Lecture 003 (September 26, 2014)

5 Waldhausen's s_{\bullet} -construction

The basic definitions and results of this section first appeared in Waldhausen's seminal paper [3]. Many of the tricks in the proofs which are given here appear in [1] and [2].

Suppose that C is some category. Write $\operatorname{Ar}(C)$ for the category whose objects are the morphisms $\alpha : a \to b$ of C. A morphism $\alpha \to \beta$ of $\operatorname{Ar}(C)$ is a commutative diagram

$$\begin{array}{c} a \longrightarrow c \\ \downarrow \alpha \downarrow \qquad \qquad \downarrow \beta \\ b \longrightarrow d \end{array}$$

in C.

Example: In the ordinal number \mathbf{n} , there is a morphism $i \to j$ if and only if $i \leq j$. Thus, the objects of $\operatorname{Ar}(\mathbf{n})$ can be identified with pairs (i, j) such that $i \leq j$, and there is a morphism $(i, j) \to (k, l)$ in $\operatorname{Ar}(\mathbf{n})$ if and only if $i \leq k$ and $j \leq l$.

Observe that any functor $C \to D$ induces a functor $\operatorname{Ar}(C) \to \operatorname{Ar}(D)$.

Suppose that \mathbf{M} is an exact category. The set $s_n(\mathbf{M})$ consists of all functors $P : \operatorname{Ar}(\mathbf{n}) \to \mathbf{M}$ such that the following two properties are satisfied:

1) $P(i,i) \cong 0$ for all i, and

2) if $i \leq j \leq k$ then the sequence

$$0 \to P(i,j) \rightarrowtail P(i,k) \twoheadrightarrow P(j,k) \to 0$$

is exact in **M** (ie. is in the distinguished class **E**).

Say that such a functor P is *exact*.

If θ : $\mathbf{m} \to \mathbf{n}$ is an ordinal number map and $P : \operatorname{Ar}(\mathbf{n}) \to \mathbf{M}$ is exact, then the composite

$$\operatorname{Ar}(\mathbf{m}) \xrightarrow{\theta_*} \operatorname{Ar}(\mathbf{n}) \xrightarrow{P} \mathbf{M}$$

is exact.

Write $s_{\bullet}(\mathbf{M})$ for the resulting simplicial set. This simplicial set is the *Waldhausen* s_{\bullet} -construction for an exact category \mathbf{M} . We'll see (Theorem 5.4 below) that $s_{\bullet}(\mathbf{M})$ is naturally weakly equivalent to $BQ\mathbf{M}$.

Note that if $i \leq j \leq k \leq l$ in **n** and $P : Ar(\mathbf{n}) \rightarrow$

 \mathbf{M} is exact, then the diagram

$$\begin{array}{c} P(i,k) \longrightarrow P(i,l) \\ \downarrow & \downarrow \\ P(j,k) \longrightarrow P(j,l) \end{array}$$

consists of admissible monics and epis as indicated, and is bicartesian since both vertical arrows have the same kernel, namely P(i, j).

Example: Suppose that $P : Ar(3) \rightarrow M$ is exact. Then P is specified by a diagram

of admissible epis and monics such that all square are pullbacks (really, bicartesian). There are two ways to view this:

1) P is obtained from the string of admissible monics

$$P(0,1) \rightarrowtail P(0,2) \rightarrowtail P(0,3)$$

by putting in all possible cokernels. Dually, P is obtained from the string of admissible epis

 $P(0,3) \twoheadrightarrow P(1,3) \twoheadrightarrow P(2,3)$

by putting in all possible kernels.

2) P is obtained from the picture

$$P(1,2) \twoheadleftarrow P(0,2) \rightarrowtail P(0,3)$$

by putting in all possible kernels and cokernels.

This last thing gives a comparison of $s_3(\mathbf{M})$ with morphisms in $Q\mathbf{M}$. Overall, the relation between $s_{\bullet}(\mathbf{M})$ and $BQ\mathbf{M}$ is a little complicated.

Write $S_n(\mathbf{M})$ for the category of exact functors Ar(\mathbf{n}) $\rightarrow \mathbf{M}$ and their natural transformations. Then $S_n(\mathbf{M})$ is the category of *n*-simplices of a simplicial category $S_{\bullet}(\mathbf{M})$. Say that a sequence of morphisms

 $0 \to P_1 \to P_2 \to P_3 \to 0$

in $S_n(\mathbf{M})$ is exact if all sequences

$$0 \to P_1(i,j) \rightarrowtail P_2(i,j) \twoheadrightarrow P_3(i,j) \to 0$$

are members of the distinguished class \mathbf{E} in \mathbf{M} . Lemma 2.3 implies that if

$$0 \to P \to Q \to R \to 0$$

is an exact sequence of functors $\operatorname{Ar}(\mathbf{n}) \to \mathbf{M}$ such that all consitutent sequences

$$0 \to P(i,j) \rightarrowtail Q(i,j) \twoheadrightarrow R(i,j) \to 0$$

are in **E**, then if any two of P, Q and R are exact then so is the third. It follows that $S_n(\mathbf{M})$ and its exact sequences satisfy the axioms for an exact category. Further, it's easy to show that all simplicial structure functors $\theta^* : S_n(\mathbf{M}) \to S_m(\mathbf{M})$ exact, so that $S_{\bullet}(\mathbf{M})$ is a simplicial exact category.

