
Lecture 004 (October 8, 2014)

8 The K-theory spectrum

Recall that there is a poset isomorphism

0 ∗ n ∼= n + 1,

and write

θ̃ = 0 ∗ θ : m + 1 ∼= 0 ∗m→ 0 ∗ n ∼= n + 1

for each ordinal number map θ : m→ n.

Let X be a simplicial set, and write EX for the

simplicial set with

EXn = Xn+1 = X(0 ∗ n),

and with structure maps θ̃∗ : EXn → EXm for

ordinal number maps θ : m→ n.

Example: Suppose that C is a small category.

Then EBC has m-simplices given by strings of

arrows

σ : a→ b0 → · · · → bn,

and θ∗(σ) is the string

a→ bθ(0) → · · · → bθ(m).
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It follows that there is an isomorphism⊔
a∈Ob(C)

B(a/C)
∼=−→ EBC.

There is a natural simplicial set map

p : EX → X0

which is defined by sending an n-simplex σ : ∆n+1 →
X to σ(0). Every vertex x of X defines a vertex

s0(x) : ∆1 → X of EX : in this way, there is a

natural simplicial set map q : X0 → EX .

Lemma 8.1. The map p : EX → X0 is a nat-

ural strong deformation retraction, with section

and homotopy inverse q : X0 → EX.

Proof. The composite p · q is the identity on X0,

so it suffices to find a natural homotopy

h : EX ×∆1 → EX

from the identity on EX to q · p which is constant

on X0.

There is an isomorphism

lim−→
∆n→X

E∆n ∼=−→ EX,

so it suffices to find the homotopy

h : E∆n ×∆1 → E∆n
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and show that it is natural in simplices. The con-

tracting homotopies

B(v/n)×∆1 → B(v/n)

onto initial objects induce homotopies

E∆n×∆1 ∼=
⊔
v∈n

B(v/n)×∆1 →
⊔
v∈n

B(v/n) ∼= E∆n

which do the job.

Example: Suppose that D is a simplicial (small)

category. Then there is a simplicial category ED

with EDn = Dn+1, with structure functors θ̃∗ :

Dn+1 → Dm+1. The corresponding bisimplicial

setBED has vertical simplicial sets (BED)n (cor-

responding to strings of arrows of length n) with

strong deformation retractions

(BED)n ∼= E(BDn)
'−→ B(D0)n

which respect simplicial structure maps It follows

that the canonical simplicial category morphism

ED → D0

induces a strong deformation retraction

BED
'−→ BD0

of bisimplicial sets. This strong deformation re-

traction is natural in simplicial categories D.
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The following result is a consequence of this obser-

vation:

Example 8.2. There is a homotopy equivalence

BE Iso(S•(M)) ' ∗

for each exact category M. This equivalence is

natural in exact functors in M.

There is a natural homotopy equivalence

BE Iso(S•(M)) ' B Iso(S0(M)), (1)

and Iso(S0(M)) is the groupoid of zero objects of

M and the isomorphisms between them. This is a

trivial groupoid because all zero objects are initial

in M, so there is a homotopy equivalence

B Iso(S0(M)) ' ∗. (2)

The desired homotopy equivalence is the composite

of the equivalences (1) and (2).

The ordinal number maps d0 : n → 0 ∗ n induce

a natural simplicial set map

d0 : EX → X.

Suppose that σ : ∆n+1 → X is an n-simplex of
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EX . Then there is a commutative diagram

E∆n+1 σ∗ //

d0 ��

EX
d0
��

∆n+1
σ

//X

and the map d0 : E∆n+1 → ∆n+1 can be identified

with the map⊔
v∈n+1

B(v/(n + 1))→ B(n + 1)

which is induced by the canonical forgetful functors

v/(n + 1)→ n + 1. Note that the k-simplex

v → i0 → · · · → ik

ofB(v/(n + 1))k is identified with a (k+1)-simplex

in ∆n+1
k+1 = E∆n+1

k in the obvious way under the

identification⊔
v∈n+1

B(v/(n + 1)) = E∆n+1.

In particular, the n-simplex

0→ 1→ 2→ · · · → n + 1

ofB(0/(n + 1)) maps to σ ∈ EXn under the com-

posite

B(0/(n + 1))→ E∆n+1 σ∗−→ EX.
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The contracting homotopy

h : B(0/(n + 1))×∆1 → B(0/(n + 1)

is defined by functions

hτ : B(0/(n + 1))k → B(0/(n + 1))k,

one for each τ : k → 1 (satisfying compatibility

conditions). Explicitly, if τ : n→ 1 is the string

0→ · · · → 0→
i
1→ · · · → 1 (3)

(0 ≤ i ≤ n + 1) and

γ : 0→ j0 → · · · → jn

is an n-simplex of B(0/(n + 1)), then hτ (γ) is the

simplex

0→ 0→ · · · → 0→ ji → · · · → jn.

