Lecture 003 (September 26, 2014)

5 Waldhausen’s s.,-construction

The basic definitions and results of this section
first appeared in Waldhausen’s seminal paper [3].
Many of the tricks in the proofs which are given
here appear in [1] and [2].

Suppose that C' is some category. Write Ar(C)
for the category whose objects are the morphisms
a:a— bof C. A morphism o — g of Ar(C) is

a commutative diagram

a—-=C

o) |

b—-=d
in C,
Example: In the ordinal number n, there is a
morphism ¢ — 7 if and only if ¢ < j. Thus,
the objects of Ar(n) can be identified with pairs
(4,7) such that ¢ < 7, and there is a morphism

(2,7) — (k,1) in Ar(n) if and only if ¢« < k and
J<L

Observe that any functor C' — D induces a func-
tor Ar(C') — Ar(D).



Suppose that M is an exact category. The set
sp(M) consists of all functors P : Ar(n) — M
such that the following two properties are satisfied:

1) P(i,7) = 0 for all 4, and
2) if i < 7 < k then the sequence
0— P(i,j) — P(i, k) - P(j,k) = 0

is exact in M (ie. is in the distinguished class
Say that such a functor P is exact.
If # : m — n is an ordinal number map and
P : Ar(n) — M is exact, then the composite

Ar(m) &5 Arm) & M

15 exact.

Write so(M) for the resulting simplicial set. This
simplicial set is the Waldhausen so-construction
for an exact category M. We'll see (Theorem 5.4
below) that se(M) is naturally weakly equivalent

to BQM.
Note that if i < j <k <linnand P: Ar(n) —



M is exact, then the diagram

P(i, k) P(i, 1)
i |
P(j, k}—P(j,1)

consists of admissible monics and epis as indicated,

and is bicartesian since both vertical arrows have
the same kernel, namely P(3, 7).

Example: Suppose that P : Ar(3) — M is exact.
Then P is specified by a diagram

0—— P(0, 1)— P(0, 2—— P(0, 3)

|

0 P(1,2-— P(1,3)

0 P(2,3)

0

of admissible epis and monics such that all square
are pullbacks (really, bicartesian). There are two
ways to view this:

1) P is obtained from the string of admissible
ONICS

P(0,1) — P(0,2) — P(0,3)
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by putting in all possible cokernels. Dually, P
is obtained from the string of admissible epis

P(0,3) — P(1,3) — P(2,3)
by putting in all possible kernels.
2) P is obtained from the picture
P(1,2) « P(0,2) — P(0,3)
by putting in all possible kernels and cokernels.

This last thing gives a comparison of s3(M) with
morphisms in )M. Overall, the relation between
Se(M) and BOQM is a little complicated.

Write S,,(M) for the category of exact functors
Ar(n) — M and their natural transformations.
Then S,(M) is the category of m-simplices of a
simplicial category Se(IM). Say that a sequence of
morphisms

00— P - P —>PFP—0
in S,(M) is exact if all sequences
0= Pi(¢,j) — Pu(i, ) — P3(i, j) = 0
are members of the distinguished class E in M.
Lemma 2.3 implies that if
0—=+P—=>0Q—-R—0
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is an exact sequence of functors Ar(n) — M such
that all consitutent sequences

0— P(i,j) — Qi,5) = R(i,j) — 0

are in E, then if any two of P, () and R are exact
then so is the third. It follows that S,(M) and its
exact sequences satisfy the axioms for an exact cat-
egory. Further, it’s easy to show that all simplicial
structure functors 6* : S, (M) — S,,,(M) exact,
so that Se(M) is a simplicial exact category.

Lemma 5.1. Suppose that the exact functors
f,g : M — N are naturally isomorphic. Then
the induced maps

fes gi 0 8e(M) = 54(N)
are homotopic.

