
Lecture 006 (March 14, 2008)

13 Homotopy fibres

Here is another consequence of the Additivity The-

orem:

Theorem 13.1. Suppose that f : M → N is

an exact functor. Then the square

s•(S•(M)×S•(N) ES•(N)) //

��

s•ES•(N)

d∗
��

s•S•(M)
f∗

// s•S•(N)

is homotopy cartesian.

Recall from Section 8 (Lecture 004) that if D is a

simplicial object in some category, then ED is a

simplicial object in that same category with EDn =

Dn+1, and with simplicial structure maps θ̃∗ in-

duced by the ordinal number maps

θ̃ = 0 ∗ θ : m + 1 ∼= 0 ∗m→ 0 ∗ n ∼= n + 1.

There is a natural map d : ED → D which is de-

fined by the simplicial structure maps d0 : Dn+1 →
Dn.

1



Proof of Theorem 13.1. By the Bousfield-Friedlander

Theorem [1, IV.4.9], it suffices to show that all di-

agrams

s•(Sn(M)×Sn(N) ESn(N)) //

��

s•ESn(N)

d∗
��

s•Sn(M)
f∗

// s•Sn(N)

are homotopy cartesian. On account of the natural

exact equivalences

Sn(P) '−→ Monn(P)

(for all exact categories P) and the exact equiva-

lence

Sn(M)×Sn(N)Sn+1(N) '−→ Monn(M)×Monn(N)Monn+1(N)

it suffices to show that the diagrams

s•(Monn(M)×Monn(N) Monn+1(N)) //

��

s•Monn+1(N)

d∗
��

s•Monn(M)
f∗

// s•Monn(N)

are homotopy cartesian, where d∗ takes the string

of admissible monics

P1 � P2 � · · ·� Pn+1

to the string

P2/P1 � P3/P1 � · · ·� Pn+1/P1.
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Fix zero objects 0 in M and N such that f (0) = 0.

To more properly define d∗, we make a fixed choice

of quotient Q/P for all admissible monics Q � P

of N. In particular, we can suppose that P/0 = P

and Q/Q = 0 for all objects P, Q ∈ N.

The objects of the exact category

Monn(M)×Monn(N) Monn+1(N)

are pairs (P, Q) where P is a string

P : P1 � · · ·� Pn

of admissible monics of length n in M, Q is a string

Q : Q1 � · · ·� Qn+1

of admissible monics of length n + 1 in N, and

d(Q) = f∗(P ). In particular, the assignment P 7→
(P, 0 � f∗(P )) defines a functor

i : Monn(M)→ Monn(M)×Monn(N) Monn+1(N)

which is a section of the projection functor

pr : Monn(M)×Monn(N) Monn+1(N)→ Monn(M)

The assignment of the pair (0, Q) consisting of the

string of identities

Q : Q
1

� . . .
1

� Q
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of length n + 1 in N and the zero string

0 : 0 � · · ·� 0

of length n in M defines an exact functor

j : N→ Monn(M)×Monn(N) Monn+1(N)

which is a section of the functor

σ : Monn(M)×Monn(N) Monn+1(N)→ N

which takes the object (P, Q) to Q1.

The idea is, finally, to show that the map

s•(Monn(M)×Monn(N)Monn+1(N))
(pr∗,σ∗)−−−−→ s•Monn(M)×s•(N)

is a weak equivalence.

There is a natural exact sequence

0→ (0, Q1)→ (P, Q)→ (P, 0 � f∗(P ))→ 0

The Additivity Theorem (Theorem 6.1, Lecture

003) therefore implies that the composite

s•(Monn(M)×Monn(N) Monn+1(N))
(pr∗,σ∗)

,,XXXXXXXXXXXXXXXXXXXXXXXX

��

s•(Monn(M))× s•(N)

i∗+j∗rrffffffffffffffffffffffff

s•(Monn(M)×Monn(N) Monn+1(N))
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is homotopic to the identity. The composite

(pr∗, σ∗)(i∗ + j∗)

is easily seen to be homotopic to the identity.