The simplex hτ (γ), interpreted as an element of

∆n+1
n+1, has the form

hτ (γ) = si0d
i
1(γ).

It follows that, for σ ∈ Xn+1 = EXn, the homo-

topy h : EX ×∆1 → EX is defined by functions

hτ : Xn+1 → Xn+1,

indexed by ordinal number morphisms τ : n→ 1

written as in (3), where

hτ (σ) = si0d
i
1(σ). (4)
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Example 8.3. Suppose that ω ∈ X1, so that ω

represents a vertex of EX . The homotopy h :

EX ×∆1 → EX defines a 1-simplex h1(s0(ω)) ∈
EX , where 1 denotes the identity morphism 1→
1. The simplex s0(ω) ofEX1 is the simplex s1(ω) ∈
X2, and

h1(s1(ω)) = s0d1(s1(ω)) = s0(ω)

according to the description we have just seen. In

EX , this simplex is a path

s0d1(ω) = d2s0(ω)→ d1s0(ω) = ω

which can be represented by the picture

x
s0d1(ω)

��

ω
��

x ω
// y

It follows as well that the composite

∆1 (ω,1)−−→ EX ×∆1 h−→ EX
d0−→ X

is the simplex ω.

Example 8.4. Suppose that M is an exact cate-

gory, and that the exact functor P : Ar(n + 1)→
M is an (n+ 1)-simplex of s•(M), or equivalently

an n-simplex of Es•(M). Then the homotopy

h : Es•(M)×∆1 → Es•(M)
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of Lemma 8.1 is given by functions

hτ : sn+1(M)→ sn+1(M)

indexed by ordinal numbers maps τ : n→ 1. If τ

is the map (3) then

hτ (P ) = si0d
i
1(P )

in s•(M)n+1. In terms of strings of admissible

monics, hτ takes the string

P (0, 1) � · · ·� P (0, n + 1)

to the string

P (0, 0) � · · ·� P (0, 0) � P (0, i+1) � · · ·� P (0, n+1)

(5)

for 0 ≤ i ≤ n + 1.

Now consider the pullback

f (M)
i∗ //

��

Es•(M)

d0
��

s•(0)
i
// s•(M)

where the map i is the inclusion of the subset of

all exact functors P : Ar(n)→M such that

P (i, j) ∼= 0

for all 0 < i ≤ j. Then f (M)n is the subset of all

exact functors P : Ar(n + 1)→M such that the
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string of admissible monics

P (0, 1) � P (0, 2) � · · ·� P (0, n + 1)

consists of isomorphisms.

If 0 is a distinguished zero object of M then there

is a function

i0 : Ob(M)→ f (M)0 = Es•(M)0 = s•(M)1

which takes P to the simplex

0 // //P

����

0

This function determines a simplicial set map

i0 : Ob(M)×∆1 → s•(M). (6)

The description of the homotopy h of (5) implies

that this map i0 coincides with the composite

Ob(M)×∆1 i0×1−−→ Es•(M)×∆1 h−→ Es•(M)
d0−→ s•(M).

See also Remark 8.5 below.

The map i0 of (6) induces a pointed simplicial set

map

σ : (Ob(M)/Ob(0)) ∧ S1 → s•(M)/s•(0),

where Ob(0) is the set of zero objects of M and

s•(0) is the subcomplex of s•(M) which consists
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of all exact functors P : Ar(n) → M which take

values in zero objects.

The subcomplex s•(0) is contractible, by Lemma

5.1, since every zero object is uniquely isomorphic

to the fixed object 0.

Remark 8.5. One can alternatively describe the

composite

Ob(M)×∆1 i0×1−−→ Es•(M)×∆1 h−→ Es•(M)

as the map which associates the path represented

by the exact functor

0 // // 0 // //

����

P
1����

0 // //P

����

0

(aka. s1(i0(P )) ∈ s•(M)2) to the object P of M.

It follows that the composite

Ob(M)×∆1 i0×1−−→ Es•(M)×∆1 h−→ Es•(M)
d0−→ s•(M)

of (6) is defined by taking the pair

(P, τ : n→ 1)

to the composite exact functor

Ar(n)
τ∗−→ Ar(1)

i0(P )−−−→M.
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One can also see this directly from Example 8.3.

Say that an exact category M together with a fixed

choice of zero object 0 is a pointed exact category.

