
Lecture 002 (September 17, 2014)

2 Exact categories

The material on exact categories which is presented

here is taken (and adapted a little) from Quillen’s

“Higher Algebraic K-theory I” [1].

I’ll start with the canonical example.

Suppose that R is a unitary ring and let Mod(R)

of be the category of (left, right) R-modules. Let

P(R) be the full subcategory of Mod(R) whose

objects are the finitely generated projectives.

The category P(R) is closed under extensions in

Mod(R) in the sense that if there is an exact se-

quence

0→ P →M → Q→ 0

with P,Q projective then M is projective (because

such a sequence splits). The category Mod(R) is

an abelian category.

Suppose that E is the class of exact sequences

0→ P
i
� P ′′

p
� P → 0

with objects in P(R). The monomorphisms i in

such exact sequences are called admissible mono-
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morphisms (typically denoted P � P ′) while the

morphisms p are admissible epimorphisms (and

typically written Q� Q′).

In the particular example of finitely generated pro-

jective modules over a ring R, the admissible mon-

ics and epis are the split monomorphisms and epi-

morphisms respectively.

Example: Not all monomorphisms of P(R) are

admissible: the multiplication by n map

×n : Z→ Z
does not split.

The class of sequences E has the following proper-

ties (here, M = P(R)):

1) Any sequence in M which is isomorphic to a

sequence in E is in E.

The canonical split exact sequence

0→M →M ⊕M ′ →M ′ → 0

is in E.

2) Admissible epis are closed under composition

and under pullback by arbitrary maps of M.

Admissible monics are closed under composi-

tion and under pushout by arbitrary maps of

M.
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3) Suppose that M → M ′ is a map which has

a kernel in M. If there is a map N → M

such that the composite N → M → M ′ is an

admissible epi, then M →M ′ is an admissible

epi. Dually for admissible monics, if M ′′ →M

is a map which has a cokernel in M and there

is a map M → K such that the composite

M ′′ → M → K is an admissible monic, then

M →M ′′ is an admissible monic.

These properties are easy to prove for M = P(R).

Split epis are clearly closed under composition and

pullback, and dually for split monics. If the com-

positeN →M →M ′ is a split epi, thenM →M ′

has a section and is therefore a split epi.

More generally we have the following:

Definition: An exact category M is a small ad-

ditive subcategory of an abelian category A which

is closed under extensions and is equipped with a

family E of sequences

0→M →M ′ →M ′′ → 0

in M which are exact in A (called the exact se-

quences of M), such that properties 1), 2) and 3)

hold.
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Exercise: Suppose that M is an exact category.

Show that the opposite category Mop is an exact

category.

Other examples:

1) Any small abelian category, with all exact se-

quences.

2) M(R) = the category of finitely generated R-

modules for a Noetherian ring R (is closed un-

der extensions), with all exact sequences.

3) P(X) = vector bundles on a scheme X with

exact sequences which are locally split.

4) M(X) = coherent sheaves on a Noetherian

scheme X , with all exact sequences.

The vector bundles on a scheme X are those co-

herent sheaves of OX-modules which are locally

free for the Zariski topology. Equivalently a vector

bundle is anOX module which is finitely generated

projective on all affine open patches. Admissible

epis in this category are epimorphisms which split

on affine patches, and admissible monomorphisms

are monics which split on affine patches.

Coherent sheaves areOX-modules which are finitely

generatedR-modules on all (Noetherian) affine open
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patches Sp(R) ⊂ X . Obviously, P(X) ⊂M(X).

In particular, the axioms for vector bundles and

coherent sheaves follow from the corresponding ax-

ioms for finitely generated projectives and finitely

generated modules, respectively.

Lemma 2.1. Suppose that M is an exact cat-

egory. Then the isomorphisms of M are those

maps which are both admissible monics and ad-

missible epis.

Proof. If θ : M → N is an admissible epi and

an admissible monic, then it’s an epi and a monic

in an abelian category and is therefore an isomor-

phism.

In effect, there is an exact sequence

0→M
θ−→ N

p−→ P → 0.

But then θ is an epimorphism so that P ∼= 0. The

identity map 1 : N → N therefore factors through

θ: there is a unique map σ : N → M such that

θσ = 1N . But then θσθ = θ and θ is monic, so

that σθ = 1M .

