
Lecture 001 (September 12, 2014)

1 Categorical homotopy theory

Much of the material in this section was invented

by Quillen to describe the K-theory spaces, and

originally appeared in [5]. The theory has been

refined and extended over the years (see [2], for

example), and it is now part of the basic canon of

Homotopy Theory. This section contains a short

introduction to the theory.

1.1 Categories and simplicial sets

Recall that the finite ordinal number n is the finite

poset

n = {0, 1, . . . , n},
and that an ordinal number morphism θ : m→ n

is an order-preserving function, aka. poset mor-

phism. The ordinals n, n ≥ 0, and the morphisms

between them form the category ∆ of finite ordinal

numbers.

Suppose that C is a small category. Recall that the

nerve (or classifying space) BC is the simplicial set

with

BCn = hom(n, C),
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where the indicated morphisms are functors be-

tween small categories (every poset is a category).

Note that the n-simplex (functor) σ : n → C is

completely determined by the images

σ(0)→ σ(1)→ · · · → σ(n)

of the string of relations (arrows)

0 ≤ 1 ≤ · · · ≤ n,

so that one tends to identify BCn with strings of

arrows

a0 → a1 → · · · → an

in the category C.

The simplicial structure map

θ∗ : BCn → BCm

is precomposition with the ordinal number mor-

phism θ : m→ n: θ∗ takes an n-simplex σ : n→
C to the composite

m
θ−→ n

σ−→ C.

Example 1.1. 1) Bn = ∆n.

2) C is a groupoid if and only if BC is a Kan

complex.
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In a similar vein with the statement about groupoids,

the functor B : cat → sSet is fully faithful: the

function

B : hom(C,D)→ hom(BC,BD)

is a bijection (exercise). This means that a simpli-

cial set map BC → BD can be identified with a

functor C → D. For this reason (and this is even

fashionable), one can think of small categories as

special types of simplicial sets.

Here’s a fundamental observation:

Lemma 1.2. Suppose that C and D are small

categories. Then the projections C × D → C

and C ×D → D induce a natural isomorphism

of simplicial sets

B(C ×D)
∼=−→ BC ×BD.

The proof is obvious, and is an exercise.

A natural transformation h : f → f ′ of functors

f, f ′ : C → D between small categories can be

identified with a functor

h : C × 1→ D

or equivalently

h : C → D1,
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(D1 is the category of arrows in D) such that

h(a, 0) = f (a) and h(a, 1) = f ′(a). It follows

from the Lemma that the functor h induces a sim-

plicial set map

h : BC ×∆1 → BD,

which is a homotopy from f : BC → BD to

f ′ : BC → BD.

Corollary 1.3. 1) Suppose given functors

f : C � D : g

and natural transformations ε : fg → 1D
and η : 1C → gf . Then the induced simpli-

cial set maps

f : BC � BD : g

define a homotopy equivalence.

2) Any adjoint pair of functors

f : C � D : g

induces a homotopy equivalence BC ' BD.

3) Any equivalence of categories

f : C � D : g

induces a homotopy equivalence BC ' BD.
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4) Suppose that C has either an initial or ter-

minal object. Then BC is contractible,

5) The simplicial sets B(C/x) and B(x/C) as-

sociated to the slice categories C/x and x/C

are contractible.

Proof. If C has an initial object 0 then the functors

0 : 0 � C : t

form an adjoint pair (the functor 0 which picks out

the object 0 is left adjoint to the unique functor

t : C → 0. Thus BC ' ∆0.

Dually, if C has a terminal object ∗, then the func-

tors

t : C � 0 : ∗
are adjoint.

1 : x → x is a terminal object for C/x and is an

initial object for x/C.

I prefer pictures of the homotopies when I can draw

them. Suppose that C has a terminal object t.

Then any string of morphisms in C (ie. any sim-

plex of BC)

σ : a0 → a1 → · · · → an
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fits into a commutative diagram

a0
//

��

a1
//

��

. . . // an

��

t
1
// t

1
// . . .

1
// t

which is a functor hσ : n × 1 → C and hence a

simplicial set map hσ : ∆n × ∆1 → BC. These

maps hσ respect the incidence relations of simplices

of BC, and glue together to give the contracting

homotopy h : BC ×∆1 → BC.

Different topic:

Lemma 1.4. A simplicial set morphism f :

X → BC is completely determined by its re-

striction

sk2X ⊂ X
f−→ BC

to the 2-skeleton of X.