A pointed exact functor f : M → N of pointed

exact categories is the obvious thing: it’s an exact

functor which preserves the choices of zero objects.

The map

σ : (Ob(M)/Ob(0)) ∧ S1 → s•(M)/s•(0) (7)

is natural in pointed exact functors M → N. If

0 is a distinguished zero for M, then the exact

functors 0 : Ar(n) → M which are constant at

0 are distinguished zeros for the exact categories

Sn(M), so that S•(M) is a pointed simplicial exact

category, and there is an induced bisimplicial set

map

σ : (s•(M)/s•(0)) ∧ S1 → s•(S•(M))/s•(S•(0)).

(8)

Here, s•(S•(M)) is the bisimplicial set of objects

of a bisimplicial exact category

S2
•(M) = S•(S•(M)),

and one alternatively writes

s2
•(M) = s•(S•(M)).
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The bisimplices of s2
•(M) can be identified with

functors

P : Ar(m)× Ar(n)→M

which are exact in each variable. The bisimplicial

set s•(S•(0)) is the subcomplex s2
•(0) of s2

•(M)

which consists of all functors P as above which

take values in zero objects: this is a contractible

subcomplex of s2
•(M).

Then the map σ can be rewritten as the map

σ : (s•(M)/s•(0)) ∧ S1 → s2
•(M)/s2

•(0)

of pointed bisimplicial sets.

The construction can be further iterated. Write

Sk• (M) for the k-fold simplicial exact category whose

objects are the functors

P : Ar(n1)× · · · × Ar(nk)→M

which are exact in each variable, and write sk•(M)

for its k-fold simplicial set of objects. Write sk•(0)

for the objects P of sk•(M) which take values in

zero objects. Then sk•(0) is contractible, and there

are k-fold pointed simplicial set maps

σ : (sk•(M)/sk•(0))∧S1 → sk+1
• (M)/sk+1

• (0). (9)

These maps are called bonding maps.
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The pointed spaces

Ob(M)/Ob(0), s•(M)/s•(0), s2
•(M)/s2

•(0), . . .

and the bonding maps σ of (9) determine a spec-

trum K(M), which is called the K-theory spec-

trum of the exact category M.

The assignment

M 7→ K(M)

is natural in pointed exact categories M.

Lemma 8.6. Suppose that f : M → N is an

exact equivalence. Then the induced map f∗ :

sk•(M)→ sk•(N) is a weak equivalence.

When I say that a map of k-fold simplicial sets is

a weak equivalence, I mean that it induces a weak

equivalence of associated diagonal simplicial sets.

Proof. The induced functor

Sn• (M)→ Sn• (N)

of n-fold simplicial exact categories is an exact

equivalence of exact categories in all multi-simplicial

degrees, and for all n. It follows that the induced

map

s•S
k−1
• (M)→ s•S

k−1
• (N)

is a weak equivalence.
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According to the description given of the map h in

(5), the composite homotopy

Es•(M)×∆1 h−→ Es•(M)
d0−→ s•(M)

maps the subobjects

Es•(0)×∆1 and Es•(M)× {0}

into s•(0), and therefore induces a pointed map

h∗ : (Es•(M)/Es•(0)) ∧∆1
∗ → s•(M)/s•(0),

naturally in M. Here ∆1
∗ is the 1-simplex ∆1

pointed by the vertex 0.

The adjoint of h∗ is a map

h̃ : Es•(M)/Es•(0)→ P (s•(M)/s•(0))

taking values in the path space which fits into a

commutative diagram

Ob(M)/Ob(0)

i0∗
��

f (M)/f (0) //

��

Es•(M)/Es•(0)
d0∗ //

h̃'
��

s•(M)/s•(0)

1
��

Ω(s•(M)/s•(0)) //P (s•(M)/s•(0)) // s•(M)/s•(0)
(10)

The sequence along the bottom is the “path-loop

fibration” (PX is paths in X starting at the base
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point — to make this actually work you have to re-

place s•(M)/s•(0) by a fibrant model). The map

h̃ is a weak equivalence on account of Lemma 8.1,

since s•(M) and s•(0) have the same sets of ver-

tices. The composite map

Ob(M)/Ob(0)
i0∗−→ f (M)/f (0)→ Ω(s•(M)/s•(0))

is the adjoint of the map σ of (7).

