
Lecture 005 (October 8, 2014)

10 Group completion

I say that a commutative diagram

X //

��

Y
f
��

Z //W

of simplicial set maps is homology cartesian (for

some theory h∗) if there is a factorization

X i //

f !!

V
p
��

W

with i a trivial cofibration and p a fibration such

that the induced map

X → Z ×W V

induces an isomorphism

h∗(X)
∼=−→ h∗(Z ×W V ).

Lemma 10.1. Suppose that f : X → Y is a

map of bisimplicial sets such that all vertical

maps Xn → Yn are Kan fibrations. Suppose

that every vertex v ∈ Yn and every ordinal num-

ber map θ : m → n induce a weak equivalence
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(resp. homology isomorphism) of fibres

Fθ∗(v) → Fv.

Then all pullback diagrams

f−1(σ) //

��

X
f
��

∆r,s
σ

// Y

are homotopy (resp. homology) cartesian.

Proof. The idea is to show that all maps

(γ, ζ)∗ : f−1(τ )→ f−1(σ)

induced by all bisimplex morphisms

∆k,l
τ
&&

(ζ,γ)

��
X

∆r,s σ

88

are weak equivalences (resp. homology isomor-

phisms)of bisimplicial sets. Then the desired result

follows from Quillen’s Theorem B (meaning Theo-

rem 1.11 of Lecture 001) — see also [3, IV.5.7], or

its homology analog [3, IV.5.11].

Pick a vertex v ∈ ∆s and let (1, v) : ∆r,0 → ∆r,s

be the corresponding bisimplicial set map. Form
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the pullback diagrams⊔
θ:n→r f

−1(θ∗(v))
v∗ //

��

⊔
θ:n→r f

−1(θ∗(σ)) //

��

Xn

f
��⊔

θ:n→r ∆0
v

//
⊔
θ:n→r ∆s // Yn

Then the induced map v∗ is a weak equivalence

(on each summand) since the simplicial set map

f : Xn → Yn is a fibration.

It therefore suffices to show that all bisimplex maps

∆k,0
v
&&

(ζ,1)
��

X

∆r,0 w

88

induce weak equivalences (resp. homology isomor-

phisms) f−1(v) → f−1(w). But there is a com-

mutative diagram⊔
γ:n→k f

−1(γ∗(v))
ζ∗ //

��

⊔
θ:n→r f

−1(θ∗(w))

��⊔
γ:n→k f

−1(v)
ζ∗

//
⊔
θ:n→r f

−1(w)

in which the vertical maps are weak equivalences

(resp. homology isomorphisms) and the bisimpli-

cial set map along the bottom diagonalizes to the

weak equivalence (resp. homology isomorphism)

∆k × f−1(v)→ ∆r × f−1(w)
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and the result follows.

Corollary 10.2. Suppose that f : X → Y is a

map of bisimplicial sets such that every vertex

v ∈ Yn and every ordinal number map θ : m→
n induce a weak equivalence (resp. homology

isomorphism) of homotopy fibres

Fθ∗(v) → Fv.

Then all pullback diagrams

f−1(σ) //

��

X
f
��

∆r,s
σ

// Y

are homotopy (resp. homology) cartesian.

Proof. Replace the map f up to levelwise weak

equivalence by a fibration p in the projective model

structure for bisimplicial sets. Then p satisfies the

assumptions of Lemma 10.1.

Corollary 10.3. Suppose that M ×X → X an

action of a simplicial monoid on a simplicial set

X such that multiplication by the vertices v ∈
M induce homology isomorphisms v∗ : X → X.
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Then the diagram

X //

��

EM ×M X

��

∗ v
//BM

is homology cartesian for each vertex v ∈M .

Proof. Corollary 10.2 implies that it suffices to show,

for each diagram

M×n ×X θ∗ //

pr
��

M×m ×X
pr
��

M×n
θ∗

//M×m

and each vertex v = (v1, . . . , vn) ∈M×n, that the

induced map

(θ, v) : X → X

in homotopy fibres is a homology isomorphism.

But this map is multiplication by the vertex

vθ(0)−1 · · · · · v2 · v1
and is therefore a homology isomorphism by as-

sumption.