Lemma 5.1. Suppose that the exact functors $f, g : \mathbf{M} \to \mathbf{N}$ are naturally isomorphic. Then the induced maps

$$f_*, g_* : s_{\bullet}(\mathbf{M}) \to s_{\bullet}(\mathbf{N})$$

are homotopic.

Proof. A simplicial set map $h : X \times \Delta^1 \to Y$ consists of functions $h_{\tau} : X_n \to Y_n$, one for each $\tau : \mathbf{n} \to \mathbf{1}, n \ge 0$, such that the diagram

$$\begin{array}{c|c} X_n \xrightarrow{h_{\tau}} Y_n \\ \downarrow \\ \theta^* \\ X_m \xrightarrow{h_{\tau\theta}} Y_m \end{array}$$

commutes for each ordinal number map $\theta : \mathbf{m} \to \mathbf{n}$. In effect,

$$h_{\tau}(\sigma) = h(\sigma, \tau)$$

for all $\sigma : \Delta^n \to X$ and $\tau : \Delta^n \to \Delta^1$.

Suppose that $P : \operatorname{Ar}(\mathbf{n}) \to \mathbf{M}$ is exact, and let $h_{\tau}(P)$ be the composite

$$\operatorname{Ar}(\mathbf{n}) \xrightarrow{(P,\tau_*)} \mathbf{M} \times \operatorname{Ar}(\mathbf{1}) \xrightarrow{1 \times s} \mathbf{M} \times \mathbf{1} \xrightarrow{h} \mathbf{N}.$$

Here, h is the natural isomorphism

$$f(N) = h(N,0) \cong h(N,1) = g(N),$$

and $s : \operatorname{Ar}(\mathbf{1}) \to \mathbf{1}$ is the source map $(i, j) \mapsto i$. More explicitly, the functor $h_{\tau}P$ is specified by the assignment

$$(i,j) \mapsto \begin{cases} fP(i,j) & \text{if } \tau(i) = 0, \\ gP(i,j) & \text{if } \tau(i) = 1. \end{cases}$$

In all cases, there are natural isomorphisms

$$h_{\tau}(P) \cong fP \cong gP,$$

so that $h_{\tau}(P)$ is exact.

Here's some fun with ordinal numbers: suppose that \mathbf{n} is an ordinal number, let \mathbf{n}^o denote the opposite poset

$$n^o \to \cdots \to 1^o \to 0^o$$
,

and let $\mathbf{n}^{o} * \mathbf{n}$ be the poset join

$$n^{o} \to \cdots \to 1^{o} \to 0^{o} \to 0 \to 1 \to \cdots \to n.$$

or, more suggestively

Example: $1^{\circ} * 1 \cong 3$.

Generally, $\mathbf{n}^o * \mathbf{n} \cong \mathbf{2n} + \mathbf{1}$.

Every ordinal number map $\theta : \mathbf{m} \to \mathbf{n}$ induces a functor (aka. ordinal number map)

 $\theta^{o} * \theta : \mathbf{m}^{o} * \mathbf{m} \to \mathbf{n}^{o} * \mathbf{n},$

and the assignment $\mathbf{n} \mapsto \mathbf{n}^o * \mathbf{n}$ defines a functor

 $e: \mathbf{\Delta} \to \mathbf{\Delta}.$

Let X be a simplicial set, and write

$$X^e = X \cdot e^{op},$$

so that

$$X_n^e = X(\mathbf{n}^o * \mathbf{n}).$$

The simplicial set X^e is the *edgewise subdivision* of X.

The canonical ordinal number inclusions

$$\omega_n:\mathbf{n}\to\mathbf{n}^o*\mathbf{n}$$

are natural in \mathbf{n} , and hence define a natural map

$$\omega: X^e \to X$$

of simplicial sets.

Lemma 5.2. The natural map $\omega : X^e \to X$ is a weak equivalence.

Proof. The simplicial set X is a homotopy colimit of its simplices in the sense that the collection of all simplices $\sigma : \Delta^n \to X$ defines a weak equivalence

$$\underset{\Delta^n \to X}{\underline{\operatorname{holim}}} \Delta^n \xrightarrow{\simeq} X.$$

This is proved by showing that each map

$$\underset{\Delta^n \to X}{\underline{\operatorname{holim}}} \Delta^n \xrightarrow{\simeq} X_m$$

is a weak equivalence. It follows that all maps

 $\underset{\Delta^n \to X}{\underline{\operatorname{holim}}} \xrightarrow{\Delta^n \to X} (\Delta^n)_n^e \xrightarrow{\simeq} X_n^e$

are weak equivalences, and so the map

$$\underset{\Delta^n \to X}{\underline{\operatorname{holim}}} \xrightarrow{\Delta^n \to X} (\Delta^n)^e \xrightarrow{\simeq} X^e$$

is a weak equivalence.