The diagram (10) is natural in exact categories

with distinguished zero object. Thus, by applying

this construction to the simplicial exact categories

Sk• (M) we obtain a list of commutative diagrams

of multisimplicial sets

sk•(M)/sk•(0)

i0∗
��

f k+1(M)/f k+1(0) //

��

Esk+1
• (M)/Esk+1

• (0)
d0∗//

h̃'
��

sk+1
• (M)/sk+1

• (0)

1
��

Ω(sk+1
• (M)/sk+1

• (0)) //P (sk+1
• (M)/sk+1

• (0)) // sk+1
• (M)/sk+1

• (0)
(11)

where, for notational convenience, f k+1(M) = f (Sk• (M))

and Esk+1
• (M) = Es•(S

k
• (M)).

The composite

sk•(M)/sk•(0)
i0∗−→ f k+1(M)/f k+1(0)→ Ω(sk+1

• (M)/sk+1
• (0))

is the adjoint σ∗ of the map σ of (9).
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Lemma 8.7. The map

i0∗ : sk•(M)/sk•(0)→ f k+1(M)/f k+1(0)

is a weak equivalence for k ≥ 1.

Proof. It is enough to show that the map

i0∗ : sk•(M)→ f k+1(M)

is a weak equivalence. The map i0 : Ob(M) →
f (M) is the object level map of a map

i0 : M→ F (M)

of simplicial exact categories, where F (M)n is the

exact category whose objects are the exact functors

P : Ar(n + 1) → M such that all morphisms in

the string

P (0, 1) � P (0, 2) � · · ·� P (0, n + 1)

are isomorphisms. The composite

M
i0−→ S1(M) = F (M)0

s∗−→ F (M)n

is an exact equivalence for each n ≥ 0, so that the

map i0 : M→ F (M) is a simplicial exact equiva-

lence. Applying the functor sk• to this exact equiv-

alence gives the map i0∗ : sk•(M) → f k+1(M),

which is therefore a weak equivalence by Lemma

8.6.
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Theorem 8.8. The maps

sk•(M)/sk•(0)→ Esk+1
• (M)/Esk+1

• (0)
d0∗−→ sk+1

• (M)/sk+1
• (0)

form a fibre homotopy sequence if k ≥ 1.

Corollary 8.9. The adjoint map

σ∗ : sk•(M)/sk•(0)→ Ω(sk+1
• (M)/sk+1

• (0))

is a weak equivalence for k ≥ 1.

Corollary 8.9 follows from Theorem 8.8 by a com-

parison of fibre sequences. The Corollary says that

theK-theory spectrumK(M) is an Ω-spectrum in

levels 1 and above.

Proof of Theorem 8.8. It’s enough to show that

the maps

sk•(M)→ Esk+1
• (M)

d0−→ sk+1
• (M)

form a fibre sequence. But this sequence may be

identified with the effect of applying the functor sk•
to the sequence

M→ ES•(M)
d0−→ S•(M)

of maps of simplicial exact categories.

The additivity theorem (Theorem 6.1) holds for

the functors M 7→ sk• Ex(M) for k > 1. To see
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this, look at the diagram

sk• Ex(M)
(sk•f,s

k
•g)

//

∼=
��

sk•(M)× sk(M)
∼=
��

s• ExSk−1
• (M)

(s•f,s•g)
// s•S

k−1(M)× s•Sk−1(M)

The map on the bottom is a weak equivalence by

Theorem 6.1, and so the map on top is a weak

equivalence too. The symmetric monoidal struc-

ture of M induces an H-space structure on sk•(M),

and it follows, just as in the proof of Corollary 7.2,

that any exact sequence

0→ f � g � h→ 0

of exact functors M→ N determines maps

f∗, g∗, h∗ : sk•(M)→ sk•(N)

which satisfy the relation

g∗ = f∗ + h∗.

Now consider the sequence of exact functors

M
i−→ Sn+1(M)

d0−→ Sn(M) (12)

where the functor i associates to an object P the

exact functor i(P ) : Ar(n + 1) → M which is

determined (by a fixed choice of zero object 0) by
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letting the string

i(P )(0, 1) � i(P )(0, 2) � · · ·� i(P )(0, n + 1)

be the string of identities

P
1
� P

1
� . . .

1
� P (13)

and so i(P )(i, j) = 0 for all other pairs i ≤ j.

The sequence of functors (12) can be replaced up

to exact equivalence by the sequence

M
i−→ Monn+1(M)

p−→ Monn(M),

where i(P ) is the sequence of identities (13), and

p sends the string

P1 � P2 � · · ·� Pn+1 (14)

to the string

P2/P1 � P3/P1 � · · ·� Pn+1/P1.

The functor p has a section

σ : Monn(M)→ Monn+1(M)

(up to isomorphism) which sends the string

Q1 � · · ·� Qn

to the string

0 � Q1 � · · ·� Qn.
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The functor i : M → Monn+1(M) has a left in-

verse q which sends the string (14) to the object

P1.