Proof. A simplicial set map h : X x Al = Y
consists of functions h, : X,, — Y,,, one for each
7:n — 1, n >0, such that the diagram

X, -y,

Q*l lg*

Xm - Ym
hT9

commutes for each ordinal number map 6 : m —
n. In effect,

h-(o) = h(o,T)
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forall o : A" — X and 7 : A" — Al

Suppose that P : Ar(n) — M is exact, and let
h.(P) be the composite

Arn) S Mox A1) ES M x 1B N

Here, h is the natural isomorphism
f(N) = h(N,0) = h(N,1) = g(N),

and s : Ar(1) — 1 is the source map (i,7) > 7.
More explicitly, the functor h, P is specified by the
assignment

P(i,7) it7(2)=0
) = {gp((zj)) if 78 = 1?
In all cases, there are natural isomorphisms
h-(P)= fP = gP,
so that h,(P) is exact. []

Here’s some fun with ordinal numbers: suppose
that n is an ordinal number, let n° denote the
opposite poset

n’— .- —=12=0
and let n? x n be the poset join
n—.--—=21"=0=0=>1—=-—n
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or, more suggestively

0° 1° e n’

l

0 i . n
Example: 1°x1 = 3.

Generally, n° * n = 2n + 1.

Every ordinal number map 6 : m — n induces a
functor (aka. ordinal number map)

0°+60:m’°*xm — n’*n,
and the assignment n — n? x n defines a functor
e: A — A.
Let X be a simplicial set, and write
X=X e?

so that
X = X(n’xn).

The simplicial set X€ is the edgewise subdivision
of X.

The canonical ordinal number inclusions
wy, N —n’*xn
are natural in n, and hence define a natural map
w:X°— X
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of simplicial sets.

Lemma 5.2. The natural map w : X¢ — X s
a weak equivalence.

Proof. The simplicial set X is a homotopy colimit
of its simplices in the sense that the collection of all
simplices 0 : A" — X defines a weak equivalence

holim an,x A" = X.
This is proved by showing that each map
holim anx Af, = X,
is a weak equivalence. It follows that all maps
holim anx (A"), = X,
are weak equivalences, and so the map
holim an_,x (A™")¢ = X°©
is a weak equivalence.
There is a commutative diagram
holim an_, y (A™)¢—= X*¢
w*l w
M Aansx A'———— X

so it suffices to show that all simplicial sets (A")®
are contractible.



The simplicial set (A™)¢ is the nerve of a poset
whose objects are the relations (i,7) : ¢ < j of
n. There is a morphism (7,7) < (k,l) in this
poset if and only if £ < ¢ and 7 < [. The object
(0,n) is terminal in this poset, so that (A")¢ is
contractible. ]
Suppose once again that M is an exact category;,
and let the exact functor P : Ar(n® *n) — M

define an n-simplex of s,(IM)¢. Then for ¢ < j the
pictures

P(j°,1)
P(i?, i) P(5°,7)
define morphisms

a;;  P(i%,i) = P(5°,j)
of QM. Further, if ¢ < j < k then the square in
the diagram

Pk, 4)
wf | ey
]077; 07'
NG K
P(i°,1) P(5%,7) P(k°, k)



is bicartesian, so that assigning the morphism o’ ;

to the relation ¢ < j defines a functor m,(P) : n —
QM.

We have therefore defined a function
ot (Se(M)%), — BQM,,

The functions m,, are natural in n and therefore
define a simplicial set map

T Se(M)® — BQM.

The exact functors P : Ar(n° *x n) — M and
the natural isomorphisms between them define a
groupoid Iso(Se(M))¢, which is the n-simplex groupoid
of a simplicial groupoid Iso(Se(IM))¢. There is a
groupoid Iso(BQM), with objects given by the
functors n — QM and whose morphisms are the
natural isomorphisms of such functors. The groupoid
[so(BQM),, is the n-simplex groupoid of a simpli-
cial groupoid Iso(BQM), and it is easy to see that
the simplicial set map 7 above is the object level
part of a map

7 : Is0(Se(M))¢ — Iso(BOQM)
of simplicial groupoids.
Lemma 5.3. The morphism of groupoids

T © [80(Se(M))S, — Iso(BQM),,.
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induces a weak equivalence
Blso(S.(M))! — Blso(BQM),.