There is a commutative diagram

$$\underbrace{\operatorname{holim}_{\Delta^n \to X} (\Delta^n)^e \xrightarrow{\simeq} X^e}_{\substack{\omega_* \\ \downarrow \\ holim \Delta^n \to X} \Delta^n \xrightarrow{\simeq} X}$$

so it suffices to show that all simplicial sets $(\Delta^n)^e$ are contractible.

The simplicial set $(\Delta^n)^e$ is the nerve of a poset whose objects are the relations $(i, j) : i \leq j$ of **n**. There is a morphism $(i, j) \leq (k, l)$ in this poset if and only if $k \leq i$ and $j \leq l$. The object (0, n) is terminal in this poset, so that $(\Delta^n)^e$ is contractible. \Box

Suppose once again that \mathbf{M} is an exact category, and let the exact functor $P : \operatorname{Ar}(\mathbf{n}^o * \mathbf{n}) \to \mathbf{M}$ define an *n*-simplex of $s_{\bullet}(\mathbf{M})^e$. Then for $i \leq j$ the pictures

define morphisms

$$\alpha^P_{i,j}: P(i^o, i) \to P(j^o, j)$$

of $Q\mathbf{M}$. Further, if $i \leq j \leq k$ then the square in the diagram

is bicartesian, so that assigning the morphism $\alpha_{i,j}^P$ to the relation $i \leq j$ defines a functor $\pi_n(P) : \mathbf{n} \to Q\mathbf{M}$.

We have therefore defined a function

$$\pi_n: (s_{\bullet}(\mathbf{M})^e)_n \to BQ\mathbf{M}_n$$

The functions π_n are natural in **n** and therefore define a simplicial set map

$$\pi: s_{\bullet}(\mathbf{M})^e \to BQ\mathbf{M}.$$

The exact functors $P : \operatorname{Ar}(\mathbf{n}^o * \mathbf{n}) \to \mathbf{M}$ and the natural isomorphisms between them define a groupoid $\operatorname{Iso}(S_{\bullet}(\mathbf{M}))_n^e$, which is the *n*-simplex groupoid of a simplicial groupoid $\operatorname{Iso}(S_{\bullet}(\mathbf{M}))^e$. There is a groupoid $\operatorname{Iso}(BQ\mathbf{M})_n$ with objects given by the functors $\mathbf{n} \to Q\mathbf{M}$ and whose morphisms are the natural isomorphisms of such functors. The groupoid $\operatorname{Iso}(BQ\mathbf{M})_n$ is the n-simplex groupoid of a simplicial groupoid $\operatorname{Iso}(BQ\mathbf{M})$, and it is easy to see that the simplicial set map π above is the object level part of a map

 $\pi : \operatorname{Iso}(S_{\bullet}(\mathbf{M}))^e \to \operatorname{Iso}(BQ\mathbf{M})$

of simplicial groupoids.

Lemma 5.3. The morphism of groupoids

 $\pi_n : \operatorname{Iso}(S_{\bullet}(\mathbf{M}))_n^e \to \operatorname{Iso}(BQ\mathbf{M})_n.$

induces a weak equivalence

 $B \operatorname{Iso}(S_{\bullet}(\mathbf{M}))_n^e \to B \operatorname{Iso}(BQ\mathbf{M})_n.$

Proof. Suppose that $P, Q : \operatorname{Ar}(\mathbf{n}^0 * \mathbf{n}) \to \mathbf{M}$ are exact functors. A natural isomorphism θ : $\pi_n(P) \to \pi_n(Q)$ consists of isomorphisms

$$\theta_i = \theta(i^o, i) : P(i^o, i) \xrightarrow{\cong} Q(i^o, i)$$

such that the diagrams

$$\begin{array}{c} P(i^{o},i) \xrightarrow{\alpha_{i,j}^{P}} P(j^{o},j) \\ \xrightarrow{\theta_{i}} \cong \qquad \cong \downarrow^{\theta_{j}} \\ Q(i^{o},i) \xrightarrow{\alpha_{i,j}^{Q}} Q(j^{o},j) \end{array}$$

commute in $Q\mathbf{M}$. It follows that there is a uniquely determined natural isomorphism

$$\theta(j^o,i): P(j^o,i) \xrightarrow{\cong} Q(j^o,i)$$

such that the diagrams

$$\begin{array}{c} P(i^{o},i) & \longleftarrow P(j^{o},i) & \longrightarrow P(j^{o},j) \\ \theta_{i} \middle| \cong & & \downarrow \theta(j^{o},i) & \cong \middle| \theta_{j} \\ Q(i^{o},i) & \longleftarrow Q(j^{o},i) & \longmapsto Q(j^{o},j) \end{array}$$

commute. The comparison of exact sequences

$$0 \longrightarrow P(n^{o}, i^{o}) \longrightarrow P(n^{o}, 0) \longrightarrow P(i^{o}, 0) \longrightarrow 0$$
$$\cong \downarrow^{\theta(n^{o}, 0)} \cong \downarrow^{\theta(i^{o}, 0)} 0$$
$$0 \longrightarrow Q(n^{o}, i^{o}) \longrightarrow Q(n^{o}, 0) \longrightarrow Q(i^{o}, 0) \longrightarrow 0$$