Example: Suppose that R is a ring and let

M =
⊔
n≥0

BGln(R)
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be the simplicial monoid with monoid structure

defined by block addition of matrices. Let I be

the 1× 1 identity matrix, and form the system of

left M -modules⊔
n≥0

BGln(R)
⊕I−→

⊔
n≥0

BGln(R)
⊕I−→ . . .

where ⊕I denotes multiplication on the right by

I . Then the colimit of this system is the simplicial

set (and M -module)

N =
⊔
Z

BGl(R).

and

EM ×M N = lim−→
n≥0

EM ×M M

is contractible. The group homomorphisms

I⊕,⊕I : Gln(R)→ Gln+1(R)

are conjugate by a shuffle permutation, and there-

fore determine homotopic maps

BGln(R)→ BGln+1(R).

It follows that left multiplication by I induces a

shift operator⊕
Z

h∗(BGl(R))→
⊕
Z

h∗(BGl(R)),
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which is an isomorphism. In particular, multiplica-

tion by the vertices of
⊔
n≥0 BGln(R) on the space

N induces homology isomorphisms N → N , and

so the diagram

N //

��

EM ×M N

��

∗
I

//BM

is homology cartesian. In particular, the induced

map ⊔
Z

BGl(R)→ Ω(B(
⊔
n≥0

BGln(R))

is a homology isomorphism.

Example: A completely analogous argument for

the action of the monoid

M =
⊔
n≥0

BΣn

on the simplicial set

N =
⊔
Z

BΣ∞

shows that there is a homology isomorphism⊔
Z

BΣ∞ → Ω(
⊔
n≥0

BΣn).
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There is a special Γ-space model X 7→ Γ+(X) for

the sphere spectrum S which was introduced by

Barratt, which has a weak equivalence

Γ+(S1) ' BM

(see [7], for example). It follows that there is a

homology isomorphism⊔
Z

BΣ∞ → QS0

where QS0 is the space at level 0 for a stably fi-

brant replacement QS for the sphere spectrum.

11 Q = + theorem

Suppose that R is a unitary ring, and recall that

P(R) denotes the exact category of finitely gener-

ated projective R-modules.

Write K(R) for a stably fibrant model for the

K-theory (symmetric) spectrum K(P(R)). The

space

K(R)0 ' ΩK(R)1 ' ΩBQP(R)

is an H-space with path components isomorphic

to the classical group K0(R). Since K(R)0 is an

H-group (path components form a group), its path

8



components are weakly equivalent, and there is a

weak equivalence

K(R)0 '
⊔
K0(R)

K(R)00,

whereK(R)00 is the path component of 0 ∈ K0(R).

The path component K(R)00 is itself an H-space,

and the Q = + theorem asserts the following:

Theorem 11.1. There is a natural integral ho-

mology isomorphism

BGl(R)→ K(R)00.

In other words, the space K(R)00 is an H-space

with the integral homology of BGl(R), and as

such it is model for the classical plus construction

BGl(R)+ on BGl(R). Thus, one usually sees the

Q = + theorem written as the assertion that there

is a weak equivalence

ΩBQP(R) '
⊔
K0(R)

BGl(R)+.

Remark 11.2. We shall make a general study

of integral homology isomorphisms BGl(R)→ Y

taking values in H-spaces Y in the next section of

these notes, in lieu of fussing with the plus con-

struction. It’s relatively easy to see that all inte-

gral homology H-space models for a given space
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are weakly equivalent. The point, in applications,

is to produce such a gadget BGl(R)→ Y which is

acyclic in the sense that its homotopy fibre F has

trivial integral homology. The plus construction

BGl(R)+ is the traditional candidate for Y , but

we’ll see that the integral homology localization

LZBGl(R) works just as well.

There are several proofs of the Q = + theorem in

the literature: the first appeared in [4], and more

recent proofs appeared in [2] and [6]. These presen-

tations each have particular advantages: Grayson’s

original proof in [4] is relatively easy to understand,

the Gillet-Grayson proof in [2] makes direct use of

Waldhausen’s constructions, while the proof given

in [6] is quite conceptual.