Recall that there is a weak equivalence

s•ES•(M) ' s•(0),

and the space s•(0) is contractible. Theorem 13.1

therefore gives an identification of the space

s•(S•(M)×S•(N) ES•(N))

with the homotopy fibre of the map

f∗ : s2
•(M)→ s2

•(N).

A different point of view is possible: the exact

equivalences

ESn(M) = Sn+1(M) '−→ Monn+1(M)

identify the simplicial exact category ES•(M) with

a simplicial exact category BMon(M) whose cat-

egory BMon(M)n of n-simplices has objects given

by all strings

P : P0 � P1 � · · ·� Pn.

The morphisms of this category are natural trans-

formations, and the exact sequences are the point-

wise exact sequences. Suppose that θ : m→ n is
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an ordinal number map. Then one can show that

the functor

θ∗ : BMon(M)n → BMon(M)m

which takes the string P to the string

θ∗(P ) : Pθ(0) � Pθ(1) � · · ·� Pθ(m)

commutes with the exact equivalences

ES•(M)n ' BMon(M)n

in the sense that diagram

ES•(M)n
' //

θ∗
��

BMon(M)n
θ∗
��

ES•(M)m '
//BMon(M)m

commute, so there is a simplicial exact equivalence

ES•(M) ' BMon(M).

Finally, for a fixed choice of zero object 0, there is

a simplicial contracting homotopy

0 // //
��

��

0 // //
��

��

. . . // // 0��

��

P0
// //P1

// // . . . // //Pn

for the simplicial exact category BMon(M). It

follows that the space

s•ES•(M)

6



is contractible.

There is a “dual” construction. Let X be a simpli-

cial object, and write E ′X for the simplicial object

with

E ′Xn = Xn+1,

and with simplicial structure maps induced by the

ordinal number morphisms

m + 1 ∼= m ∗ 0 θ∗0−−→ n ∗ 0 ∼= n + 1.

The ordinal number morphisms

dn+1 : n→ n ∗ 0 ∼= n + 1

induce a natural morphism of simplicial objects

d : E ′X → X.

There is an exact equivalence

Sn+1(M)→ Epin+1(M),

which is defined by taking an exact functor P :

Ar(n + 1) → M to the string of admissible epi-

morphisms

P (0, n + 1) � P (1, n + 1) � · · ·� P (n, n + 1).

Write B Epi(M)n = Epin+1(M) for the exact cat-

egory whose objects are all strings

P : P0 � P1 � · · ·� Pn.
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If θ : m → n is an ordinal number map, write

θ∗(P ) for the string

Pθ(0) � Pθ(1) � · · ·� Pθ(m).

Then the assignment P 7→ θ∗(P ) defines an exact

functor, and the diagram

Sn+1(M) ' //

(θ∗0)∗
��

B Epi(M)n
θ∗
��

Sm+1(M) '
//B Epi(M)m

commutes.

It follows that there is a simplicial exact equiva-

lence

E ′S•(M) ' B Epi(M).

Pick a zero object 0 of M, and observe that there

is a contracting homotopy

P0
// //

����

P1
// //

����

. . . // //Pn

����

0 // // 0 // // . . . // // 0

for the simplicial exact category B Epi(M). The

space

s•E
′S•(M)

is therefore contractible.
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Theorem 13.2. Suppose that f : M → N is

an exact functor. Then the square

s•(S•(M)×S•(N) E ′S•(N)) //

��

s•E
′S•(N)

d
��

s•S•(M)
f∗

// s•S•(N)

is homotopy cartesian.

It follows that the space

s•(S•(M)×S•(N) E ′S•(N))

has the homotopy type of the homotopy fibre of

the map

f∗ : s2
•(M)→ s2

•(N).