uniquely determines isomorphisms $\theta(n^o, i^o)$ for i < n. It follows that the natural isomorphism θ uniquely determines a natural isomorphism

$$\begin{array}{c} P(n^{o}, (n-1)^{o}) &\longrightarrow \dots & \longrightarrow P(n^{o}, n-1) & \longrightarrow P(n^{o}, n) \\ \theta(n^{o}, (n-1)^{o}) & \cong & \downarrow \theta(n^{o}, n-1) & \cong & \downarrow \theta(n^{o}, n) \\ Q(n^{o}, (n-1)^{o}) &\longmapsto \dots & \longrightarrow Q(n^{o}, n-1) & \longrightarrow Q(n^{o}, n) \end{array}$$

of strings of admissible monics. But this means that there is a unique natural isomorphism θ : $P \xrightarrow{\cong} Q$ which specializes to the θ_i , since the comparison of exact sequences

$$\begin{array}{ccc} 0 \longrightarrow P(n^{o}, r) \longrightarrow P(n^{o}, s) \longrightarrow P(r, s) \longrightarrow 0 \\ & & & \\ \theta(n^{o}, r) \middle| \cong & \cong \middle| \theta(n^{o}, s) & & \\ 0 \longrightarrow Q(n^{o}, r) \longrightarrow Q(n^{o}, s) \longrightarrow Q(r, s) \longrightarrow 0 \end{array}$$

determines an isomorphism $\theta(r,s) : P(r,s) \xrightarrow{\cong} Q(r,s)$ uniquely, for any $n^o \leq r \leq s$ in $\mathbf{n}^o * \mathbf{n}$. The functor π_n is therefore fully faithful.

Suppose that α : $\mathbf{n} \to Q\mathbf{M}$ is a functor, and choose representatives

$$\alpha(i) = P(i^o, i) \twoheadleftarrow P(j^o, i) \rightarrowtail P(j^o, j) = \alpha(j)$$

for all morphisms $\alpha(i) \to \alpha(j)$ in $Q\mathbf{M}$. Then for all relations $i \leq j$ there is a uniquely determined diagram

for which the square is bicartesian and the composites

$$P(n^o,i) \rightarrowtail P(n^o,j) \rightarrowtail P(n^o,n)$$

and

$$P(n^o,i) \twoheadrightarrow P(j^o,i) \twoheadrightarrow P(i^o,i)$$

coincide with the chosen representatives for the map $\alpha(i) \rightarrow \alpha(n)$ in $Q\mathbf{M}$. It follows that there is a uniquely determined string of admissible monics

$$P(n^o, 0) \rightarrow P(n^o, 1) \rightarrow \cdots \rightarrow P(n^o, n)$$

such that all composites $P(n^o, i) \rightarrow P(n^o, n)$ are the original choices of representatives. Similarly, there is a uniquely determined string of admissible epis

$$P(n^o, 0) \twoheadrightarrow \cdots \twoheadrightarrow P(1^o, 0) \twoheadrightarrow P(0^o, 0)$$

such that all composites $P(i^o, 0) \twoheadrightarrow P(0^o, 0)$ are original choices.

For $0 \leq i < n$, define $P(n^o, i^o)$ by the exact sequence

$$0 \to P(n^o, i^o) \rightarrowtail P(n^o, 0) \twoheadrightarrow P(i^o, 0) \to 0.$$

Then if $i \leq j < n$ there is a unique admissible monic $P(n^o, j^o) \rightarrow P(n^o, i^o)$ such that the diagram

commutes. Then the string of admissible monics

$$P(n^o, (n-1)^o) \rightarrow \dots P(n^o, 0^o) \rightarrow P(n^o, 0) \rightarrow \dots \rightarrow P(n^o, n)$$

determines an exact functor $P : \operatorname{Ar}(\mathbf{n}^o * \mathbf{n}) \to \mathbf{M}$ with P(r, s) defined by the exact sequence

 $0 \to P(n^o,r) \rightarrowtail P(n^o,s) \twoheadrightarrow P(r,s) \to 0$

for $n^o \leq r \leq s \leq n$ such that $\pi_n(P) = \alpha$ in $\operatorname{Iso}(BQ\mathbf{M})_n$.

The functor π_n is a functor between groupoids which is fully faithful and is surjective on objects. It is therefore an equivalence.

Theorem 5.4. There are weak equivalences

$$s_{\bullet}(\mathbf{M}) \xleftarrow{\omega}{\simeq} s_{\bullet}(\mathbf{M})^e \xrightarrow{\pi}{\simeq} BQ\mathbf{M}$$

for each exact category **M**. These maps are natural in exact functors.

Proof. The fact that ω is a weak equivalence is consequence of a general phenomenon for simplicial sets, which is given by Lemma 5.2.