The sequence

M
1M−→M → 0
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is isomorphic to the canonical sequence

M �M ⊕ 0 � 0,

and is therefore in E, so that 1M is an admissible

monic. Similarly, 1M is an admissible epi.

The classes of admissible monics and admissible

epis are closed under isomorphism, and so the di-

agrams

M
1M //

θ !!

M
θ∼=
��

N

M
θ ∼=
��

θ //N

N
1N

==

guarantee that an isomorphism θ is both an ad-

missible epi and an admissible monic.

Remark 2.2. For each object Q of M the se-

quences

0→ 0 � Q
1
� Q→ 0

and

0→ Q
1
� Q� 0→ 0

are exact. Write iQ for the canonical admissible

monic 0 � Q and pQ for the canonical admissible

epi Q� 0.
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Lemma 2.3. Suppose given a diagram

0

��

0

��

0

��

0 //K ′
iK //

��

j1 ��

K
pK //

��

j2
��

K ′′ //
��

j3��

0

0 //E ′
iE //

q1 ����

E
pE //

q2����

E ′′ //

q3����

0

0 //C ′
iC

//

��

C pC
//

��

C ′′ //

��

0

0 0 0

of exact sequences in M such that all vertical

sequences are in E. If any two of the horizontal

sequences are in E then so is the third.

Proof. Suppose that the E and C sequences are in

E. Then j2iK = iEj1 is an admissible monic and

iK has a cokernel in M, so that iK is an admissible

monic and the K sequence is in E.

Dually, if the K and E sequences are in E then

the C sequence is in E.

Suppose that the K and C sequences are in E.

Suppose that

K ′
iK //

j1 ��

K

��

E ′ //E ′ + K
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is a pushout diagram. Then the map E ′ → E ′+K

is an admissible monic (since admissible monics

are closed under pushout), and the comparison of

exact sequences

0 //E ′ //

1
��

E ′ + K //

��

K ′′ //
��

j3��

0

0 //E ′ //E //E ′′ // 0

forces the map E ′ + K → E to be monic. The

sequence

0→ E ′ + K → E
pCq2−−→ C ′′ → 0

is exact and pCq2 is an admissible epi, so the map

E ′ + K → E is an admissible monic. The map

iE : E ′ → E is the composite

E ′ → E ′ + K → E

and is therefore an admissible monic.

Lemma 2.3 is an exact category generator. Here

are some examples, all associated to a fixed exact

category M:

1) Write Ex(M) for the category of exact sequences

0→ P ′ � P � P ′ → 0
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in E, with morphisms given by comparisons

0 //P ′ // //

��

P // //

��

P ′′ //

��

0

0 //Q′ // //Q // //Q′′ // 0

in M. An exact sequence of Ex(M) is a dia-

gram

0

��

0

��

0

��

0 //P ′ // //

��

P // //

��

P ′′ //

��

0

0 //Q′ // //

��

Q // //

��

Q′′ //

��

0

0 //N ′ // //

��

N // //

��

N ′′ //

��

0

0 0 0

such that all vertical sequences are in E.

2) Monn(M) is the category whose objects are all

strings of admissible monics

P : P1 � P2 � · · ·� Pn

in M. The morphisms of Monn(M) are the

obvious natural transformations, and an exact

sequence

0→ P � Q� N → 0
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of Monn(M) is an exact sequence of functors

such that all component sequences

0→ Pi � Qi � Ni → 0

are in E.

3) Epin(M) is the category whose objects are all

strings

Q : Q1 � Q2 � · · ·� Qn

The morphisms of Epin(M) are natural trans-

formations, and an exact sequence

0→ P � Q� N → 0

of Epin(M) is a exact sequence of functors which

is componentwise in E.

4) Ison(M) is the category whose objects are all

strings

Q : Q0

∼=−→ Q1

∼=−→ . . .
∼=−→ Qn

of isomorphisms of length n (note the change

of string length compared to the definitions

above). The morphisms of Ison(M) are nat-

ural transformations, and an exact sequence

0→ P � Q� N → 0
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of Ison(M) is a exact sequence of functors which

is componentwise in E. In this case, it suffices

to require only that some sequence

0→ Pi → Qi → Ni → 0

is in E.