Proof of Theorem 13.2. The proof is effectively the

same as that of Theorem 13.1. It suffices to show

that all diagrams

s•(Epin(M)×Epin(N) Epin+1(N)) //

pr∗
��

s• Epin+1(N)

d∗
��

s• Epin(M)
f∗

// s• Epin(N)

are homotopy cartesian. The functor

d : Epin+1(N)→ Epin(N)

takes the string of admissible epis

P0 � P1 � · · ·� Pn
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to the string

K : K0 � K1 � · · ·� Kn−1,

where

Ki = ker(Pi � Pn).

Choose zero objects of M and N such that f (0) =

0, and choose kernels K for admissible epis P � Q

such that P is the kernel of P → 0 and 0 is the

kernel of the identity 1 : P → P .

Objects of the exact category

Epin(M)×Epin(N) Epin+1(N)

are pairs (P, Q) such that f (P ) is the kernel of the

morphism

Q0
// //

����

Q1
// //

����

. . . // //Qn−1

����

Qn 1
// //Qn 1

// // . . .
1
// //Qn
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Then there is a natural short exact sequence

0 // f (P0) // //

����

Q0
// //

����

Qn
//

����

0

...

����

...

����

...

����

0 // f (Pn−1) // //

����

Qn−1
// //

����

Qn
//

����

0

0 // 0 // //Qn 1
// //Qn

// 0

and it follows from that Additivity Theorem that

there is a weak equivalence

s•(Epin(M)×Epin(N) Epin+1(N))
'−→ s•(Epin(M))× s•(N)

which is induced by the functor which takes the

pair (P, Q) to the pair (P, Qn).

14 The Resolution Theorem

Theorem 14.1. Suppose that P is a subcate-

gory of an exact category M such that P is full

and closed under extensions, and such that

• every admissible subobject of an object of P

is in P,

• every object Q of M has a cover P � Q by

an object of P.
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Then the inclusion i : P→M induces a stable

equivalence K(P)→ K(M).

Under the assumption that P is full and closed

under extensions in M, the category P is an exact

category in which a sequence of P is exact if and

only if it is exact in M.

Proof. We show that the model for the homotopy

fibre of the map

i∗ : s2
•(P)→ s2

•(M)

which is specified by Theorem 13.2 is contractible.

In the pullback diagram

Epin(P)×Epin(M) Epin+1(M) //

��

Epin+1(M)

d
��

Epin(P)
i

//Epin(M)

the pullback object is exactly equivalent to the ex-

act category B EpiP(M)n whose objects consist of

strings of admissible epimorphisms

Q0 � Q1 � · · ·� Qn

with kernels in the subcategory P. It follows that

there is a simplicial exact equivalence

S•(P)×S•(M) E ′S•(M) '−→ B EpiP(M).
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There is an obvious simplicial exact functor

j : B Epi(P)→ B EpiP(M).

The idea is to show that this functor j induces a

weak equivalence

j∗ : s•(B Epi(P))
∼=−→ s•(B EpiP(M)),

and then use the fact that s•(B Epi(P)) is con-

tractible.

The simplicial set map

sn(B Epi(P))→ sn(B EpiP(M))

can be identified with the map induced on nerves

by the functor

Epi(Sn(P))
j−→ EpiSn(P)(Sn(M))

where Epi(Sn(P)) is the category of admissible

epimorphisms in Sn(P) and EpiSn(P)(Sn(M)) is

the category of admissible epimorphisms in Sn(M)

with kernels in Sn(P).

The inclusion i : Sn(P) → Sn(M) of exact cate-

gories satisfies the assumptions of the Theorem. It

therefore suffices to show that the functor

j : Epi(P)→ EpiP(M)
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induces a weak equivalence

j : B Epi(P)→ B EpiP(M).

For Q ∈M, the objects of the slice category j/Q

are covers q : P � Q by objects P ∈ P with

kernel in P, and the morphisms are commutative

diagrams

P q
%% %%LL

LLL
LL

π
����

Q

P ′ q′
99 99ssssss

of admissible epimorphisms (with ker(π) in P).

The category j/Q is non-empty by assumption.