The proof from [6] will be presented here, in out-

line. There is a cost, in that one has to become

comfortable with pseudo-simplicial groupoids aris-

ing from actions of symmetric monoidal categories,

but these objects define homotopy types through

a standard Grothendieck construction, and the ar-

guments presented here proceed in a way that one

would expect from manipulations of abelian group

actions.
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Here are the steps:

1) Recall (Remark 5.7 of Lecture 003) that there

is a natural weak equivalence

B IsoS•P(R) ' s•P(R) = K(R)1, (1)

and that there are weak equivalences of groupoids

IsoSnP(R)
'−→ Iso MonnP(R) (2)

which are defined by taking the exact functors P :

Ar(n)→ P(R) to the strings

P (0, 1) � P (0, 2) � · · ·� P (0, n).

The object Iso MonnP(R) is the groupoid of iso-

morphisms of strings of admissible (aka. split)

monomorphisms of length n−1, and these groupoids

assemble into a pseudo-simplicial groupoid

Iso Mon•P(R).

Further, the equivalences (2) define a pseudo-natural

equivalence

IsoS•P(R)
'−→ Iso Mon•P(R). (3)

There is an exact functor

P(R)×n → MonnP(R)

which sends an n-tuple (P1, P2, . . . , Pn) of projec-

tive modules to the string

P1 � P1 ⊕ P2 � · · ·� P1 ⊕ · · · ⊕ Pn
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which specializes to an equivalence of groupoids

(IsoP(R))×n → Iso MonnP(R).

These equivalences of groupoids together deter-

mine a pseudo-natural equivalence

B⊕(IsoP(R)) ' Iso MonnP(R), (4)

where B⊕(IsoP(R)) is the pseudo-simplicial cate-

gory which is canonically determined by the sym-

metric monoidal category Iso(P(R)) with direct

sum. The category in simplicial degree n is the

groupoid IsoP(R)×n and the faces and degenera-

cies of B⊕ Iso(P(R)) are determined by the direct

sum ⊕ functor and zero object 0 in exact analogy

with the way that the faces and degeneracies of the

classifying simplicial set BA are constructed from

an abelian group by using the group addition and

identity.

The equivalences (1), (3) and (4) together amount

to a “delooping” of the Q = + theorem.

2) The object B⊕ Iso(P(R)) is a special case of a

simplicial category construction BS that is avail-

able for any symmetric monoidal category S: BSn
is the category S×n, and the sum ⊕ : S × S → S

and 0-object of S define the face and degeneracy

functors.
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Suppose that the functor

⊕ : S ×N → S

defines a coherent action of a small symmetric mon-

oidal category on a small category N . This means,

in part, that there is a natural isomorphism

s1 ⊕ (s2 ⊕ x) ∼= (s1 ⊕ s2)⊕ x

which is suitably compatible with all associativity

and symmetry isomorphisms of S. Such an action

is (has to be) good enough to define a pseudo-

simplicial object ES ×S N which can be defined

analogously with the Borel construction, together

with a pseudo-natural transformation

ES ×S N → BS

which is defined by the projection

S × · · · × S ×N → S × · · · × S

(n factors) in simplicial degree n.

The symmetric monoidal category S has a coher-

ent action on the pseudo-functor ES×SN , which

is given in simplicial degree n by the assignment

(s, (s1, . . . , sn, x)) 7→ (s1, . . . , sn), x⊕ s).
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If A is an abelian group acting on a set X , then A

acts on the translation category EAX by

(s, x
t−→ tx) 7→ sx

t−→ tsx.

There are commutative diagrams

x s //

t
��

sx
t
��

tx s
// tsx

so that the action by s ∈ A on the simplicial set

EA×A X is homotopic to the identity.

In the same way (ie. via the same simplicial homo-

topy formulas) the objects of S act by the identity

on ES ×S N in the homotopy category.

3) Generally, if the functor M × N → N de-

fines a coherent action by a small monoidal cat-

egory M on a category N , then we are entitled

to a Borel construction EM ×M N and a pseudo-

natural transformation

π : EM ×M N → BM,

by the same formulas as above. Here’s a conse-

quence of Corollary 10.2:

Corollary 11.3. Suppose given a coherent ac-

tion M×N → N by a small monoidal category
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M on a small category N . Suppose also that

action by all objects of N induces weak equiva-

lences (resp. homology isomorphisms) N → N .

Then BN is the homotopy (resp. homology) fi-

bre of the map

π∗ : B(EM ×M N)→ B(BM).