There is an exact sequence

0→ i · q � 1 � σ · p→ 0

of exact functors Monn+1(M) → Monn+1(M), so

that the is a relation

1 = i∗q∗ + σ∗p∗

of maps sk•Monn+1(M) → sk•Monn+1(M) in the

homotopy category. It follows that the map

(q∗, p∗) : sk•Monn+1(M)→ sk•(M)× sk•Monn(M)

is a weak equivalence with homotopy inverse in-

duced by the composite functor

M×Monn(M)
(i,σ)−−→ Monn+1(M)×Monn+1(M)

⊕−→ Monn+1(M).

In particular the sequences

sk•(M)
i∗−→ sk•Monn+1(M)

p∗−→ sk•Monn(M)

and

sk•(M)
i∗−→ sk•Sn+1(M)

d0∗−→ sk•Sn(M)

are homotopy fibre sequences. All spaces sk•(N)

are connected (see below), so it follows from a the-

orem of Bousfield and Friedlander [1], [2, IV.4.9],
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that the maps

sk•(M)→ sk•ES•(M)→ sk•S•(M)

form a homotopy fibre sequence.

Remark 8.10. The space

sk•(N) = s•S
k−1
• (N)

is connected for each exact category N, since all of

the simplicial sets

s•S
k−1
i1,...,ik−1

(N)

are connected. One can show that if X is a k-

fold simplicial object in simplicial sets such that

all of the constituent spaces Xi1,...,ik are connected,

then the associated diagonal simplicial set d(X) is

connected (exercise).

Since all spaces sk•(M) are connected for k ≥ 1,

then all spaces K(M)k are connected for k ≥ 1. It

follows from Theorem 8.8 that the space K(M)k

is (k− 1)-connected for k ≥ 1, and then one com-

putes explicitly to show that the K-theory spec-

trum is connective, and that the stable homotopy

groups πiK(M) are given by

πiK(M) ∼= πiΩK(M)1 = πi+1BQ(M)
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for i ≥ 0. In other words the stable homotopy

groups of K(M) coincide up to isomorphism with

the classical K-groups of M in positive degrees,

and are 0 in negative degrees.

9 Symmetries and products

Suppose that X is a set, and recall that the n-

fold product X×n can be identified with the set of

functions x : n→ X , where

n = {1, 2, . . . , n}.

Any symmetric group element σ ∈ Σn determines

a bijection

σ∗ : X×n
∼=−→ X×n, (15)

which is defined by sending an element x : n→ X

to the composite

n
σ−→ n

x−→ X.

This assignment is covariant in X and contravari-

ant in σ, and it follows that there is a (standard)

natural left action

Σn ×X×n → X×n (16)

of the group Σn onX×n which sends the pair (σ, x)

to the element (σ−1)∗(x). Alternatively, in terms
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of n-tuples,

σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)).

If X is a pointed space, this action preserves the

base point (∗, . . . , ∗) of X×n, and it also preserves

the subspace ofX×n which consists of all (n-tuples)

x : n → X such that x(i) = ∗ for some i. It fol-

lows that the action (16) induces an action

Σn ×X∧n → X∧n (17)

of Σn on the n-fold smash product X∧n which is

natural in pointed X . This action specializes (for

example) to the usual left action

Σn × (S1)∧n → (S1)∧n. (18)

Suppose that M is an exact category, pointed by a

zero object 0. Recall that the K-theory spectrum

K(M) consists of the pointed “spaces”

Ob(M)/Ob(0), s•(M)/s•(0), s2
•(M)/s2

•(0), . . .

Well, this is kind of a lie, because the objects in

this list are multi-simplicial sets. What we mean

to write is

K(M)k = d(sk•(M)/sk•(0)),
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where d : skSet → sSet is the multisimplicial

diagonal functor. Thus, for example, d(sk•(M))

is the simplicial set with n-simplices given by all

functors

P : Ar(n)×k →M

which are exact in all variables. If θ : m→ n is an

ordinal number map, then the m-simplex θ∗(P ) is

the composite functor

Ar(m)×k
θ×k∗−−→ Ar(n)×k

P−→M.