It follows from Lemma 5.3 that the map

$$\pi: \operatorname{Iso}(S_{\bullet}(\mathbf{M}))^e \to \operatorname{Iso}(BQ\mathbf{M})$$

is a weak equivalence of simplicial groupoids.

The natural weak equivalence $\omega : s_{\bullet}(\mathbf{M})^e \simeq s_{\bullet}(\mathbf{M})$ and Lemma 5.1 together imply that the functor $\mathbf{M} \mapsto s_{\bullet}(\mathbf{M})^e$ takes exact equivalences to weak equivalences. It follows that the exact equivalences $\mathbf{M} \to \mathrm{Iso}_n(\mathbf{M})$ of Exercise 3.7 induce a weak equivalence of bisimplicial sets

$$\eta: s_{\bullet}(\mathbf{M})^e \to B(\operatorname{Iso}(S_{\bullet}(\mathbf{M}))^e)$$

which induced by the inclusions of objects into the corresponding groupoid of isomorphisms in each simplicial degree. There is a corresponding map

$$\eta': BQ\mathbf{M} \to B \operatorname{Iso}(BQ\mathbf{M})$$

and a commutative diagram

$$s_{\bullet}(\mathbf{M})^{e} \xrightarrow{\eta} B(\operatorname{Iso}(S_{\bullet}(\mathbf{M}))^{e} \xrightarrow{\pi} B \xrightarrow{\simeq} B(\operatorname{Iso}(S_{\bullet}(\mathbf{M}))^{e} \xrightarrow{\pi} B \xrightarrow{\simeq} B \xrightarrow{\pi} B$$

and it remains to show that the map η' is a weak equivalence.

The bisimplicial set $B \operatorname{Iso}(BQ\mathbf{M})$ is the bisimplicial nerve of a bicategory whose 2-cells are commutative diagrams

in the category $Q\mathbf{M}$. Write $\operatorname{Iso}_n(BQ\mathbf{M})$ for the category whose objects are all strings of isomorphisms

$$P: P_0 \xrightarrow{\cong} P_1 \xrightarrow{\cong} \dots \xrightarrow{\cong} P_n$$

and whose morphisms are all natural transformations of such. Then (you've seen this before) there are functors

$$Q\mathbf{M} \xrightarrow{f} \operatorname{Iso}_n Q\mathbf{M} \xrightarrow{g} Q\mathbf{M},$$

where f(Q) is the string of identities

$$Q \xrightarrow{1} \dots \xrightarrow{1} Q$$

and $g(P) = P_0$. Then the functors f and g determine an equivalence of categories $Q\mathbf{M} \simeq \operatorname{Iso}_n Q\mathbf{M}$ for each $n \geq 0$, and it follows that η' is a weak equivalence.

Exercise 5.5. Show that there is an isomorphism of simplicial categories

$$\operatorname{Iso}_n Q\mathbf{M} \cong Q(\operatorname{Iso}_n \mathbf{M})$$

where $\operatorname{Iso}_n \mathbf{M}$ is the exact category described at the end of Section 2.

Remark 5.6. The argument in the last paragraph of the proof of Theorem 5.4 is part of a very general phenomenon. Suppose that C is a small category, and let Iso(Ar(C)) be the bicategory whose 2-cells are all commutative diagrams

$$\begin{array}{c} a \longrightarrow b \\ \cong \downarrow \qquad \qquad \downarrow \cong \\ a' \longrightarrow b' \end{array}$$

in C. Then there is a weak equivalence

$$BC \simeq B \operatorname{Iso}(\operatorname{Ar}(C))$$

which is induced by the inclusion of objects in all vertical groupoids.

Remark 5.7. Write $Mon_n(\mathbf{M})$ for the category of strings of admissible monics

$$P_1 \rightarrow P_2 \rightarrow \cdots \rightarrow P_n$$

and their natural transformations. Let

$$\operatorname{Iso}(\operatorname{Mon}_n(\mathbf{M}))$$

be the groupoid of isomorphisms in this category.

Suppose that $P : \operatorname{Ar}(\mathbf{n}) \to \mathbf{M}$ is an exact functor. Then we have already seen that P is completely determined up to isomorphism by the string of admissible monics

$$P(0,1) \rightarrow P(0,2) \rightarrow \cdots \rightarrow P(0,n).$$
 (1)

It follows that the functor

$$m: S_n(\mathbf{M}) \to \operatorname{Mon}_n(\mathbf{M})$$

which sends P to the string (1) induces an equivalence of groupoids

$$m : \operatorname{Iso}(S_n(\mathbf{M})) \xrightarrow{\simeq} \operatorname{Iso}(\operatorname{Mon}_n(\mathbf{M})).$$