Proof. Suppose that P,Q : Ar(n’ xn) — M
are exact functors. A natural isomorphism 6 :
Tn(P) = m,(Q) consists of isomorphisms

0; = 0(i%4) : P(i,i) = Q(i°,1)
such that the diagrams

of.
P(i°4) —=P(5°, j)
0; | = & 9]
)

commute in QM . It follows that there is a uniquely
determined natural isomorphism

0(5°, 1)« P(5°, 1) = Q(j°,1)
such that the diagrams

P(ioaz‘)«ip(joai}—)P(joaj>

Hil% lg(jo,i) %’J{@j
Q(?JO,Z')%Q(]'O,Z'}—) (j07j)

commute. The comparison of exact sequences
0—P(n° i’ P(n° 0)—= P(i°,0) —=0

gl&(no,()) gle(zﬂ,())

0—Q(n", i*)—Q(n",0) —Q(i", 0) —0
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uniquely determines isomorphisms 6(n?, i) for i <
n. It follows that the natural isomorphism 6 uniquely
determines a natural isomorphism

Pn’ (n—1)0°y—..—Pn°n—1—P(n°n)
Q(no,(n—l)o)l% %’i@(no,n—l) %ié’(no,n)
Qn’ (n—1)"—..——Q(n’n—1)—Q(n’n)
of strings of admissible monics. But this means
that there is a unique natural isomorphism 6 :

P> () which specializes to the 6;, since the com-
parison of exact sequences
0— P(n° ry—P(n° s)—= P(r,s)—0
G(no,r)i%' %l@(no,s) }

0—Qn%r)—Q(n%s) —Q(r,s) —0

determines an isomorphism 6(r,s) : P(r,s) =
Q(r, s) uniquely, for any n° < r < s in n? % n.
The functor 7, is therefore fully faithful.

Suppose that @ : n — @M is a functor, and
choose representatives

a(i) = P(i i) « P(j°4) — P(j° j) = a(j)

for all morphisms (i) — a(j) in QM. Then for
all relations ¢+ < j there is a uniquely determined
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diagram

P(n° 1)
P(j° z)/ \P( %)
7%, n’,
N 7 AN
P(i% 1) P(3°, ) P(n® n)

for which the square is bicartesian and the com-
posites

P(n° i) — P(n° j)— P(n°mn)
and
P(n° i) — P(j° 1) — P(i°1)
coincide with the chosen representatives for the
map (i) — a(n) in QM. It follows that there is
a uniquely determined string of admissible monics

P(n’0) — P(n°1)»—---— P(n° n)
such that all composites P(n° i) — P(n° n) are
the original choices of representatives. Similarly,
there is a uniquely determined string of admissible
epis

P(n’,0) - .-+ — P(1°,0) — P(0°0)
such that all composites P(i°,0) — P(0°,0) are

original choices.
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For 0 < i < n, define P(n° i°) by the exact se-
quence

0 — P(n°,i®) — P(n°0) — P(i°0) — 0.

Then if ¢+ < 7 < n there is a unique admissible
monic P(n° j°) » P(n°i°) such that the dia-
gram

P(n?, j°— P(n°0)

|

P(n°, )

commutes. Then the string of admissible monics

P(n° (n—1)°) — ... P(n°,0°) — P(n°0) » ---

determines an exact functor P : Ar(n° *n) - M
with P(r, s) defined by the exact sequence

0— P(n°r)— Pn’s)—» P(r,s) =0

for n® < r < s < n such that m,(P) = «a in
[so(BQM),,.

The functor m, is a functor between groupoids
which is fully faithful and is surjective on objects.
It is therefore an equivalence. ]

Theorem 5.4. There are weak equivalences

S.(M> % SO(M)G % BQM

14



for each exact category M. These maps are
natural in exact functors.

Proof. The fact that w is a weak equivalence is
consequence of a general phenomenon for simpli-
cial sets, which is given by Lemma 5.2.

