
Lecture 003 (September 26, 2014)

5 Waldhausen’s s•-construction

The basic definitions and results of this section

first appeared in Waldhausen’s seminal paper [3].

Many of the tricks in the proofs which are given

here appear in [1] and [2].

Suppose that C is some category. Write Ar(C)

for the category whose objects are the morphisms

α : a → b of C. A morphism α → β of Ar(C) is

a commutative diagram

a //

α
��

c
β
��

b // d

in C.

Example: In the ordinal number n, there is a

morphism i → j if and only if i ≤ j. Thus,

the objects of Ar(n) can be identified with pairs

(i, j) such that i ≤ j, and there is a morphism

(i, j) → (k, l) in Ar(n) if and only if i ≤ k and

j ≤ l.

Observe that any functor C → D induces a func-

tor Ar(C)→ Ar(D).
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Suppose that M is an exact category. The set

sn(M) consists of all functors P : Ar(n) → M

such that the following two properties are satisfied:

1) P (i, i) ∼= 0 for all i, and

2) if i ≤ j ≤ k then the sequence

0→ P (i, j)� P (i, k)� P (j, k)→ 0

is exact in M (ie. is in the distinguished class

E).

Say that such a functor P is exact.

If θ : m → n is an ordinal number map and

P : Ar(n)→M is exact, then the composite

Ar(m)
θ∗−→ Ar(n)

P−→M

is exact.

Write s•(M) for the resulting simplicial set. This

simplicial set is the Waldhausen s•-construction

for an exact category M. We’ll see (Theorem 5.4

below) that s•(M) is naturally weakly equivalent

to BQM.

Note that if i ≤ j ≤ k ≤ l in n and P : Ar(n)→

2



M is exact, then the diagram

P (i, k) // //

����

P (i, l)

����

P (j, k) // //P (j, l)

consists of admissible monics and epis as indicated,

and is bicartesian since both vertical arrows have

the same kernel, namely P (i, j).

Example: Suppose that P : Ar(3)→M is exact.

Then P is specified by a diagram

0 // //P (0, 1) // //

����

P (0, 2) // //

����

P (0, 3)

����

0 // //P (1, 2) // //

����

P (1, 3)

����

0 // //P (2, 3)

����

0

of admissible epis and monics such that all square

are pullbacks (really, bicartesian). There are two

ways to view this:

1) P is obtained from the string of admissible

monics

P (0, 1)� P (0, 2)� P (0, 3)
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by putting in all possible cokernels. Dually, P

is obtained from the string of admissible epis

P (0, 3)� P (1, 3)� P (2, 3)

by putting in all possible kernels.

2) P is obtained from the picture

P (1, 2)� P (0, 2)� P (0, 3)

by putting in all possible kernels and cokernels.

This last thing gives a comparison of s3(M) with

morphisms in QM. Overall, the relation between

s•(M) and BQM is a little complicated.

Write Sn(M) for the category of exact functors

Ar(n) → M and their natural transformations.

Then Sn(M) is the category of n-simplices of a

simplicial category S•(M). Say that a sequence of

morphisms

0→ P1 → P2 → P3 → 0

in Sn(M) is exact if all sequences

0→ P1(i, j)� P2(i, j)� P3(i, j)→ 0

are members of the distinguished class E in M.

Lemma 2.3 implies that if

0→ P → Q→ R→ 0
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is an exact sequence of functors Ar(n)→M such

that all consitutent sequences

0→ P (i, j)� Q(i, j)� R(i, j)→ 0

are in E, then if any two of P,Q and R are exact

then so is the third. It follows that Sn(M) and its

exact sequences satisfy the axioms for an exact cat-

egory. Further, it’s easy to show that all simplicial

structure functors θ∗ : Sn(M) → Sm(M) exact,

so that S•(M) is a simplicial exact category.