4) Suppose that S is a small symmetric monoiodal

category, and form the Borel construction

ES ×S (S × S)

for the diagonal action of S on S × S. Then S

acts on ES ×S (S × S) via

(s, (s1, . . . , sn, (t1, t2))) 7→ (s1, . . . , sn, (s⊕t1, t2)).

This action is invertible in the homotopy category,

with inverse

(s, (s1, . . . , sn, (t1, t2))) 7→ (s1, . . . , sn, (t1, s⊕ t2))

by 3) above, and it follows from Corollary 11.3 that

the maps

ES ×S (S × S) //ES ×S (S × S)×l ES

��

BS

induce a fibre sequence of spaces.
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At the same time there are weak equivalences

ES ×S (S × S)×l ES ∼= ES ×S ((ES ×S S)× S)

' ES ×S S
' ∗

The objectES×SS is contractible in the same way

that EA ×A A ∼= EA is contractible for abelian

groups A.

We have proved the following:

Theorem 11.4. There is a weak equivalence

B(ES ×S (S × S)) ' ΩB(BS),

for each small symmetric monoidal category S.

By comparison with [4], the objectES×S(S×S) is

a “generalized S−1S-construction”. It is also a ho-

motopy theoretic group completion: it is a model

for the space at level 0 in the stably fibrant spec-

trum associated to the symmetric monoidal cate-

gory S by Γ-space methods.

5) Suppose that S acts coherently on a categoryN ,

as in 2) above (in particular, everthing is small).

There is a spectral sequence for

H∗(B(ES ×S (N × S)))
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arising from the map

ES ×S (N × S)→ ES ×S S.

This spectral sequence has

Ep,q
2 = Hp(ES ×S S,Hq(BN))

⇒ Hp+q(B(ES ×S (N × S))).

We can localize at the action by the abelian monoid

π0(S), which monoid acts invertibly on

H∗(B(ES ×S (N × S)))

via

(s, ((s1, . . . sn, (n, t))) 7→ (s1, . . . , sn)(s⊕ n, t))

by construction. It follows that there is a spectral

sequence

Ep,q
2 = Hp(ES ×S S, π0(S)−1Hq(BN))

⇒ Hp+q(B(ES ×S (N × S))).
(5)

The action by all elements of ES ×S S on

π0(S)−1H∗(BN)

is invertible and B(ES×S S) is contractible. This

means that the spectral sequence (5) collapses, and

so there is an isomorphism

H∗(B(ES×S (N×S))) ∼= π0(S)−1H∗(BN). (6)
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This isomorphism is induced by the functor

N → N × S

which is defined by n 7→ (n, 0).

6) What about S = IsoP(R)?

The map

S → ES ×S (S × S)

defined by P 7→ (P, 0) induces the isomorphism

π0(S)−1H∗(BS) ∼= H∗(B(ES ×S (S × S))).

The monoid π0(S) is isomorphism classes of pro-

jective modules, and the localization

π0(S)−1H∗(BS)

may be computed as the filtered colimit

H∗(BS)
⊕R−−→ H∗(BS)

⊕R−−→ . . .

since every projective module is a split summand

of a free module.

The projective modules P,Q represent the same

path component of

π0(ES×S(S×S)) = (π0(S)×π0(S))/π0(S) = K0(R)

if and only if P ⊕ Rn ∼= Q ⊕ Rn, meaning that

P and Q are in the same stable equivalence class.
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Write SP for the groupoid of isomorphisms of pro-

jective modules stably equivalent to P . It follows

that the homology of the component of 0 is com-

puted by the filtered colimit

H∗BS0
⊕R−−→ H∗BSR

⊕R−−→ H∗BSR⊕R → . . . .

The comparison

BGl1(R) //

��

BGl2(R) //

��

. . .

BSR //BSR⊕R // . . .

induces a homology isomorphism on colimits since

every object of BSRn is stably free.

It follows that there is a homology isomorphism

BGl(R)→ B(ES ×S (S × S))0,

which gives the Q = + result.

12 H-spaces

Throughout this section, H∗(X) denotes the inte-

gral homology of a space X .