For a sequence of admissible monics

$$P: 0 \rightarrow P_1 \rightarrow \cdots \rightarrow P_n,$$

write $P_0 = 0$. Then, if $\theta : \mathbf{m} \to \mathbf{n}$ is an ordinal number map there is an induced string of admissible monics

$$\theta^*(P): 0 \rightarrow P_{\theta(1)}/P_{\theta(0)} \rightarrow \cdots \rightarrow P_{\theta(m)}/P_{\theta(0)},$$

subject to making some choices of quotients. The assignment $P \mapsto \theta^*(P)$ defines a functor

$$\theta^* : \operatorname{Iso}(\operatorname{Mon}_n(\mathbf{M})) \to \operatorname{Iso}(\operatorname{Mon}_m(\mathbf{M}))$$

for each ordinal number map θ . The quotients in question are only defined up to canonical isomorphism, and so there are canonical isomorphisms

$$1^*_{\mathbf{n}} \cong 1, \quad (\gamma \theta)^* \cong \theta^* \gamma^*$$

which are coherent in the sense that they satisfy certain cocycle conditions. This means that the assignment $\mathbf{n} \mapsto \operatorname{Iso}(\operatorname{Mon}_n(\mathbf{M}))$ defines a *pseudofunctor*

 $\operatorname{Iso}(\operatorname{Mon}_{\bullet}(\mathbf{M})) : \mathbf{\Delta}^{op} \rightsquigarrow \mathbf{Gpd}$

taking values in small groupoids. That's okay, because any such pseudo-functor can be *rectified* (by using the "Grothendieck construction") to produce a simplicial object in groupoids up to pointwise equivalence.

Further, the equivalences

 $m : \operatorname{Iso}(S_n(\mathbf{M})) \xrightarrow{\simeq} \operatorname{Iso}(\operatorname{Mon}_n(\mathbf{M})).$

are not natural in simplicial structure maps, but they are natural up to canonical isomorphism, and therefore form a pseudo-natural transformation

 $m : \operatorname{Iso}(S_{\bullet}(\mathbf{M})) \to \operatorname{Iso}(\operatorname{Mon}_{\bullet}(\mathbf{M})),$

which induces a weak equivalence of the respective Grothendieck constructions.

It follows that the Grothendieck construction for the pseudo-functor $Iso(Mon_{\bullet}(\mathbf{M}))$ is another model for the K-theory space $BQ\mathbf{M}$ of an exact category \mathbf{M} .

A detailed account of these constructions can be found in [2].

6 Additivity

Suppose that \mathbf{M} is an exact category, and recall (from Section 2) that $\operatorname{Ex}(\mathbf{M})$ is the exact category whose objects are the exact sequences

$$0 \to P' \to P \to P'' \to 0, \qquad (2)$$

whose morphisms are the comparisons of exact sequences, and whose exact sequences are the termwise exact sequences.

Observe that there is an exact equivalence

$$S_2(\mathbf{M}) \xrightarrow{\simeq} \operatorname{Ex}(\mathbf{M})$$

which sends an exact functor $P : \operatorname{Ar}(2) \to \mathbf{M}$ to the exact sequence

$$0 \to P(0,1) \rightarrowtail P(0,2) \twoheadrightarrow P(1,2) \to 0.$$

There are exact functors $s, t : \text{Ex}(\mathbf{M}) \to \mathbf{M}$ which are defined, respectively, sending the sequence (2) to the objects P' and P''.

The "Additivity Theorem" is the following:

Theorem 6.1. The simplicial set map

$$(t,s): s_{\bullet} \operatorname{Ex}(\mathbf{M}) \to s_{\bullet} \mathbf{M} \times s_{\bullet} \mathbf{M}$$

is a weak equivalence.

The proof of this result will occupy the remainder of this section.

The idea is to show that the square

is homotopy cartesian, where c is induced by the exact functor $c : \mathbf{M} \to \text{Ex}(\mathbf{M})$ which sends an object P to the sequence

$$0 \to 0 \rightarrowtail P \xrightarrow{1} P \to 0.$$

If this can be done, then the comparison of homo-

topy fibre sequences (of connected spaces)

implies that (t, s) is a weak equivalence. Here, $in_L(P) = (P, 0)$ and pr_R is projection onto the right factor.

Recall that every simplex $P: \Delta^n \to s_{\bullet}\mathbf{M}$ defines a pullback diagram

The assertion that the square (3) is homotopy cartesian is a consequence of the following:

Lemma 6.2. The functor $\Delta/s_{\bullet}M \to sSet$ defined by $P \mapsto s^{-1}(P)$ is a diagram of equivalences in simplicial sets.

In effect, if Lemma 6.2 holds, then the diagram

is homotopy cartesian by Theorem 1.11 (aka. Quillen's Theorem B), and there are weak equivalences

$$s^{-1}(0) \xrightarrow{\simeq} s_{\bullet} \mathbf{M}$$

(see the proof of Lemma 6.2) and

$$\underset{P:\Delta^n\to s_{\bullet}\mathbf{M}}{\operatorname{holim}} s^{-1}(P) \xrightarrow{\simeq} s_{\bullet} \operatorname{Ex}(\mathbf{M}).$$

Proof of Lemma 6.2. It is enough to show that the composite

$$s^{-1}(P) \to s_{\bullet} \operatorname{Ex}(\mathbf{M}) \xrightarrow{t} s_{\bullet} \mathbf{M}$$

is a weak equivalence for each simplex P.