Lemma 5.1. Suppose that the exact functors

f, g : M → N are naturally isomorphic. Then

the induced maps

f∗, g∗ : s•(M)→ s•(N)

are homotopic.

Proof. A simplicial set map h : X × ∆1 → Y

consists of functions hτ : Xn → Yn, one for each

τ : n→ 1, n ≥ 0, such that the diagram

Xn
hτ //

θ∗
��

Yn
θ∗
��

Xm hτθ
// Ym

commutes for each ordinal number map θ : m →
n. In effect,

hτ (σ) = h(σ, τ )
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for all σ : ∆n → X and τ : ∆n → ∆1.

Suppose that P : Ar(n) → M is exact, and let

hτ (P ) be the composite

Ar(n)
(P,τ∗)−−−→M× Ar(1)

1×s−−→M× 1
h−→ N.

Here, h is the natural isomorphism

f (N) = h(N, 0) ∼= h(N, 1) = g(N),

and s : Ar(1) → 1 is the source map (i, j) 7→ i.

More explicitly, the functor hτP is specified by the

assignment

(i, j) 7→

{
fP (i, j) if τ (i) = 0,

gP (i, j) if τ (i) = 1.

In all cases, there are natural isomorphisms

hτ (P ) ∼= fP ∼= gP,

so that hτ (P ) is exact.

Here’s some fun with ordinal numbers: suppose

that n is an ordinal number, let no denote the

opposite poset

no → · · · → 1o → 0o,

and let no ∗ n be the poset join

no → · · · → 1o → 0o → 0→ 1→ · · · → n.
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or, more suggestively

0o

��

1ooo

��

. . .oo nooo

��
0 // 1 // . . . //n

Example: 1o ∗ 1 ∼= 3.

Generally, no ∗ n ∼= 2n + 1.

Every ordinal number map θ : m → n induces a

functor (aka. ordinal number map)

θo ∗ θ : mo ∗m→ no ∗ n,

and the assignment n 7→ no ∗ n defines a functor

e : ∆→∆.

Let X be a simplicial set, and write

Xe = X · eop,

so that

Xe
n = X(no ∗ n).

The simplicial set Xe is the edgewise subdivision

of X .

The canonical ordinal number inclusions

ωn : n→ no ∗ n

are natural in n, and hence define a natural map

ω : Xe → X
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of simplicial sets.

Lemma 5.2. The natural map ω : Xe → X is

a weak equivalence.

Proof. The simplicial set X is a homotopy colimit

of its simplices in the sense that the collection of all

simplices σ : ∆n → X defines a weak equivalence

holim−−−→∆n→X ∆n '−→ X.

This is proved by showing that each map

holim−−−→∆n→X ∆n
m
'−→ Xm

is a weak equivalence. It follows that all maps

holim−−−→∆n→X (∆n)en
'−→ Xe

n

are weak equivalences, and so the map

holim−−−→∆n→X (∆n)e
'−→ Xe

is a weak equivalence.

There is a commutative diagram

holim−−−→∆n→X (∆n)e ' //

ω∗
��

Xe

ω
��

holim−−−→∆n→X ∆n
'

//X

so it suffices to show that all simplicial sets (∆n)e

are contractible.
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The simplicial set (∆n)e is the nerve of a poset

whose objects are the relations (i, j) : i ≤ j of

n. There is a morphism (i, j) ≤ (k, l) in this

poset if and only if k ≤ i and j ≤ l. The object

(0, n) is terminal in this poset, so that (∆n)e is

contractible.

Suppose once again that M is an exact category,

and let the exact functor P : Ar(no ∗ n) → M

define an n-simplex of s•(M)e. Then for i ≤ j the

pictures

P (jo, i)

xxxx

&&

&&

P (io, i) P (jo, j)

define morphisms

αPi,j : P (io, i)→ P (jo, j)

of QM. Further, if i ≤ j ≤ k then the square in

the diagram

P (k0, i)

zzzz

$$

$$

P (jo, i)

zzzz

$$

$$

P (ko, j)

zzzz

$$

$$

P (io, i) P (jo, j) P (ko, k)
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is bicartesian, so that assigning the morphism αPi,j
to the relation i ≤ j defines a functor πn(P ) : n→
QM.