An H-space will be a pointed simplicial set X ,

equipped with a pointed map m : X × X → X

such that the composite

X ∨X
i
⊂ X ×X m−→ X
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is pointed homotopic to the fold map

∇ : X ∨X → X

which is the identity on each summand. The base

point of an H-space X will be denoted by e.

Examples include the loop space

ΩY = hom∗(S
1, Y )

of a pointed Kan complex Y and all simplicial

groups.

I need a concept with a little less structure: a mul-

tiplicative space is a pointed simplicial set X with

a pointed map m : X × X → X , and a multi-

plicative map is a pointed map f : X → Y such

that the diagram

X ×X mX //

f×f
��

X
f
��

Y × Y mY
// Y

(7)

commutes.

Note that if X is a multiplicative space and the

trivial cofibration j : X → Y is a fibrant model

of X , then Y acquires a multiplicative structure

in such a way that j is a multiplicative map. In
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effect, there is an extension in the diagram

X ×X mX //

j×j
��

X
j
��

Y × Y mY
// Y

since j× j is a trivial cofibration and Y is fibrant.

Note that if X is an H-space then the fibrant

model Y has the structure of an H-space, since

the commutative diagram

X ∨X ∇ //

j∨j '
��

X
j'
��

Y ∨ Y
mY ·i

// Y

forces the map mY · i to be ∇ in the pointed ho-

motopy category.

Lemma 12.1. Suppose that f : X → Y is

a multiplicative map of connected multiplica-

tive spaces, where Y is an H-space. Suppose

also that f is an integral homology isomorphism

and that the induced homomorphism π1(X) →
π1(Y ) is surjective. Then f is acyclic in the

sense that its homotopy fibre has the integral

homology of a point.
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There is a rather extensive study of acyclic maps

in [5].

Proof. We can assume that the multiplicative space

Y is fibrant, by the remarks above.

We can also assume that the map f is a fibration.

To see this, find a factorization

X i //

f   

Z
p
��

Y
such that p is a fibration and i is a trivial cofibra-

tion, and observe that the lifting mZ exists in the

diagram

X ×X i·mX //

i×i
��

Z
p
��

Z × Z
mY (p×p)

//

mZ

88

Y

since p is a fibration and i× i is a trivial fibration.

It follows that the fibration p is a multiplicative

map which is weakly equivalent to the homology

isomorphism f .

Suppose henceforth that f is a fibration with fibre

F over the base point e ∈ Y , and that Y is fibrant.

It follows that X is fibrant.

Suppose that the loop α : ∆1 → Y represents an

element [α] of π1(Y, e), and let the space f−1(α)
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be defined by the pullback diagram

f−1(α)
α∗ //

p∗
��

X

f
��

∆1
α

// Y

I claim that the induced weak equivalences

F
d1α−→ f−1(α)

d0α←− F

induce the identity morphism

H∗(F )→ H∗(F ).

This would imply that the fundamental groupoid

of Y acts trivially on H∗(F ).

To repeat a standard fact, the question of whether

or not (d0α)−1d1α is the identity on H∗(F ) is inde-

pendent of the choice of representative α for the

homotopy element [α] ∈ π1(Y, e). If α′ : ∆1 → Y

is a second representative for [α] then there is a

2-simplex σ : ∆2 → Y such that

∂(σ) = (d0σ, d1σ, d2σ) = (e, α, α′),

and computing relative to the pullback f−1(σ) shows

that

(d0e)
−1d1e(d

0
α)−1d1α = (d0α′)

−1d1α′

as morphisms F → F in the homotopy category,

while (d0e)
−1d1e = 1.
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The map π1(X)→ π1(Y ) is surjective by assump-

tion. Thus, if the loop α : ∆1 → Y represents an

element [α] ∈ π1(Y, e), there is a lifting

X
f
��

∆1
α
//

α′
==

Y

of α to a loop α′ of X .

Let α′∗ be the composite

F ×∆1 i×α′−−→ X ×X mX−−→ X,

where i : F → X is the inclusion of the fibre.

Then the square

F ×∆1 α′∗ //

pr
��

X
f
��

∆1
mY (e,α)

// Y

commutes, so there is a unique map

θ : F ×∆1 → f−1(α̃),

where α̃ = m(e, α)) and so [α] = [α̃] in π1(Y, e)

since Y is an H-space.