[t follows from Lemma 5.3 that the map
7 1 Is0(Se(M))¢ — Iso(BOQM)
is a weak equivalence of simplicial groupoids.

The natural weak equivalence w : s4(IM)¢ >~ 5,(M)
and Lemma 5.1 together imply that the functor
M — so(M) takes exact equivalences to weak
equivalences. It follows that the exact equivalences
M — Iso,(M) of Exercise 3.7 induce a weak equiv-
alence of bisimplicial sets

N : Se(M)® — B(Iso(Se(M))°

which induced by the inclusions of objects into the
corresponding groupoid of isomorphisms in each
simplicial degree. There is a corresponding map

n': BOM — BlIso(BQM)
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and a commutative diagram
5e(M)* 2~ B(Iso(Se(M))*
BOM — B Iso(BQM)

and it remains to show that the map 7’ is a weak
equivalence.

The bisimplicial set B Iso(BQM) is the bisimpli-
cial nerve of a bicategory whose 2-cells are com-
mutative diagrams

P —

gl |=

Py— Qs
in the category QM. Write Iso,(BQM) for the

category whose objects are all strings of isomor-
phisms

P.: PSP >.. 5P

and whose morphisms are all natural transforma-
tions of such. Then (you've seen this before) there
are functors

OM 2 Tso, QM % QM,
where f(Q) is the string of identities
05 ... 50

16



and g(P) = Py. Then the functors f and g deter-
mine an equivalence of categories QM =~ Iso,, QM
for each n > 0, and it follows that n' is a weak
equivalence. ]

Exercise 5.5. Show that there is an isomorphism
of simplicial categories

[so, QM = Q(Iso, M)

where Iso, M is the exact category described at
the end of Section 2.

Remark 5.6. The argument in the last para-
graph of the proof of Theorem 5.4 is part of a
very general phenomenon. Suppose that C' is a
small category, and let Iso(Ar(C')) be the bicate-
gory whose 2-cells are all commutative diagrams

a—-=>b

]

a/ . b/
in C. Then there is a weak equivalence

BC ~ Blso(Ar(C))

which is induced by the inclusion of objects in all
vertical groupoids.
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Remark 5.7. Write Mon,, (M) for the category
of strings of admissible monics

P Pyrs - P,
and their natural transformations. Let
[so(Mon,,(M))
be the groupoid of isomorphisms in this category.

Suppose that P : Ar(n) — M is an exact functor.
Then we have already seen that P is completely
determined up to isomorphism by the string of ad-
missible monics

P(0,1) — P(0,2) — ---— P(0,n). (1)
It follows that the functor
m : S,(M) — Mon, (M)

which sends P to the string (1) induces an equiv-
alence of groupoids

m : 1so(S,(M)) = Iso(Mon,, (M)).
For a sequence of admissible monics
P:0— P »— - — B,

write Py = 0. Then, if 6 : m — n is an ordinal
number map there is an induced string of admissi-
ble monics

6*(P> 00— P@(l)/P@(O) o A Pe(m)/P9(0)7
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subject to making some choices of quotients. The
assignment P +— 0*(P) defines a functor

6% Iso(Mon,,(M)) — Iso(Mon,,,(M))

for each ordinal number map 6. The quotients in
question are only defined up to canonical isomor-
phism, and so there are canonical isomorphisms

=1, () =6

which are coherent in the sense that they satisfy
certain cocycle conditions. This means that the
assigment n — Iso(Mon, (M)) defines a pseudo-
functor

[so(Mone(M)) : A% ~» Gpd

taking values in small groupoids. That’s okay, be-
cause any such pseudo-functor can be rectified (by
using the “Grothendieck construction”) to produce
a simplicial object in groupoids up to pointwise
equivalence.

Further, the equivalences

m : 1s0(S,(M)) = Iso(Mon,,(M)).

are not natural in simplicial structure maps, but
they are natural up to canonical isomorphism, and
therefore form a pseudo-natural transformation

m : Iso(Se(M)) — Iso(Mone(M)),
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which induces a weak equivalence of the respective
Grothendieck constructions.