The symmetric group Σk in k-letters acts (on the

right) on the category Ar(n)×k by permuting fac-

tors, and therefore acts on the left on the sets

d(sk•(M)n: for σ ∈ Σk and P as above, σ(P ) is

the composite

Ar(n)×k
σ∗−→ Ar(n)×k

P−→M.

where σ∗ is the map defined in (15). The functions

σ : d(sk•(M))n → d(sk•(M))n

plainly respect the simplicial structure, so that

there is a natural induced left action

Σk × d(sk•(M))→ d(sk•(M)),

and hence a natural pointed action

Σk ×K(M)k → K(M)k.
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The bonding map

σK : S1 ∧K(M)k → K(M)k+1

is induced by a (k + 1)-fold simplicial set map

h : ∆1 × sk•(M)→ sk+1
• (M)

which takes the pair (τ, P ) consisting of the n-

simplex τ : n→ 1 and the multisimplex

P : Ar(n1)× · · · × Ar(nk)→M

to the composite

Ar(n)× Ar(n1)× · · · × Ar(nk)

τ∗×1
��

Ar(1)× Ar(n1)× · · · × Ar(nk) P∗
//M

where P∗ is the unique functor such that

P∗((0, 0), ε1, . . . , εk) = P∗((1, 1), ε1, . . . , εk) = 0

and

P∗((0, 1), ε1, . . . , εk) = P (ε1, . . . , εk).

Similarly, the iterated bonding map

σK : Sr ∧K(M)k → K(M)r+k

(Sr denotes the r-fold smash (S1)∧r) is induced on

diagonals by the (r + k)-fold simplicial set map

h : ∆1 × · · · ×∆1 × sk•(M)→ sr+k• (M)
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which takes the (r + 1)-tuple

(m1
τ1−→ 1, . . . ,mr

τr−→ 1, P )

to the composite

Ar(m1)× · · · ×Ar(mr)×Ar(n1)× · · · ×Ar(nk)

τ1∗×···×τr∗×1
��

Ar(1)× · · · ×Ar(1)×Ar(n1)× · · · ×Ar(nk)

P∗

��
M

where P∗ is the uniquely determined functor such

that

P∗((0, 1), . . . , (0, 1), ε1, . . . , εk) = P (ε1, . . . , εk)

and

P∗(γ1, . . . , γr, ε1, . . . , εk) = 0

if some γj 6= (0, 1).

In particular, the induced map

h : (∆1)×r × d(sk•(M))→ d(sr+k• (M))

is defined on n-simplices by taking the (r+1)-tuple

(n
τ1−→ 1, . . . ,n

τr−→ 1, P )

to the composite

Ar(n)×r×Ar(n)×k
τ1∗×···×τr∗×1−−−−−−−→ Ar(1)×r×Ar(n)×k

P∗−→M.

If γ ∈ Σr, then

γ(τ1, . . . , τr) = (τγ−1(1), . . . , τγ−1(r))
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in (∆1)×rn , and there is a commutative diagram

Ar(n)×r
γ∗ //

τ
γ−1(1)∗×···×τγ−1(r)∗

��

Ar(n)×r

τ1∗×···×τr∗
��

Ar(1)×r
γ∗
//Ar(1)×r

It follows that the iterated bonding map

σK : Sr ∧K(M)k → K(M)r+k

is (Σr × Σk)-equivariant, and so we have proved

Proposition 9.1. The K-theory spectrum K(M)

has the structure of a symmetric spectrum. This

symmetric spectrum structure is natural in pointed

exact categories M.

Here’s a first observation:

Lemma 9.2. Suppose that the exact functors

f, g : M → N are naturally isomorphic. Then

the induced maps f∗ : K(M)→ K(N) of (sym-

metric) spectra represent the same map in the

stable category.

Proof. The source and target maps

s, t : Iso(N)→ N

are exact equivalences, and therefore induce stable

equivalences

s∗, t∗ : K(Iso(N))→ K(N)
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by Lemma 5.1 (Lecture 003) and Lemma 8.6 above.

There is a commutative diagram of exact equiva-

lences

Iso(N)
(s,t)
��

N

σ
::

∆
//N×N

(19)

where ∆ is the diagonal functor and σ assigns the

identity map 1P : P → P to each object P of M.

It follows that the maps s∗ and t∗ coincide in the

stable category.

Finally, a natural isomorphism h : f ∼= g is an

exact functor h : M → Iso(N) such that the dia-

gram

Iso(N)
(s,t)
��

M

h
::

(f,g)
//N×N

commutes. There is an induced commutative dia-

gram

K(Iso(N))

(s∗,t∗)
��

K(M)

h∗
66

(f∗,g∗)
//K(N)×K(N)

so that f∗ = s∗h∗ = t∗h∗ = g∗ in the stable cate-

gory, as claimed.
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The moral of this last proof is that the diagram

(19) is a path object for the category of exact cat-

egories.

Suppose that M1,M2 and N are exact categories.

