing maps σ ′ : S1∧Xn→ Xn+1. Suppose j : X ′→ Z
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is a map of spectra such that there are homotopies

S1∧Xn

d1
��

jσ ′

''

(S1∧Xn)∧∆1
+

h // Zn+1

S1∧Xn
d0
OO

jσ

77

Then the homotopies h define a map h∗ : T X → Z,
giving a morphism

X t←−
'

T X h∗−→ Z

from X to Z in the stable category.

If j : X ′→ Z is a strict weak equivalence then the
map h∗ is a strict weak equivalence.

Remarks:

1) The construction of Lemma 42.1 is natural, and
hence applies to diagrams of spectra.

Suppose that i 7→ Xi and i 7→ X ′i are spectrum val-
ued functors defined on an index category I such
that Xn

i = X ′ni for all i ∈ I. Let j : X ′ → Z be a
natural choice of strict fibrant model for the dia-
gram X ′ and suppose finally that there are natural
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homotopies

S1∧Xn
i

d1
��

jσ ′

&&
(S1∧Xn

i )∧∆1
+

h // Zn
i

S1∧Xn
i

jσ

88

d0
OO

where σ and σ ′ are the bonding maps for X and
X ′ respectively.

Then the homotopies h canonically determine a
natural strict equivalence h∗ : T X → Z, and there
are natural strict equivalences

X ← T X h∗−→ Z
j←− X ′.

2) Suppose given S2-spectra X(1) and X(2) having
objects S1∧X2n and bonding maps

σ1,σ2 : S2∧S1∧X2n = S3∧X2n→ S1∧X2n+2

respectively, such that the diagram

S3∧X2n
σ1
**

c∧1
��

S1∧X2n+2

S3∧X2n σ2

44
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commutes, where c is induced by the cyclic per-
mutation (3,2,1).

The map c has degree 1 and is therefore the iden-
tity in the homotopy category.

Choose a strict fibrant model j : X(2)→ FX(2) in
S2-spectra for X(2). Then

j ·σ1 ' j ·σ2 : S3∧X2n→ F(S1∧X2n+2),

and it follows that there are strict equivalences

X(1) t←− T X(1) h∗−→ FX(2)
j←− X(2).

If X(1) and X(2) are the outputs of functors de-
fined on spectra (eg. the comparison of fake and
real suspension in Theorem 41.6), then these equiv-
alences are natural.

43 Fibrations and cofibrations

Suppose i : A → X is a levelwise cofibration of
spectra with cofibre π : X → X/A.

Suppose α : Sr → Xn represents a homotopy ele-
ment such that the composite

Sr α−→ Xn π−→ Xn/An

represents 0 ∈ πr(X/A)n.
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Comparing cofibre sequences gives a diagram

Sr //

α
��

CSr //

��

S1∧Sr ' //

��

S1∧Sr

S1∧α��

Xn
π
// (X/A)n // S1∧An S1∧i //

σ
��

S1∧Xn

σ
��

An+1
i

//Xn+1

where CSr ' ∗ is the cone on Sr.

It follows that the image of [α] under the suspen-
sion map

πrXn→ πr+1Xn+1

is in the image of the map πr+1An+1→ πr+1Xn+1.

We have proved the following:

Lemma 43.1. Suppose A→ X → X/A is a level
cofibre sequence of spectra.

Then the sequence

π
s
kA→ π

s
kX → π

s
k(X/A)

is exact.

Corollary 43.2. Any levelwise cofibre sequence

A→ X → X/A

induces a long exact sequence

. . .
∂−→ π

s
kA→ π

s
kX → π

s
k(X/A) ∂−→ π

s
k−1A→ . . .

(1)
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The sequence (1) is the long exact sequence in
stable homotopy groups for a level cofibre sequence
of spectra.

Proof. The map X/A→ A∧ S1 in the Puppe se-
quence induces the boundary map

π
s
k(X/A)→ π

s
k(A∧S1)∼= π

s
k(A[1])∼= π

s
k−1A,

since A∧ S1 is naturally stably equivalent to the
shifted spectrum A[1] by Corollary 41.7.