Take a fixed object p : P0 � Q and form the

pullback diagrams

P0 ×Q P //

��

q∗

$$

P
q
��

P0 p
//Q

for all other objects q of j/Q. Then P0×Q P is in

P and the dotted arrow is an admissible epi with

kernel in P since P is closed under extensions. The

pullback diagram is natural in q, and so there are

natural transformations

p← q∗ → q.
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In particular j/Q is contractible.

Let Pn be the full subcategory of M whose objects

are those M having P-resolutions

0→ Pm � Pm−1 → · · · → P0 � M → 0

(composed of exact sequences of M), with m ≤ n.

Let P∞ be the full subcategory on those objects

M which have P-resolutions of bounded length.

Lemma 14.2. Suppose that P is full and closed

under extensions in the exact category M. Sup-

pose further that

a) all admissible epis P → P ′ between objects

of P in M are admissible epis of P,

b) given any admissible epi p : M � P with

P ∈ P, there is a diagram

P ′
p′

    A
AA

AA
AA

A

��

M p
// //P

with p′ an admissible epi of P.

Then we have the following:

1) Pn is closed under extensions in M,

2) all admissible epis between objects of Pn in

M are admissible epis of Pn,
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3) given an exact sequence

0→M ′ � M � M ′′ → 0,

if M ∈ Pn and M ′′ ∈ Pn+1 then M ′ ∈ Pn.

Proof. Suppose that

0→M ′ i
� M

p
� M ′′ → 0 (1)

is an exact sequence of M with M ′, M ′′ ∈ Pn, and

choose exact sequences

0→ K ′′0 � P ′′0 � M ′′ → 0

and

0→ K ′0 � P ′0 � M ′ → 0

with P ′0, P
′′
0 ∈ P and K ′0, K

′′
0 ∈ Pn−1. Form the

pullback

M ×M ′ P
′′
0

p∗ // //

����

P ′′0

����

M p
// //M ′′

Then there is a commutative diagram

P ′

��

π

&& &&MMMMMMMMMMMMM

M ×M ′ P
′′
0 p∗

// //P ′′0

with P ′ ∈ P and π and admissible epi, by assump-

tion a). The kernel P ′′ � P ′ of π is an admissible
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monic of P, by assumption b). It follows that there

is a diagram

K ′0 ⊕ P ′′ // //
��

��

K // //
��

��

K ′0��

��

P ′0 ⊕ P ′′ // //

����

P ′′0 ⊕ P ′ // //

����

P ′′0

����

M ′ // //M // //M ′′

in which all rows and columns are exact sequences.

But then K ′0 ⊕ P ′′ and K ′′0 are in Pn−1 which

(inductively) is closed under extensions, so that

K ∈ Pn−1 and so M ∈ Pn, and we have proved

statement 1).

For 2), suppose given an exact sequence (1) with

M, M ′′ ∈ Pn, and choose an exact sequence

0→ K ′′0 � P ′′0 � M ′′ → 0

with P ′′0 ∈ P and K ′′0 ∈ Pn−1. Then there is an

exact sequence

0→M ′ � M ×M ′′ P
′′
0 � P ′′0 → 0

and M ×M ′′ P
′′
0 ∈ Pn by statement 1), from the

exact sequence

0→ K ′′0 � M ×M ′′ P0 � M → 0.

We can therefore assume that M ′′ ∈ P.
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Choose an exact sequence

0→ K0 � P0 � M → 0

with P0 ∈ P and K0 ∈ Pn−1. Then there are

exact sequences

0→M ′ ×M P0 � P0 � M ′′ → 0

and

0→ K0 � M ′ ×M P0 � M ′ → 0

so that M ′ ×M P0 ∈ P and M ′ ∈ Pn.

To prove statement 3), suppose given an exact se-

quence (1) with M ∈ Pn and M ′′ ∈ Pn+1. Choose

an exact sequence

0→ K ′′0 � P ′′0 � M ′′ → 0

with P ′′0 ∈ P and K ′′0 ∈ Pn. Then from the exact

sequence

0→ K ′′0 � M ×M ′′ P
′′
0 � M → 0

and statement 1) we see that M ×M ′′ P
′′
0 ∈ Pn.