It follows that the Grothendieck construction for
the pseudo-functor Iso(Mone(M)) is another model

for the K-theory space BQM of an exact category
M.

A detailed account of these constructions can be
found in [2].

6 Additivity

Suppose that M is an exact category, and recall
(from Section 2) that Ex(IM) is the exact category
whose objects are the exact sequences

0— P »—P—»P' —0, (2)

whose morphisms are the comparisons of exact se-
quences, and whose exact sequences are the termwise
exact sequences.

Observe that there is an exact equivalence
Sy(M) = Ex(M)

which sends an exact functor P : Ar(2) — M to
the exact sequence

0— P(0,1) — P(0,2) - P(1,2) — 0.
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There are exact functors s, t : Ex(M) — M which
are defined, respectively, sending the sequence (2)
to the objects P’ and P”.

The “Additivity Theorem” is the following:

Theorem 6.1. The simplicial set map
(t,8) : Se Ex(M) — s¢M X s4M
18 a weak equivalence.

The proof of this result will occupy the remainder
of this section.

The idea is to show that the square
SeM — 54 Ex(M) (3)

| :

* 5 seM

is homotopy cartesian, where ¢ is induced by the
exact functor ¢ : M — Ex(M) which sends an
object P to the sequence

1
0—-0—P— P —0.

If this can be done, then the comparison of homo-
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topy fibre sequences (of connected spaces)
 seEx(M)
seM / (t,9) seM
SelVI X sM

implies that (¢,s) is a weak equivalence. Here,
inp,(P) = (P,0) and prg is projection onto the
right factor.

Recall that every simplex P : A" — s,M defines
a pullback diagram

sTH(P) — 54 Ex(M)

l X

A" e seM

The assertion that the square (3) is homotopy carte-
sian is a consequence of the following:

Lemma 6.2. The functor A/sJM — sSet de-
fined by P+ s7Y(P) is a diagram of equiva-
lences in simplicial sets.

In effect, it Lemma 6.2 holds, then the diagram

571(0) — holimy p s 1(P)

| |

% SeVI
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is homotopy cartesian by Theorem 1.11 (aka. Quillen’s
Theorem B), and there are weak equivalences

s H0) = sM
(see the proof of Lemma 6.2) and
holin pansum 8~ (P) = 5o Ex(M).
Proof of Lemma 6.2. It is enough to show that
the composite
s (P) = se Ex(M) 5 s,M
is a weak equivalence for each simplex P.

If the simplex 0 : AY — s,M defined by a 0-object
of M then s71(0) = s, Exq(M), where Exo(M) is
the exact category of all exact sequences

0—=0—A—=B—0.

The exact functor ¢ : Ex(IM) — M restricts to an
exact equivalence t : Exg(M) — M, and it follows
that the composite

Fios7H0) = se Ex(M) = s,M

is a weak equivalence. This map f has a section
g : seM — s71(0) which is defined by taking a
simplex () to the exact sequence

1
0—=0—Q —Q—N0.
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Consider the diagram

SeM % s~ 1 (0) L s7HP) s, Ex(M) . s.M

| l ls

0 n
AY—— A 5 SeM

where n denotes the corresponding object of n and
P -nis a zero object 0 of M, so that the composite

s7H0) 25 s7H(P) = 5. Ex(M) 5 s,M

is the weak equivalence f. The composite of all
horizontal arrows along the top of the diagram is
the identity, so it suffices to show that the compos-
ite

¥ sTHP) = s Ex(M) 5 sJM L s71(0) 25 s74(P)

is homotopic to the identity. This would mean that
the map

s7H(P) = se Ex(M) & s,M
is a homotopy equivalence.
An m-simplex of s71(P) is a pair

(m 5 n,0*(P) — A — B),

where
0—=60P—A— B —=0
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an exact sequence of S5, M. The composite map

Y is then defined by
Y(m S n,0°(P) — A — B)
— (m % 1,0 — B B),

where n is the constant ordinal number map which
takes all 7 to n.