Corollary 43.3. Suppose that X and Y are spectra.
Then the inclusion

X ∨Y → X×Y

is a natural stable equivalence.

Proof. The sequence

0→ π
s
kX → π

s
k(X ∨Y )→ π

s
kY → 0

arising from the level cofibration X ⊂X∨Y is split
exact, as is the sequence

0→ π
s
kX → π

s
k(X×Y )→ π

s
kY → 0

arising from the fibre sequence X → X×Y → Y .

It follows that the map X ∨Y → X ×Y induces an
isomorphism in all stable homotopy groups.
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Corollary 43.4. The stable homotopy category Ho(Spt)
is additive.

Proof. The sum of two maps f ,g : X→Y is repre-
sented by the composite

X ∆−→ X×X
f×g−−→ Y ×Y '←− Y ∨Y ∇−→ Y.

Corollary 43.5. Suppose that

A i //

α
��

B
β
��

C j
//D

is a pushout in Spt where i is a levelwise cofibra-
tion. Then there is a long exact sequence in stable
homotopy groups

. . .
∂−→ π

s
kA

(i,α)−−→ π
s
kC⊕π

s
kB

j−β−−→ π
s
kD ∂−→ π

s
k−1A→ . . .

(2)

The sequence (2) is the Mayer-Vietoris sequence
for the cofibre square.

The boundary map ∂ : πs
kD→ πs

k−1A is the com-
posite

π
s
kD→ π

s
k(D/C) = π

s
k(B/A) ∂−→ π

s
k−1A.
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Lemma 43.6. Suppose

A i−→ X π−→ X/A

is a level cofibre sequence in Spt, and let F be the
strict homotopy fibre of the map π .

Then the map i∗ : A→ F is a stable equivalence.

Proof. Choose a strict fibration p : Z→ X/A such
that Z→∗ is a strict weak equivalence.

Form the pullback

X̃ π∗ //

p∗
��

Z
p
��

X
π
//X/A

Then X̃ is the homotopy fibre of π and the maps
i : A→ X and ∗ : A→ Z together determine a map
i∗ : A→ X̃ . We show that i∗ is a stable equivalence.

Pull back the cofibre square

A //

i
��

∗
��

X
π
//X/A

along the fibration p to find a (levelwise) cofibre
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square
Ã //

ĩ ��

U

��

X̃ // Z
A Mayer-Vietoris sequence argument (Corollary
43.5) implies that the map Ã→ X̃ ×U is a stable
equivalence.

From the fibre square

Ã //

��

U

��
A // ∗

we see that the map Ã→ A×U is a stable equiva-
lence.

The map i∗ : A→ X̃ induces a section θ : A→ Ã
of the map Ã→ A which composes with the pro-
jection Ã→U to give the trivial map ∗ : A→U .

Thus, there is a commutative diagram

A i∗ //

(1A,∗)
||

θ��

X̃
(1X̃ ,∗)��

A×U

pr
##

Ã'oo ' //

��

X̃×U

{{
U
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and it follows that A is the stable fibre of the map
Ã→U , so i∗ is a stable equivalence.

Lemma 43.7. Suppose that

F i−→ E
p−→ B

is a strict fibre sequence, where i is a level cofibra-
tion.

Then the map E/F → B is a stable equivalence.

Proof. There is a diagram

F i //

=

��

j′∗
��

E π //

=

��

j′

��

E/F
γ

��

=

##

F ′

θ∗��

i′ //U

θ��

p′
//E/F

γ
zzF i

//E p
//B

where p′ is a strict fibration, j′ is a cofibration and
a strict equivalence, and θ exists by a lifting prop-
erty:

E = //

j′
��

E
p
��

U
γ p′

//

θ
??

B

The map j′∗ is a stable equivalence by Lemma 43.6,
so θ∗ is a stable equivalence.
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The map θ is a strict equivalence, and a compari-
son of long exact sequences shows that γ is a stable
equivalence.

Remark: Lemma 43.6 and Lemma 43.7 together
say that fibre and cofibre sequences coincide in the
stable category.

44 Cofibrant generation

We will show that the stable model structure on
Spt is cofibrantly generated.