Proof. The simplicial set X is a colimit of its sim-

plices in the sense that the canonical map

lim−→
∆n→X

∆n → X

is an isomorphism. There is a corresponding iso-

morphism

lim−→
∆n→X

sk2 ∆n ∼=−→ sk2X
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since the 2-skeleton functor preserves colimits. Thus,

it’s enough to prove the Lemma for X = ∆n, but

this is obvious: a functor n → C is defined by

the images of objects (vertices) and morphisms (1-

simplices) subject to composition laws defined by

2-simplices.

Corollary 1.5. A simplicial set morphism f :

X → BC is completely determined by a the

graph morphism determined by the vertex map

f : X0 → Ob(C) and the edge map f : X1 →
Mor(C), and the composition laws

f (σ(0))
f(d2σ)

//

f(d1σ) &&

f (σ(1))

f(d0σ)
��

f (σ(2))

determined by the 2-simplices σ of X.

The path category P∗X of a simplicial setX whose

objects are the vertices X0 of X , and whose mor-

phisms are generated by the 1-simplices ω : d1(ω)→
d0(ω), subject to the relations

d1(σ) = d0(σ)d2(σ)

for each 2-simplex σ.

Corollary 1.6. The path category functor is
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left adjoint to the nerve functor: there are nat-

ural bijections

hom(P∗X,C) ∼= hom(X,BC)

Exercise 1.7. Show that the adjunction homo-

morphism ε : P∗BC → C is an isomorphism of

categories, for all small categories C.

Hint: show that the functor ε : P∗BC → BC has

a section σ : C → P∗BC which is the identity on

objects, and every path

a0 → a1 → · · · → an

is in the class of its composite a0 → an.

1.2 The fundamental groupoid

WriteGC for the free groupoid on a small category

C. We then have the following:

Corollary 1.8. The functor X 7→ GP∗X is left

adjoint to the nerve functor G 7→ BG defined

on groupoids G.

Recall from the homotopy theory course (Lecture

010, Section 28, to be precise, or see [1]) that

GP∗X is one of the equivalent models for the fun-

damental groupoid π(X) of a simplicial set X .
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The idea behind the equivalence with π(X) is that

one can show that the functor GP∗ takes the an-

odyne extensions Λn
k ⊂ ∆n to strong deforma-

tion retractions of groupoids, and hence takes weak

equivalences of simplicial sets to weak equivalences

(in fact, equivalences: exercise) of groupoids. Then

one shows that GP∗Y is isomorphic to the tradi-

tional fundamental groupoid π|Y | if Y is a Kan

complex.

The fundamental groupoid functor X 7→ π(X)

is left adjoint to the nerve functor G 7→ BG for

groupoids G. The Van Kampen Theorem is a triv-

ial consequence: every pushout diagram

A //

��

X

��

B // Y

induces a pushout diagram of groupoids

π(A) //

��

π(X)

��

π(B) // π(Y ).
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The key point about the fundamental groupoid for

K-theory is the following:

Lemma 1.9. Suppose that C is a small cate-

gory. Then there is a natural isomorphism

GP∗(BC) ∼= GC.

Proof. The required isomorphism is obtained by

applying the free groupoid functorG to the natural

isomorphism

ε : P∗BC
∼=−→ C

of Exercise 1.7.

1.3 Homotopy colimits

Nerves of groupoids have relatively simple struc-

tures defined by path components and automor-

phism groups (this is why they are extensively

studied), but nerves of more general categories cer-

tainly do not.

Recall that every simplicial set X is a homotopy

colimit of its simplices, in the sense that the sim-

plices (maps) ∆n → X induce a weak equivalence

holim−−−→∆n→X ∆n '−→ X, (1)

where the homotopy colimit is indexed over the

simplex category ∆/X of X .
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The objects of ∆/X are the simplices ∆n → X ,

and its morphisms are all commutative diagrams

(incidence relations)

∆m

''

��
X

∆n

77

of simplicial set maps.

The displayed map in (1) is an equivalence, be-

cause fibres over fixed simplices are nerves of cat-

egories which have initial objects (exercise).

The simplicial sets ∆n are contractible (the posets

n have initial and terminal objects — take your

pick), so the natural transformation ∆n → ∗ of

functors on ∆/X is a weak equivalence, and hence

induces a weak equivalence

holim−−−→∆n→X ∆n '−→ holim−−−→∆n→X ∗ = B(∆/X).

(2)

It follows that there are natural weak equivalences

B(∆/X)
'←− holim−−−→∆n→X ∆n '−→ X.

