Lecture 006 (March 14, 2008)

13 Homotopy fibres

Here is another consequence of the Additivity The-
orem:

Theorem 13.1. Suppose that f : M — N is
an exact functor. Then the square

Se(Se(M) X 5,(N) ESe(N)) — 5, ESe(N)

l ld*

SeSe(M) 7 SeSe(N)

1s homotopy cartesian.

Recall from Section 8 (Lecture 004) that if D is a
simplicial object in some category, then ED is a
simplicial object in that same category with £ D,, =
D, .1, and with simplicial structure maps 6* in-
duced by the ordinal number maps

0=0x0 m+1=0xm—-0«xn=n-+1.

There is a natural map d : ED — D which is de-
fined by the simplicial structure maps dy : D, 11 —
D,.



Proof of Theorem 13.1. By the Bousfield-Friedlander
Theorem [1, IV.4.9], it suffices to show that all di-
agrams

S.(Sn(M) X S (N) ESH(N)) — S.ESH(N)

| -

SeSn(M) = SeSn(IN)

are homotopy cartesian. On account of the natural

exact equivalences
S,(P) = Mon,(P)

(for all exact categories P) and the exact equiva-
lence

Sn(M) X 5, () Snt1(N) = Mon,, (M) X yon,,(nyMony, 4 1(IN)
it suffices to show that the diagrams

Se(Mon, (M) Xnion, (n) Mony,+1(IN)) — s Mon,, 1 (N)

| 2

Se Mon,,(M) 7 Se Mon,,(N)

are homotopy cartesian, where d, takes the string

of admissible monics
Pyor— Py Py
to the string
Py/Py— P3y/P»— -+ — By /Py
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Fix zero objects 0 in M and N such that f(0) = 0.
'To more properly define d,, we make a fixed choice
of quotient @)/ P for all admissible monics @ — P

of N. In particular, we can suppose that P/0 = P
and @Q/Q = 0 for all objects P,Q € N.

The objects of the exact category
Mon, (M) X o, Ny Mon,+1(N)
are pairs (P, Q) where P is a string
PP s P,
of admissible monics of length n in M, () is a string

Q:Q1— = Qup

of admissible monics of length n + 1 in N, and
d(Q) = f.(P). In particular, the assignment P +
(P,0 — f.(P)) defines a functor

i : Mon,,(M) — Mon,,(M) Xyfon, n) Mony,+1(N)
which is a section of the projection functor
pr - Mon, (M) X yjon,,(x) Mon,, 11 (N) — Mon,, (M)

The assignment of the pair (0, Q) consisting of the
string of identities
1

0: Q0% . .. 50
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of length n + 1 in N and the zero string
0:0m— -0

of length n in M defines an exact functor

7+ N — Mon,, (M) Xyon,, ) Mony,41(N)
which is a section of the functor

o : Mon, (M) Xjon, (n) Mon, 41 (N) — N
which takes the object (P, Q) to Q.
The idea is, finally, to show that the map
Se(Mon, (M) Xy o, vy Mot o1 (N)) 2257, g NMom,, (M) xs4(N)

is a weak equivalence.

There is a natural exact sequence
0—(0,1) = (P,Q) = (P,0— fi(P)) =0

The Additivity Theorem (Theorem 6.1, Lecture
003) therefore implies that the composite

Se(Mon, (M) x Mony,(N) Mon,, 4 (N))

W

Se(Mon,,(M)) X s¢(IN)

Se(Mon,, (M) x Mony, (N) Mony, 1 (N))
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is homotopic to the identity. The composite
(pre, o) (2 + Js)
is easily seen to be homotopic to the identity. [
Recall that there is a weak equivalence
SeFLSe(M) =~ 54(0),

and the space s.(0) is contractible. Theorem 13.1
therefore gives an identification of the space

Se(Se(M) X 5,n) ESo(N))
with the homotopy fibre of the map
fo: S3M) = $A(N).

A different point of view is possible: the exact
equivalences

ES,(M) = S, 1(M) = Mon,,1 (M)

identify the simplicial exact category E'Se(IM) with
a simplicial exact category B Mon(M) whose cat-
egory B Mon(M),, of n-simplices has objects given
by all strings

P: BPhp— P —---— P,

The morphisms of this category are natural trans-
formations, and the exact sequences are the point-
wise exact sequences. Suppose that 6 : m — n is
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an ordinal number map. Then one can show that
the functor

¢* . BMon(M),, — B Mon(M),,
which takes the string P to the string
0*(P): Pyoy — Loy — - — Py
commutes with the exact equivalences
ES.(M), ~ BMon(M),
in the sense that diagram

ES.(M),—BMon(M),

| R

ESe(M),, —= BMon(M),,
commute, so there is a simplicial exact equivalence
ES.(M) ~ BMon(M).