We have therefore defined a function

πn : (s•(M)e)n → BQMn

The functions πn are natural in n and therefore

define a simplicial set map

π : s•(M)e → BQM.

The exact functors P : Ar(no ∗ n) → M and

the natural isomorphisms between them define a

groupoid Iso(S•(M))en, which is the n-simplex groupoid

of a simplicial groupoid Iso(S•(M))e. There is a

groupoid Iso(BQM)n with objects given by the

functors n → QM and whose morphisms are the

natural isomorphisms of such functors. The groupoid

Iso(BQM)n is the n-simplex groupoid of a simpli-

cial groupoid Iso(BQM), and it is easy to see that

the simplicial set map π above is the object level

part of a map

π : Iso(S•(M))e → Iso(BQM)

of simplicial groupoids.

Lemma 5.3. The morphism of groupoids

πn : Iso(S•(M))en → Iso(BQM)n.
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induces a weak equivalence

B Iso(S•(M))en → B Iso(BQM)n.

Proof. Suppose that P,Q : Ar(n0 ∗ n) → M

are exact functors. A natural isomorphism θ :

πn(P )→ πn(Q) consists of isomorphisms

θi = θ(io, i) : P (io, i)
∼=−→ Q(io, i)

such that the diagrams

P (io, i)
αPi,j //

θi ∼=
��

P (jo, j)
θj∼=
��

Q(io, i)
α
Q
i,j

//Q(jo, j)

commute inQM . It follows that there is a uniquely

determined natural isomorphism

θ(jo, i) : P (jo, i)
∼=−→ Q(jo, i)

such that the diagrams

P (io, i)

θi ∼=
��

P (jo, i)oooo // //

θ(jo,i)
��

P (jo, j)
θj∼=
��

Q(io, i) Q(jo, i)oooo // //Q(jo, j)

commute. The comparison of exact sequences

0 //P (no, io)

��

// //P (no, 0)

θ(no,0)∼=
��

// //P (io, 0)

θ(io,0)∼=
��

// 0

0 //Q(no, io) // //Q(no, 0) // //Q(io, 0) // 0
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uniquely determines isomorphisms θ(no, io) for i <

n. It follows that the natural isomorphism θ uniquely

determines a natural isomorphism

P (no, (n− 1)o) // //

θ(no,(n−1)o) ∼=
��

. . . // //P (no, n− 1) // //

θ(no,n−1)∼=
��

P (no, n)

θ(no,n)∼=
��

Q(no, (n− 1)o) // // . . . // //Q(no, n− 1) // //Q(no, n)

of strings of admissible monics. But this means

that there is a unique natural isomorphism θ :

P
∼=−→ Q which specializes to the θi, since the com-

parison of exact sequences

0 //P (no, r) // //

θ(no,r) ∼=
��

P (no, s) // //

θ(no,s)∼=
��

P (r, s) //

��

0

0 //Q(no, r) // //Q(no, s) // //Q(r, s) // 0

determines an isomorphism θ(r, s) : P (r, s)
∼=−→

Q(r, s) uniquely, for any no ≤ r ≤ s in no ∗ n.

The functor πn is therefore fully faithful.