In particular, every simplicial set X is naturally

weakly equivalent to the nerve of its simplex cat-

egory. This statement is a theorem of Kan and

Thurston [4], from the 1970s.
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Homotopy colimits are discussed at some length

in the homotopy theory course [3] (particularly in

Lecture 008), and in [1].

Recall that if Y : I → sSet is a small diagram

taking values in simplicial sets, then holim−−−→ I Y can

be identified up to weak equivalence with the diag-

onal of a bisimplicial set given in horizontal degree

n by ⊔
i0→···→in

X(i0). (3)

It’s clear from this description that the homotopy

colimit for the terminal functor ∗ : I → sSet is

the bisimplicial set ⊔
i0→···→in

∗,

which has diagonal BI (this, by the way, is how

one defines the nerve functor in exotic settings [2],

as the homotopy colimit of the one-point diagram).

Also, any natural transformation Y → Y ′ induces

a map

holim−−−→ I Y → holim−−−→ I Y
′.

In particular the canonical transformation Y → ∗
induces a natural map

π : holim−−−→ I Y → BI.
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The map in (2) is an example of this map.

For the record, the horizontal simplicial set in ver-

tical degree m for the bisimplicial set (3) which de-

fines the homotopy colimit holim−−−→ I X is the nerve

of the translation category EIXm associated to the

set-valued functor Xm : I → Set.

Any functor Y : I → Set has a translation cate-

gory EIY : the objects of EIY are all pairs (i, x)

with i ∈ Ob(I) and x ∈ Y (i), and a morphism

α : (i, x) → (j, y) is a morphism α : i → j of I

such that α∗(x) = y.

B(EIY )n = {(i0, x0)→ (i1, x1)→ · · · → (in, xn)}
=

⊔
i0→···→in

Y (i0),

because all xi in the string are determined by x0.

The following is clear, from the corresponding re-

sult for bisimplicial sets:

Lemma 1.10. Any natural transformation Y →
Y ′ of I-diagrams which consists of weak equiv-

alences Y (i)
'−→ Y ′(i), i ∈ Ob(I) induces a weak

equivalence

holim−−−→ I Y
'−→ holim−−−→ I Y

′.
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This is why the map in (2) is a weak equivalence.

Beyond this, one of the most important things that

one can say about homotopy colimits in general is

the following result of Quillen:

Theorem 1.11. Suppose that X : I → sSet is

a diagram of equivalences in the sense that all

morphisms α : i → j of I induce weak equiva-

lences α∗ : X(i)
'−→ X(j). Then for each object

i of I the pullback diagram

X(i) //

��

holim−−−→ I X
π
��

∆0
i

//BI

is homotopy cartesian.

This result is proved in Section 23 (Lecture 008)

of [3]. See also [1].

The overall idea of proof is to find a factorization

∆0 i //

j
'
  

BI

A
p

==

with p a fibration and i a trivial cofibration, and

show that the induced map

X(i)
j∗−→ A×BI holim−−−→ IX
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is a weak equivalence. One does this by showing

that for all iterated pullback diagrams

pb1
//

��

pb2
//

��

holim−−−→ IX

π
��

Λn
k

//∆n //BI

the induced map pb1 → pb2 is a weak equivalence.

Remark 1.12. Here’s some culture: the cate-

gory I consists of a set Ob(I) of objects and a set

Mor(I) of morphisms, source and target maps s, t :

Mor(I) → Ob(I) identity arrows e : Ob(I) →
Mor(I) and a law of composition

Mor(I)×Ob(I) Mor(I)→ Mor(I)

which is associative and respects identities (I’ll leave

it to the reader to render these last two properties

as commutative diagrams of functions). A functor

X : I → sSet consists of simplicial sets X(i),

i ∈ Ob(I), and functions α∗ : X(i) → X(j),

α : i → j in Mor(I) which respect identities and

the composition law. Write

X =
⊔

i∈Ob(I)

X(i),
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and observe that the functions X(i)→ ∗ define a

simplicial set map π : X → Ob(I). Then in this

notation, the functor X is completely captured by

an “action”

Mor(I)×s X m //

pr
��

X

π
��

Mor(I)
t

//Ob(I)

(4)

which respects composition and identities in a way

the reader can describe. Here, the pullback dia-

gram

Mor(I)×s X //

pr
��

X

π
��

Mor(I) s
//Ob(I)

defines the fibre product object in (4). This is

the “internal” description of a functor X on the

category I .