Finally, for a fixed choice of zero object 0, there is
a simplicial contracting homotopy

T

PPy =P,
for the simplicial exact category B Mon(M). It

follows that the space
SeF2Se(M)
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1s contractible.

There is a “dual” construction. Let X be a simpli-
cial object, and write £’ X for the simplicial object
with

E' X, = Xy,

and with simplicial structure maps induced by the
ordinal number morphisms

m+1¥m+02%n«0~¥n+1.
The ordinal number morphisms
d"l'n—-n+«x0=n+1
induce a natural morphism of simplicial objects
d: F'X — X.
There is an exact equivalence

Sn+1(M) — Epi,, (M),

which is defined by taking an exact functor P :
Ar(n+ 1) — M to the string of admissible epi-
morphisms

PO,n+1)— P(l,n+1) —»---— P(n,n+1).

Write B Epi(M),, = Epi,,,;(M) for the exact cat-
egory whose objects are all strings

P: Bh—>»P —»- - — P,
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If # : m — n is an ordinal number map, write
6*(P) for the string

Pyoy = Fory = -+ = By

Then the assignment P +— 6*(P) defines an exact
functor, and the diagram

Sue1(M) —= B Epi(M),
((#o)*l ig*
Sus1(M) —= B Epi(M),,

commutes.

It follows that there is a simplicial exact equiva-
lence

E'S(M) ~ BEpi(M).
Pick a zero object 0 of M, and observe that there

is a contracting homotopy

PO P1 ce Pn

L i

for the simplicial exact category B Epi(M). The
space

Sel)'Se(M)

is therefore contractible.



Theorem 13.2. Suppose that f : M — N is
an exact functor. Then the square

Se(5e(M) X5,y E'Se(N)) — 54 'S4 (N)

i 2

SeSe(M) 7 SeSe(IN)

18 homotopy cartesian.

It follows that the space
Se(Se(M) X g, () E'S,(N))

has the homotopy type of the homotopy fibre of
the map

fo: 5e(M) = s4(N).

Proof of Theorem 13.2. The proof is effectively the
same as that of Theorem 13.1. It suffices to show
that all diagrams

Se(Epi, (M) X Epi, (N) Epi, 1(N)) —s, Epi,, 1 (N)

pr*l id*

Se Epi,, (M) 7 se Epi, (IN)
are homotopy cartesian. The functor

d : Epi, (N) — Epi,(IN)

takes the string of admissible epis
Py—» P —»-— P,
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to the string
K Ky Ky - K, .
where
K; = ker(P, — P,).

Choose zero objects of M and N such that f(0) =
0, and choose kernels K for admissible epis P — ()
such that P is the kernel of P — 0 and 0 is the
kernel of the identity 1: P — P.

Objects of the exact category

Epi, (M) Xgpi, ) Epl, 1 (N)
are pairs (P, Q) such that f(P) is the kernel of the

morphism

Qo—=CQ1—= - —=Qp

C :

Qn 1 Qn 1 T»Qn
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Then there is a natural short exact sequence

0—— f(Bo) Qo—=Qn—0

0—f(Pro1)—Qu-1—=Qp—0

0 (- Qn—=Cn—0
and it follows from that Additivity Theorem that
there is a weak equivalence
se(Epi, (M) Xgpi vy Epi, 1 (N))
— 8o(Epi,,(M)) x s4(IN)
which is induced by the functor which takes the
pair (P, Q) to the pair (P, Q,). O

14 The Resolution Theorem

Theorem 14.1. Suppose that P is a subcate-
gory of an exact category M such that P is full
and closed under extenstons, and such that

o cvery admissible subobject of an object of P
1s i P,

e cvery object () of M has a cover P — () by
an object of P.
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Then the inclusion 1 : P — M induces a stable
equivalence K(P) — K(M).

Under the assumption that P is full and closed
under extensions in M, the category P is an exact
category in which a sequence of P is exact if and
only if it is exact in M.

Proof. We show that the model for the homotopy
fibre of the map

iy 1 52(P) — s%(M)

which is specified by Theorem 13.2 is contractible.

In the pullback diagram
Epi,(P) X Epi,, (M) Epi,1(M) —Epi, ., (M)

| 2

Epi, (P) Epi, (M)

i
the pullback object is exactly equivalent to the ex-
act category B Epi~ (M), whose objects consist of
strings of admissible epimorphisms

Qo Q1 — - — Qy

with kernels in the subcategory P. It follows that
there is a simplicial exact equivalence

Se(P) X s,am) E'Se(M) = BEpi® (M).
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There is an obvious simplicial exact functor
j : BEpi(P) — BEpif¥ (M).