One doesn’t need Lemma 2.3 for Example 4), but

it is required for Examples 1)–3).

Example: Mon(M) = Mon1(M) is the category

of admissible monomorphisms A � B and exact

sequences.

Mon(M) is closed under extensions by Lemma 2.3.

Any sequence of Mon(M) which is isomorphic to

an exact sequence is exact, because this is so in M.

Admissible epis are closed under composition. Con-

sider the picture

K1
// //

��

A1
// //

��

��

A2
// //

��

��

A3��

��

K2
// //B1

// //B2
// //B3

where K1 and K2 are the kernels of the composite

admissible epis A1 � A3 and B1 � B3, respec-

tively. Then the map K1 → K2 is an admissible
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monic by Lemma 2.3. Dually, admissible monics

are closed under composition.

Admissible epis are closed under base change in

Mon(M), since admissible epis are closed under

base change in M. Dually, admissible epis of Mon(M)

are closed under cobase change.

Suppose given maps

P1
g1 //

��

��

M1
f1 //

��

��

N1��

��

P2 g2
//M2 f2

//N2

such that the map (f1, f2) has a kernel K1 � K2

in Mon(M), and such that the composites P1 →
N1 and P2 → N2 are admissible epis. Then the

maps f1 and f2 are admissible epis of M and hence

define an admissible epi of Mon(M). The dual

statement for admissible epis is has a similar proof.
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3 The Q construction

Suppose that M is an exact category. Define an

equivalence relation on all pictures

M � P � N

by saying that the top and bottom pictures in the

diagram

P
xxxx

θ∼=
��

%%

%%
M N

P ′
eeee

99

99

are equivalent if the displayed isomorphism exists,

making the diagram commute.

The category QM has for objects all objects of

M. The morphisms M → M ′′ are the equiva-

lence classes of the pictures above. Composition is

defined by pullback:

Q×M P
p

zzzz

$$
i

$$
Q

����

%%

j %%

P

πyyyy

��

��

K
θ

//M γ
//N

If the displayed pictures represent the classes θ and

γ, then the outer composites represent γ · θ.
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For the definition of composition to make sense you

need to know that i is an admissible monic. Recall

that the classes of admissible epis and admissible

monics are closed under composition, and admissi-

ble epis are closed under pullback (so that p is an

admissible epi). In the diagram

Q×M P i //

p
����

P
π
����

0 //Q //
j

//M
π′
// //M ′ // 0

the bottom sequence is exact, and i is the kernel

of π′π. The composite π′π is an admissible epi, so

that i is an admissible monic. We have shown:

Lemma 3.1. The class of admissible monics

in an exact category M is closed under pull-

back along admissible epis. Dually, the class of

admissible epis is closed under pushout along

admissible monics.

The pullback construction preserves isomorphisms

of the defining pictures, so that the composition is

well defined. The pictures

M
1M
�M

1M
�M

represent the identity morphisms for QM.
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Pullback diagrams of the form

P // //

����

P ′

����

Q // //Q′

are pushout diagrams, and conversely. Square di-

agrams like this which are both pullbacks (“carte-

sian”) and pushouts (“cocartesian”) are often said

to be bicartesian.

Suppose that i : M � N is an admissible monic

of M, and let i! : M → N be the morphism of

QM which is represented by the picture

M
1M
� N

i
� N.

Exercise 3.2. Write Mon(M) for the subcate-

gory of admissible monics of M. Show that the

function

Mon(M)(M,N)→ QM(M,N)

defined by i 7→ i! is injective and defines a functor

Mon(M)→ QM.

If p : P → N is an admissible epi, let p! : N → P

be the morphism of QM which is represented by

the picture

N
p
� P

1P
� P.
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Exercise 3.3. Write Epi(M) for the subcategory

of admissible epis of M. Show that the function

Epi(P,N)→ QM(N,P )

defined by p 7→ p! is injective and defines a (con-

travariant) functor Epi(M)op → QM.

Exercise 3.4. 1) Suppose that the morphism θ :

M → N of QM is represented by the picture

M
p
� P

i
� N.

Then θ = i! · p!.