Then the functor X : I → sSet is a diagram

of equivalences if and only if the diagram (4) is

homotopy cartesian (exercise), and the statement

of Theorem 1.11 is equivalent to the assertion that
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the pullback

X //

π
��

holim−−−→ I X

��

Ob(I) //BI

is homotopy cartesian.

Here’s some more culture: suppose that f : X →
Y is a map of simplicial sets, and form the pullback

diagrams

f−1(σ) //

��

X
f
��

∆n
σ

// Y

as σ varies through the simplices of Y . In this

way, we get a functor σ 7→ f−1(σ) defined on the

simplex category ∆/Y , and the maps f−1(σ) →
X define a map

holim−−−→∆n
σ−→Y

f−1(σ)→ X

Lemma 1.13. . The map

holim−−−→∆n
σ−→Y

f−1(σ)→ X

is a weak equivalence, for any map f : X → Y

of simplicial sets.

The assertion that the map

holim−−−→∆n→X∆n → X
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is a weak equivalence is a special case of Lemma

1.13.

The Lemma is easy enough to prove, with the same

technique: one shows that the fibres of the map

holim−−−→∆n
σ−→Y

f−1(σ)m → Xm

are nerves of categories which have initial objects

and are therefore contractible.

Lemma 1.13 is the foundation of all discussions of

the Serre spectral sequence.

1.4 Theorem B, and A

Lemma 1.13 has a categorical analog. Suppose

that f : C → D is a functor between small cate-

gories. The slice categories D/x and the canonical

functors D/x → D are categorical standins for

the simplices of a simplicial set (slice categories

are contractible), and one forms the pullbacks

f/x //

��

C

��

D/x //D

Here, f/x is the category whose objects are mor-

phisms τ : f (y)→ x in D, and whose morphisms
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τ → τ ′ are morphisms α : y → y′ of C such that

the diagrams

f (y) τ
''

f(α)
��

x

f (y′) τ ′

77

commute.

The assignment x 7→ f/x defines a diagram D →
cat, and the functors f/x→ C define a map

holim−−−→ x∈D B(f/x)→ BC.

I believe that Quillen was the first to observe the

following:

Lemma 1.14. The map

holim−−−→ x∈D B(f/x)→ BC.

is a weak equivalence.

Lemma 1.14 (like its simplicial set analog) is easy

to prove: a bisimplex in bidegree (n,m) in the

bisimplicial set which computes

holim−−−→ x∈D B(f/x)

is a triple

(x0 → · · · → xm, f (xm)→ y0, y0 → · · · → yn)
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consisting of a string x of arrows of C of length

m, a string y of arrows of D of length n and a

morphism f (xm)→ y0 of D, and the fibre over x

in vertical degree m is the nerve of the category

f (xm)/D, which is contractible.

Lemma 1.14 and Theorem 1.11 are the two major

components of the proof of the following result of

Quillen:

Theorem 1.15 (Theorem B). Suppose that f :

C → D is a functor between small categories

such that every morphism x→ x′ of D induces

a weak equivalence B(f/x) → B(f/x′). Then

all induced pullback diagrams

B(f/x) //

��

BC

f∗
��

B(D/x) //BD

are homotopy cartesian.

This result appears (with its proof) as Theorem

23.5 (Lecture 008) of [3], and also in [1].
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The proof is a picture of bisimplicial set maps:

B(f/x) //

��
II

tx0→···→xnB(f/x0) ' //

��
III

BC

��

B(D/x) //

'
��

I

tx0→···→xnB(D/x0) '
//

'
��

BD

∗ //tx0→···→xn∗

Then I + II is homotopy cartesian by Theorem

1.11, so II is homotopy cartesian and II + III is

homotopy cartesian, both by formal nonsense.

Theorem B has a little brother, namely Quillen’s

Theorem A:

Theorem 1.16 (Theorem A). Suppose that f :

C → D is a functor between small categories

such that all spaces B(f/x), x ∈ Ob(D) are

weakly equivalent to a point. Then the map f∗ :

BC → BD is a weak equivalence.

Theorem A follows from Theorem B, but it is

much easier to prove directly: the mapBC → BD

is weakly equivalent to the map in homotopy col-

imits overD which is induced by the natural trans-

formation

B(f/x)→ B(D/x),

and this natural transformation is a sectionwise
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weak equivalence if all spaces B(f/x) are weakly

equivalent to a point.

Theorem A is important in its own right, particu-

larly in homology of groups — see [6], for example.
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