We define a homotopy H : s 1(P)x Al — s71(P)
such that the diagram
sTH(P) x Al s71(P)
prxli lpr

A" x Al A"

h

commutes, where pr is the defining projection and
h is the homotopy defined by the functor

0—1—...—n

. |

which flows into the terminal object n of n.

The homotopy A is given in simplicial degree m by
the functions

h : hom(m,n) — hom(m, n),
one for each morphism 7 : m — 1, where h,(0) is
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the composite

(6,7) h
m-—nx1—n.

There is a (unique) natural transformation
0 — h.(0),
which induces a natural transformation
AX(6) = Ax(hr(0))

of induced functors Ar(m) — Ar(n). This trans-
formation, in turn, induces a map

0°(P) — h-(0)"(P)
in S,,M. Form the pushout

0*(Py— A (4)

|

Then the sequence
0— h (0)(P)— A - B —0
is exact, and we are entitled to set

hy(m % n,0*(P) — A — B)
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To make the pushout construction actually work
the diagrams (4) have to be constructed correctly.
These diagrams are induced by pushouts

P(i, j}—~A (5)
o b
P(k,l)—A
where ‘
0— P(i,j) — A B —0
is an exact sequence of M and « : (i,5) — (k,!)
is a morphism of Ar(n). The diagrams (5) can be
chosen so that v =14 : A — A if o is an identity

morphism, and such that v = pif £ = [. Form the
pushouts (5) for the set of diagrams

0—P(i,j)——A—=B—0

a*i

Pk, 1)

in which the displayed exact sequence is in E, sub-
ject to these constraints.

Then the induced pushout diagrams (4) define func-
tions h, : s~ Y(P),, — s (P),, such that the dia-
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grams

s P55 (P

hrey
commute for all ordinal number morphisms v :
k — m, and such that the functions A, define a
homotopy from the identity to ). O

7 H-space structure

Suppose that M is an exact category. Then the
direct sum functor

- MxM-—->M
defined by (P, Q) — P & @ is exact, and induces

a map
D Se(M) X 54(M) = s4(M). (6)

Any zero object 0 of M defines a vertex 0 : x —
Se(M) which defines a 2-sided identity up to homo-
topy for the map @: in effect there are canonical
natural isomorphisms

0pP=EP=P®O.

The functor @ is asssociative up to canonical iSo-
morphism, so that the map (6) is associative up
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to canonical homotopy. In particular the direct
sum functor & and choice of zero object 0 give the
space So(M) the structure of a homotopy associa-
tive (even homotopy commutative) H-space.

As in the previous section, let Ex(M) be the exact
category of exact sequences

0= P —P—»P —0 (7)
in M. Recall that there are exact functors
s,t: Ex(M) - M

which take the exact sequence (7) to P" and P”,
respectively. There is a further exact functor

tot - Ex(M) - M

which takes the exact sequence (7) to the object
P.

The following result is a consequence of the addi-
tivity theorem Theorem 6.1:

Corollary 7.1. The H-space structure on s¢(IM)
determines a relation of simplicial set maps

tot, = s, + ty : Se Ex(M) — so(M).
Proof. There is a functor
®: M x M — Ex(M)
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which takes a pair (P, @) to the exact sequence
0 =P —PdQ —0Q —0.

The composite (s, 1) is the identity on M x M,
so that the induced map

D Se(M) X 5¢(M) — so¢(Ex(M))

is a homotopy inverse for (s, t4), by the additivity
theorem. At the same time the composite exact

functor
tot

M x M 5 Ex(M) -5 M

is the direct sum functor for M, and therefore in-
duces the H-space structure. It follows that

tot, = tot, @y (5, tx) = Du(Ss, ) = 54 + s,
as required. ]
Corollary 7.2. Suppose that

00— fr—g—>h—0

18 an exact sequence of exact functors M — N.
Then there is a relation

Go = fo+ I 5(M) = 54(N).

Proof. The exact sequence of exact functors deter-
mines an exact functor

M — Ex(N).
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Use Corollary 7.1 to finish the proof. O
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