A biexact functor (or biexact pairing) is functor

⊗ : M1 ×M2 → N

which is exact in each variable in the sense that all

functors

⊗(P, ) : M2 → N and ⊗ ( , Q) : M1 → N

are exact.

Example: The tensor product functors

⊗ : P(X)× P(X)→ P(X)

and

⊗ : P(X)×M(X)→M(X)

for vector bundlesP(X) and coherent sheaves M(X)

on a Noetherian scheme X are standard examples

of biexact functors.

Every biexact pairing ⊗ : M1×M2 → N induces

a simplicial set map

⊗ : d(sr•(M1))× d(ss•(M2))→ d(sr+s• (N)).

Explictly, given exact functors P : Ar(n)×r →M1

and Q : Ar(n)×s → M2, the n-simplex ⊗(P,Q)
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is the composite

Ar(n)×r × Ar(n)×s
P×Q−−−→M1 ×M2

⊗−→ N.

To go further, we need to replace the biexact pair-

ing ⊗ up to equivalence by a biexact pairing

⊗0 : M1 ×M2 → N0

which takes values in an exact category N0 having

a unique zero object 0. This is done by letting ⊗0

be the composite

M1 ×M2
⊗−→ N

r−→ N0,

where r : N → N0 is the retraction map onto an

exact subcategory N0 ⊂ N having 0 as the only

zero object — see the Appendix. This is harm-

less, since the retraction map is natural in exact

categories and is an exact equivalence. We shall

henceforth assume that the target N of the biex-

act pairing

⊗ : M1 ×M2 → N

has a unique zero object 0.

The map

⊗ : d(sr•(M1))× d(ss•(M2))→ d(sr+s• (N)).

is plainly (Σr×Σs)-equivariant, and P ⊗Q = 0 if

either P or Q is a zero object. It follows that the
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pairing ⊗ induces a pointed (Σr×Σs)-equivariant

map

⊗∗ : K(M1)r ∧K(M2)s → K(N)r+s. (20)

It is an exercise (which uses the assumption that

N has only one zero object) to show that the dia-

grams

(∆1)×k × sr•(M1)× ss•(M2) h×1 //

1×⊗
��

sk+r
• (M1)× ss•(M2)

⊗
��

(∆1)×k × sr+s• (N)
h

// sk+r+s
• (N)

and

(∆1)×k × sr•(M1)× ss•(M2)

t×1
��

h×1 // sk+r• (M1)× ss•(M2)
⊗ // sk+r+s• (N)

c(k,r)⊕1
��

sr•(M1)× (∆1)×k × ss•(M2)
1×h
// sr(M1)× sk+s• (M2)

⊗
// sr+k+s• (N)

commute. Here,

t : (∆1)×k × sr•(M1)→ sr•(M1)× (∆1)×k

interchanges factors, and the element c(k, r) ∈
Σk+r shuffles the first k entries of k + r past the

last r entries.
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It follows that the diagrams

Sk ∧K(M1)r ∧K(M2)s
σK∧1

//

1∧⊗∗
��

K(M1)k+r ∧K(M2)s

⊗∗
��

Sk ∧K(N)r+s σK
//K(N)k+r+s

(21)
and

Sk ∧K(M1)r ∧K(M2)s
σK∧1 //

t∧1
��

K(M1)k+r ∧K(M2)s
⊗∗ // K(N)k+r+s

c(k,r)⊕1
��

K(M1)r ∧ Sk ∧K(M2)s
1∧σK

// K(M1)r ∧K(M2)k+s
⊗∗
// K(N)r+k+s

(22)

commute.

The data for a smash product pairing

⊗∗ : K(M1) ∧Σ K(M2)→ K(N)

consists of a family of maps (20) satisfying the

commutativity conditions (21) and (22) — see [4,

p.518], for example. We have therefore proved the

following:

Proposition 9.3. Suppose that

⊗ : M1 ×M2 → N

is a biexact pairing, and that N has a unique

zero object. Then the induced maps

⊗∗ : K(M1)r ∧K(M2)s → K(N)r+s
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form a morphism

⊗∗ : K(M1) ∧Σ K(M2)→ K(N)

of symmetric spectra.

There is a natural shift operator Z 7→ Z[1] for

symmetric spectra Z, where

Z[1]n = Z1+n,

and σ ∈ Σn acts as 1 ⊕ σ ∈ Σn+1 on Z1+n. The

structure map σ : Sr ∧Z[1]n → Z[1]r+n is defined

to be the composite

Sr ∧ Z1+n σ−→ Zr+1+n c(r,1)⊕1−−−−→ Z1+r+n,

and Z[1] has the structure of a symmetric spec-

trum. The adjoints σ∗ : Zn → ΩZ1+n of the

composite maps

Zn ∧ S1 t−→ S1 ∧ Zn σ−→ Z1+n

together determine a natural map

σ̃ : Z → ΩZ[1]

of symmetric spectra.