2) Suppose given a pullback diagram

M ′ // i′ //

p′ ����

P
p
����

M //
i
//N

in M, where p is an admissible epi and i is an

admissible monic. Then p! · i! = i′! · p′! in QM.

Lemma 3.5. Suppose given functors

hm : Mon(M)→ C, he : Epi(M)op → C

such that

• hm and he coincide on objects
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• For any pullback square

M ′ // i′ //

p′ ����

P
p
����

M //
i
//N

in M we have the relation

he(p)hm(i) = hm(i)he(p
′)

in C.

Then there is a unique functor h : QM → C

such that h(i!) = hm(i) and h(p!) = he(p).

Proof. If the morphism θ : M → N of QM is

represented by the picture

M
p
� P

i
� N,

then θ = i! · p! and any functor g : QM → C

satisfying the criteria of the Lemma must satisfy

g(θ) = g(i!p
!) = g(i!)g(p!) = hm(i)he(p),

so that g is uniquely determined if it exists.

It remains to show that the assignment

θ 7→ hm(i)he(p)

is independent of the representing picture.
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Every isomorphism θ : M → N of M is both an

admissible epi and an admissible monic, and there

is a pullback square

M //
1M //

1M ����

M
θ����

M //
θ
//N

The morphism θ is invertible in both Epi(M) and

Mon(M) so that the morphisms he(θ) and hm(θ)

are invertible in C. The compatibility condition

for the functors he and hm and the square above

together imply that he(θ)hm(θ) = 1 in C, so that

he(θ) = hm(θ)−1.

Finally, suppose given a commutative diagram

Pp
xxxx

θ∼=
��

%% i
%%

M N

P ′p′
eeee

99 i′
99

in M. Then

hm(i)he(p) = hm(i′)hm(θ)he(p)

= hm(i′)he(θ)−1he(p)

= hm(i′)he(p
′),

and so the assignment θ 7→ hm(i)he(p) is well de-

fined.
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Definition: Suppose that M and N are exact

categories. An exact functor f : M → N is an

additive functor which takes exact sequences of M

to exact sequences of N.

Exact functors abound in nature. Here are some

examples:

1) The inclusionsP(R) ⊂M(R), P(X) ⊂M(X)

for Noetherian rings R and schemes X , respec-

tively, are exact.

2) Every ring homomorphism f : R → S (re-

spectively scheme homomorphism g : Y → X)

induces an exact functor f ∗ : P(R) → P(S)

with P 7→ P ⊗R S (respectively g∗ : P(X)→
Q(Y ) with P 7→ g∗(P ))

3) If g : R→ S is a flat morphism of Noetherian

rings then the assignmentN 7→ N⊗RS defines

an exact functor M(R) → M(S). Similarly,

if f : Y → X is a flat morphism of Noethe-

rian schemes, then inverse image defines an ex-

act functor g∗ : M(X) → M(Y ) for coherent

sheaves.

4) Suppose that f : R→ S gives S the structure

of a finitely generated R-module, where R is
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Noetherian. Then every finitely generated S-

module is finitely generated as an R-module,

so that restriction of scalars defines an exact

functor f∗ : M(S) → M(R), which we may

as well call the transfer. Similarly, if g : Y →
X is a finite morphism of schemes and X is

Noetherian, then restriction of scalars defines

a transfer morphism g∗ : M(Y )→M(X).

Exercise 3.6. Every exact functor f : M → N

induces a functor f : QM→ QN.

You can either take this to be completely obvious,

or apply Lemma 3.5.

Observe that every natural isomorphism f ∼= g of

exact functors M→ N induces a natural isomor-

phism f∗ ∼= g∗ of induced functors QM → QN,

and hence a homotopy f∗ ' g∗ of the associated

simplicial set maps BQM→ BQN.

An exact equivalence is a pair of exact functors

f : M � N : g

which forms an equivalence of categories in the

usual sense that there are natural isomorphisms

fg
∼=−→ 1N and gf

∼=−→ 1M. Every such exact equiva-

lence determines a homotopy equivalenceBQM '
BQN.
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Exercise 3.7. Let M be an exact category, and

define a functor

f : M→ Ison(M)

by sending an object P to the identity string

P
1−→ P

1−→ . . .
1−→ P.