Suppose that α : n → QM is a functor, and

choose representatives

α(i) = P (io, i)� P (jo, i)� P (jo, j) = α(j)

for all morphisms α(i) → α(j) in QM. Then for

all relations i ≤ j there is a uniquely determined
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diagram

P (no, i)

zzzz

$$

$$

P (jo, i)

zzzz

$$

$$

P (no, j)

zzzz

%%

%%

P (io, i) P (jo, j) P (no, n)

for which the square is bicartesian and the com-

posites

P (no, i)� P (no, j)� P (no, n)

and

P (no, i)� P (jo, i)� P (io, i)

coincide with the chosen representatives for the

map α(i)→ α(n) in QM. It follows that there is

a uniquely determined string of admissible monics

P (no, 0)� P (no, 1)� · · ·� P (no, n)

such that all composites P (no, i) � P (no, n) are

the original choices of representatives. Similarly,

there is a uniquely determined string of admissible

epis

P (no, 0)� · · ·� P (1o, 0)� P (0o, 0)

such that all composites P (io, 0) � P (0o, 0) are

original choices.
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For 0 ≤ i < n, define P (no, io) by the exact se-

quence

0→ P (no, io)� P (no, 0)� P (io, 0)→ 0.

Then if i ≤ j < n there is a unique admissible

monic P (no, jo) � P (no, io) such that the dia-

gram

P (no, jo) // //
��

��

P (no, 0)

P (no, io)
77

77

commutes. Then the string of admissible monics

P (no, (n−1)o)� . . . P (no, 0o)� P (no, 0)� · · ·� P (no, n)

determines an exact functor P : Ar(no ∗ n)→M

with P (r, s) defined by the exact sequence

0→ P (no, r)� P (no, s)� P (r, s)→ 0

for no ≤ r ≤ s ≤ n such that πn(P ) = α in

Iso(BQM)n.

The functor πn is a functor between groupoids

which is fully faithful and is surjective on objects.

It is therefore an equivalence.

Theorem 5.4. There are weak equivalences

s•(M)
ω←−
'
s•(M)e

π−→
'
BQM
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for each exact category M. These maps are

natural in exact functors.

Proof. The fact that ω is a weak equivalence is

consequence of a general phenomenon for simpli-

cial sets, which is given by Lemma 5.2.

It follows from Lemma 5.3 that the map

π : Iso(S•(M))e → Iso(BQM)

is a weak equivalence of simplicial groupoids.

The natural weak equivalence ω : s•(M)e ' s•(M)

and Lemma 5.1 together imply that the functor

M 7→ s•(M)e takes exact equivalences to weak

equivalences. It follows that the exact equivalences

M→ Ison(M) of Exercise 3.7 induce a weak equiv-

alence of bisimplicial sets

η : s•(M)e → B(Iso(S•(M))e

which induced by the inclusions of objects into the

corresponding groupoid of isomorphisms in each

simplicial degree. There is a corresponding map

η′ : BQM→ B Iso(BQM)
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and a commutative diagram

s•(M)e
η
'
//

π
��

B(Iso(S•(M))e

π∗'
��

BQM
η′

//B Iso(BQM)

and it remains to show that the map η′ is a weak

equivalence.

The bisimplicial set B Iso(BQM) is the bisimpli-

cial nerve of a bicategory whose 2-cells are com-

mutative diagrams

P1
//

∼=
��

Q1

∼=
��

P2
//Q2

in the category QM. Write Ison(BQM) for the

category whose objects are all strings of isomor-

phisms

P : P0

∼=−→ P1

∼=−→ . . .
∼=−→ Pn

and whose morphisms are all natural transforma-

tions of such. Then (you’ve seen this before) there

are functors

QM
f−→ IsonQM

g−→ QM,

where f (Q) is the string of identities

Q
1−→ . . .

1−→ Q

16



and g(P ) = P0. Then the functors f and g deter-

mine an equivalence of categories QM ' IsonQM

for each n ≥ 0, and it follows that η′ is a weak

equivalence.

Exercise 5.5. Show that there is an isomorphism

of simplicial categories

IsonQM ∼= Q(Ison M)

where Ison M is the exact category described at

the end of Section 2.