The idea is to show that this functor ;7 induces a
weak equivalence

Jo - 5o BEDI(P)) 2 s, (BEpT (M),
and then use the fact that s.(B Epi(P)) is con-
tractible.

The simplicial set map
5, (BEDi(P)) — s,(B Epi” (M)

can be identified with the map induced on nerves
by the functor

Epi(S,(P)) L Epi®®)(S,(M))

where Epi(S,(P)) is the category of admissible
epimorphisms in S,(P) and Epi®»®)(S,(M)) is
the category of admissible epimorphisms in .S,,(M)
with kernels in .S, (P).

The inclusion 7 : S,(P) — S,(M) of exact cate-
gories satisfies the assumptions of the Theorem. It
therefore suffices to show that the functor

j : Epi(P) — Epi® (M)
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induces a weak equivalence
j . BEpi(P) — BEpi¥(M).

For @@ € M, the objects of the slice category j/Q
are covers q : P — () by objects P € P with
kernel in P, and the morphisms are commutative
diagrams

P
of admissible epimorphisms (with ker(m) in P).
The category j/@ is non-empty by assumption.
Take a fixed object p : Py — @ and form the
pullback diagrams

I XQPHP

|

RN

Py—p—

for all other objects ¢ of 7/@Q). Then Py x¢ P is in
P and the dotted arrow is an admissible epi with
kernel in P since P is closed under extensions. The
pullback diagram is natural in ¢, and so there are
natural transformations

D4« — 4.
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In particular j/@Q is contractible. ]

Let P, be the full subcategory of M whose objects
are those M having P-resolutions

O—P~P,—P,1——F—>M=—0

(composed of exact sequences of M), with m < n.
Let P, be the full subcategory on those objects
M which have P-resolutions of bounded length.

Lemma 14.2. Suppose that P s full and closed
under extensions in the exact category M. Sup-
pose further that

a) all admissible epis P — P’ between objects
of P in M are admissible epis of P,

b) given any admissible epi p : M — P with
P € P, there 1s a diagram
P/

N

M—=P
with p' an admissible epi of P.
Then we have the following:
1) P, is closed under extensions in M,

2) all admissible epis between objects of P,, in
M are admaissible epis of P,
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3) given an exact sequence
0— M — M — M"—0,
if M € P, and M" € P,.1 then M' € P,,.
Proof. Suppose that

0— M > M3M —0 (1)

is an exact sequence of M with M’, M" € P,,, and
choose exact sequences
0— K)— P/ —- M —0
and
0— Ky— Py—» M —0
with P, P € P and K|, K/ € P,,_1. Form the

pullback
M x p Py~ Py

| :

M ——5—=M"

Then there is a commutative diagram

7\

" "
M X M PO WPO

with P’ € P and 7 and admissible epi, by assump-
tion a). The kernel P” ~— P’ of 7 is an admissible
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monic of P, by assumption b). It follows that there
is a diagram

Ky® P" K K]
Pj® P"—~ P} ® P'—~ P}
M* M M"

in which all rows and columns are exact sequences.
But then Kj & P” and K| are in P,_; which
(inductively) is closed under extensions, so that

K € P,_1 and so M € P,, and we have proved
statement 1).

For 2), suppose given an exact sequence (1) with
M,M" € P,,, and choose an exact sequence

O—>K6’>—>P6’—»M"—>O

with Py € P and K{j € P,_;. Then there is an
exact sequence

0—>M’>—>M><M//P6/—»P6/—>O

and M xn Py € P, by statement 1), from the
exact sequence

O—>K6/>—>M><M//P0—»M—>O.
We can therefore assume that M € P.
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Choose an exact sequence
0— KO — Po —» M — 0

with Py € P and Ky € P,_;. Then there are
exact sequences

0— M xy Pyr— Py—- M'"— 0
and

0— Ky— M xy Py— M — 0
so that M’ xy Py € P and M' € P,,.

To prove statement 3), suppose given an exact se-
quence (1) with M € P,, and M" € P,,,1. Choose
an exact sequence

O—>K6/>—> 6/—»M"—>O

with P/ € P and K € P,,. Then from the exact
sequence

0— K — M Xy P! = M — 0

and statement 1) we see that M xm By € P,,.
The exact sequence

0— M »— M Xy Py — P — 0

and statement 2) imply that M’ € P,,. ]
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Theorem 14.3 (Resolution Theorem). Suppose
that P 1s full and closed under extensions in the
exact category M, and that P and M satisfy the
conditions a) and b) of Lemma 14.2. Then the

inclusions
PcP,cPy,C- ---CPy
induce stable equivalences
KP)~K(P)) ~K(Py) ~-- ~ KP).