There is a commutative diagram of weak equiva-
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lences

F d1 //

θ1
��

F ×∆1

θ
��

Fd0oo

θ0
��

F
d1α̃

// f−1(α̃) F
d0α̃

oo

But finally, the maps θ0 and θ1 are induced by the

composites

F
di−→ F ×∆1 1×α′−−→ X ×X m∗−→ X,

and these composites coincide, so that θ0 = θ1. It

follows that (d0α̃)−1d1α̃ is the identity in the homo-

topy category, and hence induces the identity in

homology, as required.

The space F is connected, by the connectivity as-

sumption on X and the surjectivity of the homo-

morphism π1(X)→ π1(Y ).

Since the fundamental groupoid π(Y ) acts triv-

ially on H∗(F ), the Serre spectral sequence for the

fibration f : X → Y has the standard form:

Ep,q
2 = Hp(Y,Hq(F ))⇒ Hp+q(X).

The assumption that f : X → Y is a homol-

ogy isomorphism implies that the quotient map

Hn(X) � En,0
∞ is an isomorphism and thatEn,0

2 =

En,0
r = En,0

∞ for all n ≥ 0. In particular, all differ-

entials defined on the (n, 0) line are trivial.
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The sequences

E2,0
2

d2=0−−→ E0,1
2 → E0,1

∞ → 0

and

0→ E0,1
∞ → H1(X)

∼=−→ E1,0
∞ → 0

are exact, so that

H1(F ) = E0,1
2
∼= E0,1

∞
∼= 0

Similarly, one can show that all higher homology

groups of F vanish.

There is a model structure on the category sSet

(hence also for pointed simplicial sets), for which

the weak equivalences X → Y are those maps

which induce integral homology isomorphisms

H∗(X) ∼= H∗(Y ),

and the cofibrations are the monomorphisms. This

model structure was originally introduced by Bous-

field in [1], but has since been written up in many

places, for example in [3]. The model structure

is cofibrantly generated so that fibrant replace-

ment is functorial: there is a natural cofibration

j : X → LZ(X) such that j is an integral ho-

mology isomorphism and LZ(X) is fibrant for this

model structure.
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The space LZ(X) is called the integral homology

localization of X , and spaces X for which the fi-

brant replacement jX is a weak equivalence are

said to be integral homology local. Here’s an ob-

servation:

Corollary 12.2. Suppose that X is an H-space.

Then X is integral homology local.

Proof. The map

jX × jX : X ×X → LZ(X)× LZ(X)

is a cofibration and an H∗-isomorphism, so that

the extension exists in the diagram

X ×X mX //

jX×jX
��

X
jX
��

LZ(X)× LZ(X) m∗
//LZ(X)

It follows that there is an H-space structure on

LZ(X) for which the homology isomorphism jX is

multiplicative.

Then the Corollary follows from Lemma 12.1. In

effect, the map

π1(X)→ π1(LZ(X))

is an isomorphism so that the map jX is acyclic.

The fundamental group π1(F ) of the homotopy
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fibre F is abelian by a long exact sequence argu-

ment, so that

π1(F ) ∼= H1(F ) = 0.

The space F is therefore simply connected with

H̃∗(F ) = 0, so that F is contractible by the Hurewicz

Theorem.

Corollary 12.3. Suppose that f : X → Y is

an integral homology isomorphism between con-

nected H-spaces. Then f is a weak equivalence.

Proof. There is a commutative diagram

X
f //

jX '��

Y
jY'
��

LZ(X)
f∗
//LZ(Y )

in which the maps jX and jY are weak equivalences

by Corollary 12.2, and f∗ is a weak equivalence by

assumption.

Now suppose that R is a ring, and define a group

homomorphism

⊕ : Gl(R)×Gl(R)→ Gl(R)

by sending the pair of matrices (A,B) to the ma-
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trix A⊕B, where

(A⊕B)i,j =


Ak,l if i = 2k − 1, j = 2l − 1,

Bk,l if i = 2k, j = 2l, and

δi,j otherwise.

Then there is a commutative diagram of ring ho-

momorphisms

Gl(R)
inL //

uodd ((

Gl(R)×Gl(R)

⊕
��

Gl(R)
inRoo

uevvv

Gl(R)

Here, inL(A) = (A, e) and inR(B) = (e, B) where

e is the identity of Gl(R), and uodd and uev are

names for the displayed composites.