This map is not a stable equivalence of symmetric

spectra in general: Jeff Smith has given a coun-

terexample — see [5].
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If, however, the underlying spectrum consists of

Kan complexes and is an Ω-spectrum above some

level, then the map of spectra underlying σ̃ is a sta-

ble equivalence, so that σ̃ is a stable equivalence

of symmetric spectra [3], [5, Lem. 10]. In par-

ticular, if Z is an Ω-spectrum above level 0, then

ΩZ[1] is stably fibrant and the stable equivalence

Z → ΩZ[1] is a stably fibrant model for Z.

It follows from Corollary 8.9 that, up to level-

wise replacement of K(M) by an injective fibrant

model, the symmetric spectrum ΩK(M)[1] is a

stably fibrant replacement for the symmetric spec-

trum K(M). In particular, we have the following:

Lemma 9.4. Any stably fibrant replacement

K(M)→ FK(M)

in symmetric spectra consists of weak equiva-

lences

K(M)n → FK(M)n

for n ≥ 1, and FK(M)0 is the derived loop

space of K(M)1.
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Appendix: Some category theory

The contents of this section are meant to indicate

that making a choice of zero object in an exact

category M is harmless.

The moral of the following is that we can form an

equivalent exact category M0 with the same non-

zero objects as M, and with only one zero object.

Further, this construction is natural: a choice of

zero object 0 in M gives M0 the structure of a

strong deformation retract of M, and any exact

functor f : M → N determines a unique exact

functor f∗ : M0 → N0 which commutes with re-

tractions in the sense that the diagram of exact

functors

M r //

f
��

M0

f∗
��

N r
//N0

commutes.

Suppose that C is a category with a full subcate-

goryA which is a trivial groupoid. Suppose further

that A is closed under isomorphisms: if there is an

isomorphism x
∼=−→ a with a ∈ A, then x ∈ A.

Pick an object 0 in A, and let C0 be the full sub-

category on the objects Ob(C) − Ob(A) ∪ {0}.
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Define a function r : Ob(C)→ Ob(C0) by setting

r(x) =

{
x if x ∈ Ob(C)− Ob(A), and

0 if x ∈ Ob(A).

Then there are isomorphisms

ηx : x
∼=−→ r(x)

such that ηx = 1x if x ∈ Ob(C)−Ob(A) and ηx is

the canonical isomorphism x→ 0 in the groupoid

A if x ∈ Ob(A). If α : x → y is a morphism of

C, let r(α) be the unique morphism such that the

diagram

x
ηx
∼=
//

α
��

r(x)

r(α)
��

y ηy

∼= // r(y)

commutes. Then if i : C0 ⊂ C is the inclusion

of C0 in C, we see that r · i is the identity on

C0, and the isomorphisms ηx determine a natural

isomorphism

η : 1C
∼=−→ i · r.

Note that the isomorphism η restricts to the iden-

tity isomorphism

i ∼= i · r · i = i

on the image of the inclusion functor i, so that C0

is a strong deformation retract of C.
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Suppose that D is a category with full subcategory

B which is a trivial groupoid. Suppose that B is

closed under isomorphisms. Pick an object 0 of B

and form the full subcategory D0 of D in the same

way that C0 is constructed above. Then there is

a functor r : D → D0 which together with the

inclusion i : D0 → D forms a strong deformation

retraction of D onto D0.

Suppose that f : C → D is a functor such that

f (A) ⊂ B, and let f∗ be the composite

C0
i−→ C

f−→ D
r−→ D0.

I claim that the diagram of functors

C r //

f
��

C0

f∗
��

D r
//D0

(23)

commutes as required.

Consider the commutative diagram

f (x)
ηf(x)

//

f(ηx) %%

irf (x)
irf(ηx)

''

f (ir(x)) ηf(ir(x))
// irf (ir(x))

If f (x) ∈ B then f (ir(x)) ∈ B and

0 = rf (x)
rf(ηx)−−−→ r(f (ir(x)) = 0
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is the identity morphism. If f (x) /∈ B then x /∈
A and the map ηx : x → ir(x) is the identity

morphism, and so

rf (ηx) : rf (x)→ rf (ir(x))

is the identity morphism as well. It follows that

the functors rf and rfir = f∗r coincide, and so

the diagram (23) commutes.
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