This means that there are sets I and J of stably triv-
ial cofibrations and cofibrations, such that p : X→
Y is a stable fibration (resp. stably trivial fibration)
if and only if it has the RLP wrt all members of the
set I (resp. all members of J).

Recall that a map p : X → Y is a stably trivial fi-
bration if and only if it is a strict fibration and a
strict weak equivalence.

Thus p is a stably trivial fibration if and only if it
has the RLP wrt all maps

Σ
∞

∂∆
n
+[m]→ Σ

∞
∆

n
+[m].

We have found our set of maps J.
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It remains to find a set of stably trivial cofibrations
I which generates the full class of stably trivial
cofibrations. We do this in a sequence of lemmas.

Say that a spectrum A is countable if all consituent
simplicial sets An are countable in the sense that
they have countably many simplices in each de-
gree — see Section 11.

It follows from Lemma 11.2 that a countable spec-
trum A has countable stable homotopy groups.

The following “bounded cofibration lemma” is the
analogue of Lemma 11.3 for the category of spec-
tra.

Lemma 44.1. Suppose given level cofibrations of
spectra

X
j
��

A i
//Y

such that A is countable and j is a stable equiva-
lence.

Then there is a countable subobject B ⊂ Y such
that A⊂ B⊂Y and the map B∩X → B is a stable
equivalence.
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Proof. The map B∩X → B is a stable equivalence
if and only if all stable homotopy groups

π
s
n(B/(B∩X))

vanish, by Corollary 43.2.

Write A0 = A. Y is a filtered colimit of its count-
able subobjects, and the countable set of elements
of the homotopy groups πs

n(A0/(A0 ∩ X)) vanish
in πs

n(A1/(A1∩X)) for some countable subobject
A1 ⊂ X with A0 ⊂ A1.

Repeat the construction inductively to find count-
able subcomplexes

A = A0 ⊂ A1 ⊂ A2 ⊂ . . .

of Y such that all induced maps

π
s
n(Ai/(Ai∩X))→ π

s
n(Ai+1/(Ai+1∩X))

are 0. Set B = ∪iAi. Then B is countable and all
groups πs

n(B/(B∩X)) vanish.

Consider the set of all stably trivial level cofibra-
tions j : C→ D with D countable, and find a fac-
torization

C
in j //

j ��

E j
p j
��

D
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for each such j such that in j is a stably trivial cofi-
bration and p j is a stably trivial fibration.

Make fixed choices of the factorizations j = p j ·
in j, and let I be the set of all stably trivial cofibra-
tions in j.

Lemma 44.2. The set I generates the class of sta-
bly trivial cofibrations.

Proof. Suppose given a diagram

A //

j
��

X
f
��

B //Y
where j is a cofibration, f is a stable equivalence
and B is countable.

Then f has a factorization f = q · i where i is a
stably trivial cofibration and q is a stably trivial
fibration.

There is a diagram

A //

j

��

X
i��

Z
q��

B //

θ
;;

Y
where the lift θ exists since j is a cofibration and
q is a stably trivial fibration.
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The image θ(B) of B is a countable subobject of Z,
so Lemma 44.1 says that there is a subobject D⊂
Z such that D is countable and the level cofibration
j : D∩X → D is a stable equivalence.

What we have, then, is a factorization

A //

j
��

D∩X
j
��

//X
f
��

B //D //Y
of the original diagram, such that j is a countable,
stably trivial level countable.

We can further assume (by lifting to E j) that the
original diagram has a factorization

A //

j
��

D∩X
in j
��

//X
f
��

B //E j //Y

where the map in j is a member of the set I.

Now suppose that i : U→V is a stably trivial cofi-
bration. Then i has a factorization

U α //

i   

W
q
��

V
where α is a member of the saturation of I and q
has the RLP wrt all members of I.
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But then q has the RLP wrt all countable cofibra-
tions by the construction above, so that q has the
RLP wrt all cofibrations.

In particular, there is a diagram

U j
//

i
��

W
q
��

V 1
//

>>

V

so that i is a retract of j.

Remark: Compare the proof of Lemma 44.2 with
the proof of Lemma 11.5 — they are the same.
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