Any injective function v : N→ N defines a homo-

morphism

v∗ : Gl(R)→ Gl(R)

with

v∗(A)i,j =

{
Ak,l if i = v(k) j = v(l), and

δi,j otherwise.

From this point of view, uev is the homomorphism

corresponding to the usual injection N→ N which

picks off the even numbers, and uodd arises from the

injection corresponding to the odd numbers.

29



Lemma 12.4. The group homomorphism v∗ :

Gl(R) → Gl(R) induces a homology isomor-

phism BGl(R)→ BGl(R).

Proof. Suppose that m is an upper bound for the

set of numbers v(n). Then v∗(Gln(R)) ⊂ Glm(R)

and there is a commutative diagram of group ho-

momorphisms

Gln(R) //

v∗
��

Gl(R)
v∗
��

Glm(R) //Gl(R)

in which the horizontal maps are canonical inclu-

sions. The map v∗ : Gln(R) → Glm(R) is conju-

gate via some permutation matrix to the canonical

inclusion Gln(R) ⊂ Glm(R).

Thus if α ∈ H∗(BGln(R)) is in the kernel of the

map

H∗(BGln(R))→ H∗(BGl(R)
v∗−→ H∗(BGl(R))

then v∗(α) = 0 in H∗(BGlm(R)) for some up-

per bound m on the set v(n), and so α 7→ 0 in

H∗(BGlm(R) under the canonical map Gln(R)→
Glm(R). Thus, α represents 0 in H∗(BGl(R)).

Given β ∈ H∗(BGln(R), choose an upper bound

m on the set v(n), and observe that the image of
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β under the canonical map

H∗(BGln(R))→ H∗(BGlm(R))

is also in the image of

v∗ : H∗(BGln(R))→ H∗(BGlm(R)),

because the maps are the same. It follows that

the image of β in H∗(BGl(R)) is in the image of

v∗.

The injective function v : N→ N therefore induces

a homotopy category isomorphism

v∗ : LZBl(R)→ LZBGl(R).

Lemma 12.5. The group completion of the monoid

Mon(N) of monomorphisms v : N → N is triv-

ial.

Corollary 12.6. The direct sum homomorphism

⊕ : Gl(R) × Gl(R) → Gl(R) gives the space

LZBGl(R) the structure of an H-space.

Proof. Define a map

⊕ : LZBGl(R)× LZBGl(R)→ LZBGl(R)

by solving the extension problem

BGl(R)×BGl(R) ⊕ //

j×j
��

BGl(R)

j
��

LZBGl(R)× LZBGl(R) ⊕
//LZBGl(R)
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Then the diagram

BGl(R)
uodd //

j
��

BGl(R)

j
��

LZBGl(R)⊕·inL
//LZBGl(R)

commutes, so that ⊕ · inL and uodd∗ coincide in

the pointed homotopy category. But then Lemma

12.5 implies that ⊕ · inL is pointed homotopic to

the identity. Similarly

⊕ · inR ' uev∗ ' 1,

and so LZBGl(R) has the desired H-space struc-

ture

Proof of Lemma 12.5. If u : N→ N has infinitely

many fixed points then enumerating fixed points

gives a morphism i : N → N such that u · i = i.

It follows that u = e in the associated group.

For general case, given a morphism v : N → N,

find a morphism u : N→ N such that v · u and u

have infinitely many fixed points. Then if follows

that v = e in the associated group.

Starting with a1 = 1, one inductively finds a se-

quence of numbers ni, ai, bi such that

ni + 1 ≤ ai+1, v(ai+1), bi+1 ≤ ni,

32



and such that bi+1 6= ai+1, v(ai+1). Then one de-

fines bijections

u : [ni + 1, ni+1]→ [ni + 1, ni+1]

on intervals such that u(v(ai+1)) = ai+1 and u(bi+1) =

bi+1. Piecing together these bijections gives a bi-

jection u : N → N such that v(u(v(ai))) = v(ai)

and u(bi) = bi.

Proposition 12.7. The integral homology lo-

calization map

j : BGl(R)→ LZBGl(R)

is acyclic.

Proof. The map j is multiplicative by construc-

tion, and is an integral homology isomorphism.