Proof. The inclusion P,, C P, satisfies the con-
ditions of Theorem 14.1: the subcategory P, is
closed under extensions by statement 2) of Lemma
14.2, and every object M € P,.; has a cover
Py — M with Py e P CP,,
As categories

P, =u,P,
so that K(P) is the filtered colimit of the dia-
gram of spectra

KP)— K(Py) — K(Py) — ...
and all of these maps are stable equivalences. [

Suppose that X is a regular Noetherian scheme.
Then every coherent sheaf on X has a finite res-
olution by vector bundles, so that Theorem 14.3
implies the following major result:
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Corollary 14.4. Suppose that X is a reqular
Noetherian scheme. Then the inclusion P(X) C
M(X) of vector bundles in coherent sheaves in-
duces a stable equivalence

K(X) = K(P(X)) ~ K(M(X)) = K'(X).
15 The Dévissage Theorem

Theorem 15.1. Suppose that B is a a non-
empty subcategory of a small abelian category A
which 1s closed under taking finite direct sums,
subobjects and quotients in A. Suppose that ev-
ery object Q) of A has a finite filtration

O:F_1>—>F()>—>F1>—>--->—>Fn:Q
with all filtration quotients F;/F;_1 € B. Then

the inclusion 1 : B — A induces a stable equiv-
alence K(B) ~ K(A).

The categories B and A are exact categories, with
all monomorphisms and epimorphisms admissible,
so the statement of the Theorem makes sense.

Proof. From Theorem 13.1, the homotopy fibre of
the map
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is equivalent to the space
seB3 Mong(A)

associated to the simplicial exact category B Mong(A)
whose category of n-simplices has objects given by
strings of monomorphisms

My — My — -+ — M,
with all quotients M, /M; in the subcategory B for
1< 7.
NB: We do not know that B is closed under ex-

tensions, so it’s not clear that the simplicial set of
objects of BMong(A) is the nerve of a category:.

There is a “forgetful” morphism of simplicial exact
categories

p: BMong(A) — B Mon(A),

and we show that this map induces a weak equiv-
alence

Se(BMong(A)) ~ s.(BMon(A)).

This would complete the proof, since the space on
the right is contractible.

The simplicial set map
Ps - Sp(BMong(A)) — s,(BMon(A))
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can be identified with the simplicial set map
Ob(B Mong, ) (Sn(A)) — B Mon(S,(A))

which is induced by the forgetful morphism cor-
responding to S,(B) C S,(A). The inclusion
i o Sp(B) C S,(A) satisfies the assumptions of
the Theorem, so it suffices to show that the sim-
plicial set map

p: Ob(BMong(A)) — B Mon(A)
is a weak equivalence.

The simplicial set B Mon(A) is the homotopy col-
imit of the nerves

B(Mon(A)/P)

of its various slice categories, so that the total space
Ob(BMong(A)) is the homotopy colimit of the
simplicial sets p~!(P) which are defined by the
pullback squares

p Y(P) Ob(B Mong(A))

ol 1

B(Mon(A)/P) B(Mon(A)).

It therefore suffices to show that the maps p, are

weak equivalences. We do this by showing that if
m : P — P’is a monic with quotient P'/P in B,
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then the induced map m, : p~1(P) — p~1(P’) is
a weak equivalence.

To see that this is enough, observe that the n-
simplices of p~!(P) are strings of monics

of A with A;/A;, € B for all ¢ < j. If P is
a zero object, then p~!(P) = B(0/P), which is
contractible. By assumption, every object P € A
has a filtration

O=F 41— Fy—---— F,=P

with F;/F;_1 € B, and so it would follow that
there is a weak equivalence

v p () = p \(P).

Suppose that P — P" has P'/P € B, and let the
string of monics

By ++— B, — P (2)

be an n-simplex of p~}(P’). Then pulling back
over P — P’ defines a string of monomorphisms

B+ By o P 3

of monomorphisms, and there are monomorphisms

B;/B} ~— Bj/B;, so that all B/B} are in B.
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Assigning the string (3) to the string (2) therefore
defines a simplicial set map

o:p (P) = pH(P).
For ¢ < 4 there is a monomorphism
B;/B; — B;/B; ® B,/ Bj,
and it follows that B;/B; is in B. All strings
B - B By -+ B, — P

are therefore elements of p~1(P’). Tt follows that
there is a homotopy

myo ~1:p HP) — p (P
There is also a homotopy
om, = 1:p ' (P) — p'(P),
so that m, is a weak equivalence as required. [J
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