If the simplex $0 : \Delta^0 \to s_{\bullet} \mathbf{M}$ defined by a 0-object of \mathbf{M} then $s^{-1}(0) = s_{\bullet} \operatorname{Ex}_0(\mathbf{M})$, where $\operatorname{Ex}_0(\mathbf{M})$ is the exact category of all exact sequences

$$0 \to 0 \rightarrowtail A \twoheadrightarrow B \to 0.$$

The exact functor $t : \text{Ex}(\mathbf{M}) \to \mathbf{M}$ restricts to an exact equivalence $t : \text{Ex}_0(\mathbf{M}) \to \mathbf{M}$, and it follows that the composite

$$f: s^{-1}(0) \to s_{\bullet} \operatorname{Ex}(\mathbf{M}) \xrightarrow{t} s_{\bullet} \mathbf{M}$$

is a weak equivalence. This map f has a section $g: s_{\bullet} \mathbf{M} \to s^{-1}(0)$ which is defined by taking a simplex Q to the exact sequence

$$0 \to 0 \rightarrowtail Q \stackrel{1}{\rightarrowtail} Q \to 0.$$

Consider the diagram

where n denotes the corresponding object of \mathbf{n} and $P \cdot n$ is a zero object 0 of \mathbf{M} , so that the composite

$$s^{-1}(0) \xrightarrow{n_*} s^{-1}(P) \to s_{\bullet} \operatorname{Ex}(\mathbf{M}) \xrightarrow{t} s_{\bullet} \mathbf{M}$$

is the weak equivalence f. The composite of all horizontal arrows along the top of the diagram is the identity, so it suffices to show that the composite

$$\psi: s^{-1}(P) \to s_{\bullet} \operatorname{Ex}(\mathbf{M}) \xrightarrow{t} s_{\bullet} \mathbf{M} \xrightarrow{g} s^{-1}(0) \xrightarrow{n_*} s^{-1}(P)$$

is homotopic to the identity. This would mean that the map

$$s^{-1}(P) \to s_{\bullet} \operatorname{Ex}(\mathbf{M}) \xrightarrow{t} s_{\bullet} \mathbf{M}$$

is a homotopy equivalence.

An *m*-simplex of $s^{-1}(P)$ is a pair

$$(\mathbf{m} \xrightarrow{\theta} \mathbf{n}, \theta^*(P) \rightarrowtail A \twoheadrightarrow B),$$

where

$$0 \to \theta^* P \rightarrowtail A \twoheadrightarrow B \to 0$$

an exact sequence of $S_m \mathbf{M}$. The composite map ψ is then defined by

$$\psi(\mathbf{m} \xrightarrow{\theta} \mathbf{n}, \theta^*(P) \rightarrowtail A \twoheadrightarrow B) = (\mathbf{m} \xrightarrow{n} \mathbf{n}, 0 \rightarrowtail B \xrightarrow{1} B),$$

where n is the constant ordinal number map which takes all i to n.

We define a homotopy $H:s^{-1}(P)\times\Delta^1\to s^{-1}(P)$ such that the diagram

commutes, where pr is the defining projection and h is the homotopy defined by the functor

which flows into the terminal object n of \mathbf{n} .

The homotopy h is given in simplicial degree m by the functions

$$h_{\tau}$$
: hom $(\mathbf{m}, \mathbf{n}) \rightarrow hom(\mathbf{m}, \mathbf{n}),$

one for each morphism $\tau : \mathbf{m} \to \mathbf{1}$, where $h_{\tau}(\theta)$ is

the composite

$$\mathbf{m} \xrightarrow{(\theta,\tau)} \mathbf{n} \times \mathbf{1} \xrightarrow{h} \mathbf{n}$$

There is a (unique) natural transformation

 $\theta \to h_{\tau}(\theta),$

which induces a natural transformation

$$\operatorname{Ar}(\theta) \to \operatorname{Ar}(h_{\tau}(\theta))$$

of induced functors $\operatorname{Ar}(\mathbf{m}) \to \operatorname{Ar}(\mathbf{n})$. This transformation, in turn, induces a map

$$\theta^*(P) \to h_\tau(\theta)^*(P)$$

in $S_m \mathbf{M}$. Form the pushout

$$\begin{array}{cccc}
\theta^*(P) & \to A \\
\downarrow & \downarrow \\
h_{\tau}(\theta)^*(P) & \to A_{\tau}
\end{array} \tag{4}$$

Then the sequence

$$0 \to h_{\tau}(\theta)^*(P) \rightarrowtail A_{\tau} \twoheadrightarrow B \to 0$$

is exact, and we are entitled to set

$$h_{\tau}(\mathbf{m} \xrightarrow{\theta} \mathbf{n}, \theta^*(P) \rightarrowtail A \twoheadrightarrow B)$$

= $(h_{\tau}(\theta), h_{\tau}(\theta)^*(P) \rightarrowtail A_{\tau} \twoheadrightarrow B).$

To make the pushout construction actually work the diagrams (4) have to be constructed correctly. These diagrams are induced by pushouts

where

$$0 \to P(i,j) \xrightarrow{i} A \xrightarrow{p} B \to 0$$

is an exact sequence of \mathbf{M} and $\alpha : (i, j) \to (k, l)$ is a morphism of $\operatorname{Ar}(\mathbf{n})$. The diagrams (5) can be chosen so that $\gamma = 1_A : A \to A$ if α is an identity morphism, and such that $\gamma = p$ if k = l. Form the pushouts (5) for the set of diagrams

$$0 \longrightarrow P(i, j) \longrightarrow A \longrightarrow B \longrightarrow 0$$

$$\alpha_* \downarrow$$

$$P(k, l)$$

in which the displayed exact sequence is in \mathbf{E} , subject to these constraints.