Define a functor

g : Ison(M)→M

by sending the string

P0

∼=−→ P1

∼=−→ . . .
∼=−→ Pn

to the object P0. Show that the functors

f : M � Ison(M) : g

form an exact equivalence.

4 Fundamental groupoid of QM and K0(M)

Suppose that M is an exact category. The group

K0(M) is the free group generated by the isomor-

phism classes [P ] of objects P of M, subject to

the relations

[P ] = [P ′] + [P ′′],
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one for every exact sequence

0→ P ′ � P � P ′′ → 0

of E.

An exact functor f : M → N induces a group

homomorphism

f∗ : K0(M)→ K0(N).

Theorem 4.1. There is an equivalence of groupoids

GQM ' K0(M).

The following is a consequence of Theorem 4.1 and

Lemma 1.9 of Lecture 001.

Corollary 4.2. The space BQM is connected,

and there is an isomorphism of groups

π1(BQM, 0) ∼= K0(M).

Remark 4.3. You don’t need Theorem 4.1 to see

that BQM is connected. This assertion is a triv-

iality, given the presence of the admissible monics

iP : 0 � P for all objects P of M.

Proof of Theorem 4.1. We define a functor φ :

QM→ K0(M) by using Lemma 3.5; this functor

inverts all morphisms, and hence factors through

a functor φ∗ : GQM→ K0(M).
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Suppose that p : P � Q is an admissible epi, and

let φe(p) = [K] where

0→ K � P
p
� Q→ 0

is an exact sequence of E. If q : Q� N is another

admissible epi, then there is a diagram of exact

sequences

0

��

0

��

0

��

0 // ker(p) //

1
��

ker(qp) //

��
PB

ker(q) //

��

0

0 // ker(p) //

��

P p
//

qp
��

Q //

q
��

0

0 // 0 //

��

N
1

//

��

N //

��

0

0 0 0

(the square PB is a pullback). It follows that

φe(qp) = φe(p) + φe(q)

in K0(M). Also φe(1P ) = 0, so we have defined a

functor φe : Epi(M)op → K0(M).

Let φm : Mon(M) → K0(M) be the constant

functor which takes all admissible monics i to [0].
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For any pullback square

M ′ // i′ //

p′ ����

P
p
����

M //
i
//N

we have the relations

φe(p) + φm(i) = φe(p) = φe(p
′) = φm(i′) + φe(p

′),

since p and p′ have the same kernel. Lemma 3.5

therefore implies that there is a functor φ : QM→
K0(M) which is defined by φe and φm.

We can now define a functor

ψ : K0(M)→ GQM,

by sending a class [Q] to the class of the path

0
p!Q−→ Q

iQ!←− 0,

or i−1Q! p
!
Q in GQM. If there is an exact sequence

0→ K
i
� P

p
� Q→ 0

then there is a commutative diagram

P
p

����

Q
pQ

����

K
__

i
__

pK

����
0 0

__iQ

__

0
^^iK

^^
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in M in which the indicated square is a pullback.

It follows that

i1K!p
!
Ki
−1
Q! p

!
Q = i−1K!i

−1
! p!p!Q = i−1P ! p

!
P

in GQM.

The composite

QM
φ−→ K0(M)

ψ−→ GQM

is naturally isomorphic to the canonical functor

η : QM → GQM: the isomorphism ε : ψφ → η

is defined on object P by

εP = iP ! : 0 � P.

In effect, there are commutative diagrams in QM

K

i!

��

0

p!K
>>

iQ!
��

0

iK!
``

iP !
��

Q
p!

//P

for an admissible epi p : P � Q (with kernel

i : K → P ), and

0 1 //

iM ! ��

0
iN !��

M
i!
//N
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for an admissible monic i : M � N .

It follows that the composite

GQM
φ∗−→ K0(M)

ψ−→ GQM

is naturally isomorphic to the identity functor on

GQM. One also shows that the composite

K0(M)
ψ−→ GQM

φ∗−→ K0(M)

is the identity on K0(M): ψ([P ]) is the composite

i−1P ! p
!
P , while φ∗ takes p!P to [P ] and takes iP ! to

[0].
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