Remark 5.6. The argument in the last para-

graph of the proof of Theorem 5.4 is part of a

very general phenomenon. Suppose that C is a

small category, and let Iso(Ar(C)) be the bicate-

gory whose 2-cells are all commutative diagrams

a //

∼=
��

b
∼=
��

a′ // b′

in C. Then there is a weak equivalence

BC ' B Iso(Ar(C))

which is induced by the inclusion of objects in all

vertical groupoids.
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Remark 5.7. Write Monn(M) for the category

of strings of admissible monics

P1 � P2 � · · ·� Pn

and their natural transformations. Let

Iso(Monn(M))

be the groupoid of isomorphisms in this category.

Suppose that P : Ar(n)→M is an exact functor.

Then we have already seen that P is completely

determined up to isomorphism by the string of ad-

missible monics

P (0, 1)� P (0, 2)� · · ·� P (0, n). (1)

It follows that the functor

m : Sn(M)→ Monn(M)

which sends P to the string (1) induces an equiv-

alence of groupoids

m : Iso(Sn(M))
'−→ Iso(Monn(M)).

For a sequence of admissible monics

P : 0� P1 � · · ·� Pn,

write P0 = 0. Then, if θ : m → n is an ordinal

number map there is an induced string of admissi-

ble monics

θ∗(P ) : 0� Pθ(1)/Pθ(0) � · · ·� Pθ(m)/Pθ(0),
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subject to making some choices of quotients. The

assignment P 7→ θ∗(P ) defines a functor

θ∗ : Iso(Monn(M))→ Iso(Monm(M))

for each ordinal number map θ. The quotients in

question are only defined up to canonical isomor-

phism, and so there are canonical isomorphisms

1∗n
∼= 1, (γθ)∗ ∼= θ∗γ∗

which are coherent in the sense that they satisfy

certain cocycle conditions. This means that the

assigment n 7→ Iso(Monn(M)) defines a pseudo-

functor

Iso(Mon•(M)) : ∆op  Gpd

taking values in small groupoids. That’s okay, be-

cause any such pseudo-functor can be rectified (by

using the “Grothendieck construction”) to produce

a simplicial object in groupoids up to pointwise

equivalence.

Further, the equivalences

m : Iso(Sn(M))
'−→ Iso(Monn(M)).

are not natural in simplicial structure maps, but

they are natural up to canonical isomorphism, and

therefore form a pseudo-natural transformation

m : Iso(S•(M))→ Iso(Mon•(M)),
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which induces a weak equivalence of the respective

Grothendieck constructions.

It follows that the Grothendieck construction for

the pseudo-functor Iso(Mon•(M)) is another model

for the K-theory space BQM of an exact category

M.

A detailed account of these constructions can be

found in [2].

6 Additivity

Suppose that M is an exact category, and recall

(from Section 2) that Ex(M) is the exact category

whose objects are the exact sequences

0→ P ′� P � P ′′ → 0, (2)

whose morphisms are the comparisons of exact se-

quences, and whose exact sequences are the termwise

exact sequences.

Observe that there is an exact equivalence

S2(M)
'−→ Ex(M)

which sends an exact functor P : Ar(2) → M to

the exact sequence

0→ P (0, 1)� P (0, 2)� P (1, 2)→ 0.
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There are exact functors s, t : Ex(M)→M which

are defined, respectively, sending the sequence (2)

to the objects P ′ and P ′′.

The “Additivity Theorem” is the following:

Theorem 6.1. The simplicial set map

(t, s) : s• Ex(M)→ s•M× s•M

is a weak equivalence.

The proof of this result will occupy the remainder

of this section.

The idea is to show that the square

s•M
c //

��

s• Ex(M)
s
��

∗
0

// s•M

(3)

is homotopy cartesian, where c is induced by the

exact functor c : M → Ex(M) which sends an

object P to the sequence

0→ 0� P
1
� P → 0.

If this can be done, then the comparison of homo-
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topy fibre sequences (of connected spaces)

s• Ex(M)

(t,s)

��

s
))

s•M

c 55

inL
**

s•M

s•M× s•M
prR

44

implies that (t, s) is a weak equivalence. Here,

inL(P ) = (P, 0) and prR is projection onto the

right factor.