Then the induced pushout diagrams (4) define functions $h_{\tau}: s^{-1}(P)_m \to s^{-1}(P)_m$ such that the diagrams

commute for all ordinal number morphisms γ : $\mathbf{k} \to \mathbf{m}$, and such that the functions h_{τ} define a homotopy from the identity to ψ .

7 *H*-space structure

Suppose that \mathbf{M} is an exact category. Then the direct sum functor

$\oplus:\mathbf{M}\times\mathbf{M}\rightarrow\mathbf{M}$

defined by $(P,Q)\mapsto P\oplus Q$ is exact, and induces a map

$$\oplus : s_{\bullet}(\mathbf{M}) \times s_{\bullet}(\mathbf{M}) \to s_{\bullet}(\mathbf{M}).$$
 (6)

Any zero object 0 of \mathbf{M} defines a vertex $0 : * \to s_{\bullet}(\mathbf{M})$ which defines a 2-sided identity up to homotopy for the map \oplus : in effect there are canonical natural isomorphisms

$$0 \oplus P \cong P \cong P \oplus 0.$$

The functor \oplus is associative up to canonical isomorphism, so that the map (6) is associative up

to canonical homotopy. In particular the direct sum functor \oplus and choice of zero object 0 give the space $s_{\bullet}(\mathbf{M})$ the structure of a homotopy associative (even homotopy commutative) *H*-space.

As in the previous section, let $Ex(\mathbf{M})$ be the exact category of exact sequences

$$0 \to P' \to P \twoheadrightarrow P'' \to 0 \tag{7}$$

in \mathbf{M} . Recall that there are exact functors

$$s, t : \operatorname{Ex}(\mathbf{M}) \to \mathbf{M}$$

which take the exact sequence (7) to P' and P'', respectively. There is a further exact functor

$$tot: Ex(\mathbf{M}) \to \mathbf{M}$$

which takes the exact sequence (7) to the object P.

The following result is a consequence of the additivity theorem Theorem 6.1:

Corollary 7.1. The *H*-space structure on $s_{\bullet}(\mathbf{M})$ determines a relation of simplicial set maps

 $tot_* = s_* + t_* : s_{\bullet} \operatorname{Ex}(\mathbf{M}) \to s_{\bullet}(\mathbf{M}).$

Proof. There is a functor

$$\oplus: \mathbf{M} \times \mathbf{M} \to \mathrm{Ex}(\mathbf{M})$$

which takes a pair (P, Q) to the exact sequence

$$0 \to P \rightarrowtail P \oplus Q \twoheadrightarrow Q \to 0$$

The composite $(s, t) \oplus$ is the identity on $\mathbf{M} \times \mathbf{M}$, so that the induced map

$$\oplus_* : s_{\bullet}(\mathbf{M}) \times s_{\bullet}(\mathbf{M}) \to s_{\bullet}(\mathrm{Ex}(\mathbf{M}))$$

is a homotopy inverse for (s_*, t_*) , by the additivity theorem. At the same time the composite exact functor

$$\mathbf{M} \times \mathbf{M} \xrightarrow{\oplus} \operatorname{Ex}(\mathbf{M}) \xrightarrow{tot} \mathbf{M}$$

is the direct sum functor for \mathbf{M} , and therefore induces the *H*-space structure. It follows that

 $tot_* = tot_* \oplus_* (s_*, t_*) = \oplus_* (s_*, t_*) = s_* + t_*,$

as required.

Corollary 7.2. Suppose that

 $0 \to f \rightarrowtail g \twoheadrightarrow h \to 0$

is an exact sequence of exact functors $\mathbf{M} \to \mathbf{N}$. Then there is a relation

$$g_* = f_* + h_* : s_{\bullet}(\mathbf{M}) \to s_{\bullet}(\mathbf{N}).$$

Proof. The exact sequence of exact functors determines an exact functor

$$\mathbf{M} \to \mathrm{Ex}(\mathbf{N}).$$

References

- [1] J. F. Jardine. The multiple Q-construction. Canad. J. Math., 39(5):1174–1209, 1987.
- [2] J. F. Jardine. Supercoherence. J. Pure Appl. Algebra, 75(2):103–194, 1991.
- Friedhelm Waldhausen. Algebraic K-theory of spaces. In Algebraic and geometric topology (New Brunswick, N.J., 1983), volume 1126 of Lecture Notes in Math., pages 318–419. Springer, Berlin, 1985.