The space LZBGl(R) is an H-space by Corollary

12.6, and so the homomorphism

Gl(R) = π1(BGl(R))→ π1(LZBGl(R))

is surjective. The map j is therefore acyclic by

Lemma 12.1.

An application:

Let E(R) denote the subgroup of Gl(R) which is

generated by elementary transformation matrices
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ei,j(a), i 6= j, a ∈ R. E(R) is often called the

elementary subgroup of Gln(R)

Every elementary transformation has determinant

1, so that E(R) ⊂ Sl(R).

Lemma 12.8. 1) The subgroup E(R) is per-

fect.

2) (Whitehead lemma) E(R) = [Gl(R), Gl(R)].

Proof. Statement 1) follows from the identities

[ei,j(a), ej,k(b)] = ei,h(ab)

which hold for i 6= k.

For statement 2), we have the matrix identities:[
ABA−1B−1 0

0 I

]
=

[
A 0

0 A−1

] [
B 0

0 B−1

] [
(BA)−1 0

0 BA

]
[
A 0

0 A−1

]
=

[
I A

0 I

] [
I 0

−A−1 I

] [
I A

0 A

] [
0 −I
I 0

]
and [

0 −I
I 0

]
=

[
I −I
0 I

] [
I 0

I I

] [
I −I
0 I

]
for A,B ∈ Gln(R), and where I is the (n × n)

identity matrix. All matrices of the form[
I A

0 I

]
and

[
I 0

B I

]
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are in E(R).

The path component K(R)00 of 0 ∈ K0(R) in the

space

K(R)0 = ΩBQP(R)

is an H-space which is equipped with an integral

homology isomorphism

BGl(R)→ K(R)00,

by the Q = + Theorem (Theorem 11.1). H-spaces

are local for integral homology theory (Corollary

12.2), so there is a natural weak equivalence

LZBGl(R) ' K(R)00,

We can therefore identify the map BGl(R) →
K(R)00 given by Q = +, up to weak equivalence,

with the integral homology localization map

j : BGl(R)→ LZBGl(R).

In particular, there are isomorphisms

Ki(R) ∼= πiLZBGl(R)

for i ≥ 1 which are natural in rings R.

Proposition 12.9. There are natural isomor-

phisms

K1(R) ∼= Gl(R)/E(R)
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and

K2(R) ∼= H2(E(R),Z)

for rings R.

Proof. The group

K1(R) ∼= π1(LZBGl(R))

is isomorphic to

Gl(R)/[Gl(R), Gl(R)] ∼= Gl(R)/E(R)

by Lemma 12.8, and the fact that j is a homology

isomorphism taking values in an H-space (Corol-

lary 12.6).

Form the pullback diagrams

X
j∗ //

��

Y //

��

E(Gl(R)/E(R))

π
��

BGl(R)
j
//LZBGl(R)

f
//B(Gl(R)/E(R))

where f is an isomorphism on fundamental groups.

Then Y is the universal cover of LZBGl(R) and

X is the homotopy fibre of the map BGl(R) →
B(Gl(R)/E(R)) which is induced by the canonical

homomorphismGl(R)→ Gl(R)/E(R). It follows

that there is a weak equivalence

X ' BE(R).
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The map j∗ has the same homotopy fibre as does

j, and is therefore acyclic by Proposition 12.7. A

spectral sequence argument shows the map j∗ is an

integral homology isomorphism, so that j∗ induces

an isomorphism

H2(BE(R)) ∼= H2(Y ). (8)

But

H2(Y ) ∼= π2(Y ) (9)

by the Hurewicz Theorem, and the map Y →
LZBGl(R) induces an isomorphism

π2(Y ) ∼= π2(LZBGl(R)) ∼= K2(R). (10)

The equivalences (8), (9) and (10) together give

the desired result.

If R is a field F , then E(F ) = Sl(F ), and the

group

K2(F ) = H2(BSl(F ),Z)

(also called the Schur multiplier of the infinite spe-

cial linear group Sl(F )) has a the presentation

given by Matsumoto’s thesis:

K2(F ) ∼= F ∗ ⊗ F ∗/〈t⊗ 1− t| t 6= 1〉.

See [8] for a proof (and for a lot of other things

about K-theory in low degrees).
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