Recall that every simplex P : ∆n → s•M defines

a pullback diagram

s−1(P ) //

��

s• Ex(M)
s
��

∆n
P

// s•M

The assertion that the square (3) is homotopy carte-

sian is a consequence of the following:

Lemma 6.2. The functor ∆/s•M→ sSet de-

fined by P 7→ s−1(P ) is a diagram of equiva-

lences in simplicial sets.

In effect, if Lemma 6.2 holds, then the diagram

s−1(0) //

��

holim−−−→ P s
−1(P )

��

∗
0

// s•M
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is homotopy cartesian by Theorem 1.11 (aka. Quillen’s

Theorem B), and there are weak equivalences

s−1(0)
'−→ s•M

(see the proof of Lemma 6.2) and

holim−−−→ P :∆n→s•M s−1(P )
'−→ s• Ex(M).

Proof of Lemma 6.2. It is enough to show that

the composite

s−1(P )→ s• Ex(M)
t−→ s•M

is a weak equivalence for each simplex P .

If the simplex 0 : ∆0 → s•M defined by a 0-object

of M then s−1(0) = s• Ex0(M), where Ex0(M) is

the exact category of all exact sequences

0→ 0� A� B → 0.

The exact functor t : Ex(M)→M restricts to an

exact equivalence t : Ex0(M)→M, and it follows

that the composite

f : s−1(0)→ s• Ex(M)
t−→ s•M

is a weak equivalence. This map f has a section

g : s•M → s−1(0) which is defined by taking a

simplex Q to the exact sequence

0→ 0� Q
1
� Q→ 0.
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Consider the diagram

s•M
g
'
// s−1(0)

n∗ //

��

s−1(P ) //

��

s• Ex(M)

s
��

t // s•M

∆0
n

//∆n
P

// s•M

where n denotes the corresponding object of n and

P ·n is a zero object 0 of M, so that the composite

s−1(0)
n∗−→ s−1(P )→ s• Ex(M)

t−→ s•M

is the weak equivalence f . The composite of all

horizontal arrows along the top of the diagram is

the identity, so it suffices to show that the compos-

ite

ψ : s−1(P )→ s• Ex(M)
t−→ s•M

g−→ s−1(0)
n∗−→ s−1(P )

is homotopic to the identity. This would mean that

the map

s−1(P )→ s• Ex(M)
t−→ s•M

is a homotopy equivalence.

An m-simplex of s−1(P ) is a pair

(m
θ−→ n, θ∗(P )� A� B),

where

0→ θ∗P � A� B → 0
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an exact sequence of SmM. The composite map

ψ is then defined by

ψ(m
θ−→ n, θ∗(P )� A� B)

= (m
n−→ n, 0� B

1
� B),

where n is the constant ordinal number map which

takes all i to n.

We define a homotopy H : s−1(P )×∆1 → s−1(P )

such that the diagram

s−1(P )×∆1 H //

pr×1
��

s−1(P )
pr
��

∆n ×∆1
h

//∆n

commutes, where pr is the defining projection and

h is the homotopy defined by the functor

0 //

��

1 //

��

. . . //n

��
n //n // . . . //n

which flows into the terminal object n of n.

The homotopy h is given in simplicial degree m by

the functions

hτ : hom(m,n)→ hom(m,n),

one for each morphism τ : m→ 1, where hτ (θ) is
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the composite

m
(θ,τ)−−→ n× 1

h−→ n.

There is a (unique) natural transformation

θ → hτ (θ),

which induces a natural transformation

Ar(θ)→ Ar(hτ (θ))

of induced functors Ar(m) → Ar(n). This trans-

formation, in turn, induces a map

θ∗(P )→ hτ (θ)∗(P )

in SmM. Form the pushout

θ∗(P ) // //

��

A

��

hτ (θ)∗(P ) // //Aτ

(4)

Then the sequence

0→ hτ (θ)∗(P )� Aτ � B → 0

is exact, and we are entitled to set

hτ (m
θ−→ n, θ∗(P )� A� B)

= (hτ (θ), hτ (θ)∗(P )� Aτ � B).
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To make the pushout construction actually work

the diagrams (4) have to be constructed correctly.

These diagrams are induced by pushouts

P (i, j) // i //

α∗
��

A
γ
��

P (k, l) // //A

(5)

where

0→ P (i, j)
i
� A

p
� B → 0

is an exact sequence of M and α : (i, j) → (k, l)

is a morphism of Ar(n). The diagrams (5) can be

chosen so that γ = 1A : A→ A if α is an identity

morphism, and such that γ = p if k = l. Form the

pushouts (5) for the set of diagrams

0 //P (i, j) // //

α∗
��

A // //B // 0

P (k, l)

in which the displayed exact sequence is in E, sub-

ject to these constraints.

Then the induced pushout diagrams (4) define func-

tions hτ : s−1(P )m → s−1(P )m such that the dia-
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grams

s−1(P )m
hτ //

γ∗
��

s−1(P )m
γ∗
��

s−1(P )k hτγ
// s−1(P )k

commute for all ordinal number morphisms γ :

k → m, and such that the functions hτ define a

homotopy from the identity to ψ.

7 H-space structure

Suppose that M is an exact category. Then the

direct sum functor

⊕ : M×M→M

defined by (P,Q) 7→ P ⊕Q is exact, and induces

a map

⊕ : s•(M)× s•(M)→ s•(M). (6)

Any zero object 0 of M defines a vertex 0 : ∗ →
s•(M) which defines a 2-sided identity up to homo-

topy for the map ⊕: in effect there are canonical

natural isomorphisms

0⊕ P ∼= P ∼= P ⊕ 0.

The functor ⊕ is asssociative up to canonical iso-

morphism, so that the map (6) is associative up
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to canonical homotopy. In particular the direct

sum functor ⊕ and choice of zero object 0 give the

space s•(M) the structure of a homotopy associa-

tive (even homotopy commutative) H-space.

As in the previous section, let Ex(M) be the exact

category of exact sequences

0→ P ′� P � P ′′ → 0 (7)

in M. Recall that there are exact functors

s, t : Ex(M)→M

which take the exact sequence (7) to P ′ and P ′′,

respectively. There is a further exact functor

tot : Ex(M)→M

which takes the exact sequence (7) to the object

P .

The following result is a consequence of the addi-

tivity theorem Theorem 6.1:

Corollary 7.1. The H-space structure on s•(M)

determines a relation of simplicial set maps

tot∗ = s∗ + t∗ : s• Ex(M)→ s•(M).

Proof. There is a functor

⊕ : M×M→ Ex(M)
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which takes a pair (P,Q) to the exact sequence

0→ P � P ⊕Q� Q→ 0.

The composite (s, t)⊕ is the identity on M×M,

so that the induced map

⊕∗ : s•(M)× s•(M)→ s•(Ex(M))

is a homotopy inverse for (s∗, t∗), by the additivity

theorem. At the same time the composite exact

functor

M×M
⊕−→ Ex(M)

tot−→M

is the direct sum functor for M, and therefore in-

duces the H-space structure. It follows that

tot∗ = tot∗ ⊕∗ (s∗, t∗) = ⊕∗(s∗, t∗) = s∗ + t∗,

as required.

Corollary 7.2. Suppose that

0→ f � g � h→ 0

is an exact sequence of exact functors M→ N.

Then there is a relation

g∗ = f∗ + h∗ : s•(M)→ s•(N).

Proof. The exact sequence of exact functors deter-

mines an exact functor

M→ Ex(N).
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Use Corollary 7.1 to finish the proof.
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