The exact sequence

0→M ′ � M ×M ′′ P
′′
0 � P ′′0 → 0

and statement 2) imply that M ′ ∈ Pn.

18



Theorem 14.3 (Resolution Theorem). Suppose

that P is full and closed under extensions in the

exact category M, and that P and M satisfy the

conditions a) and b) of Lemma 14.2. Then the

inclusions

P ⊂ P1 ⊂ P2 ⊂ · · · ⊂ P∞

induce stable equivalences

K(P) ' K(P1) ' K(P2) ' · · · ' K(P∞).

Proof. The inclusion Pn ⊂ Pn+1 satisfies the con-

ditions of Theorem 14.1: the subcategory Pn is

closed under extensions by statement 2) of Lemma

14.2, and every object M ∈ Pn+1 has a cover

P0 � M with P0 ∈ P ⊂ Pn.

As categories

P∞ = ∪nPn

so that K(P∞) is the filtered colimit of the dia-

gram of spectra

K(P)→ K(P1)→ K(P2)→ . . .

and all of these maps are stable equivalences.

Suppose that X is a regular Noetherian scheme.

Then every coherent sheaf on X has a finite res-

olution by vector bundles, so that Theorem 14.3

implies the following major result:
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Corollary 14.4. Suppose that X is a regular

Noetherian scheme. Then the inclusion P(X) ⊂
M(X) of vector bundles in coherent sheaves in-

duces a stable equivalence

K(X) = K(P(X)) ' K(M(X)) = K ′(X).

15 The Dévissage Theorem

Theorem 15.1. Suppose that B is a a non-

empty subcategory of a small abelian category A

which is closed under taking finite direct sums,

subobjects and quotients in A. Suppose that ev-

ery object Q of A has a finite filtration

0 = F−1 � F0 � F1 � · · ·� Fn = Q

with all filtration quotients Fi/Fi−1 ∈ B. Then

the inclusion i : B→ A induces a stable equiv-

alence K(B) ' K(A).

The categories B and A are exact categories, with

all monomorphisms and epimorphisms admissible,

so the statement of the Theorem makes sense.

Proof. From Theorem 13.1, the homotopy fibre of

the map

i∗ : s2
•(B)→ s2

•(A)
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is equivalent to the space

s•BMonB(A)

associated to the simplicial exact categoryBMonB(A)

whose category of n-simplices has objects given by

strings of monomorphisms

M0 � M1 � · · ·� Mn

with all quotients Mj/Mi in the subcategory B for

i ≤ j.

NB: We do not know that B is closed under ex-

tensions, so it’s not clear that the simplicial set of

objects of BMonB(A) is the nerve of a category.

There is a “forgetful” morphism of simplicial exact

categories

p : BMonB(A)→ BMon(A),

and we show that this map induces a weak equiv-

alence

s•(BMonB(A)) ' s•(BMon(A)).

This would complete the proof, since the space on

the right is contractible.

The simplicial set map

p∗ : sn(BMonB(A))→ sn(BMon(A))
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can be identified with the simplicial set map

Ob(BMonSn(B)(Sn(A))→ B Mon(Sn(A))

which is induced by the forgetful morphism cor-

responding to Sn(B) ⊂ Sn(A). The inclusion

i : Sn(B) ⊂ Sn(A) satisfies the assumptions of

the Theorem, so it suffices to show that the sim-

plicial set map

p : Ob(BMonB(A))→ B Mon(A)

is a weak equivalence.

The simplicial set B Mon(A) is the homotopy col-

imit of the nerves

B(Mon(A)/P )

of its various slice categories, so that the total space

Ob(BMonB(A)) is the homotopy colimit of the

simplicial sets p−1(P ) which are defined by the

pullback squares

p−1(P ) //

p∗
��

Ob(BMonB(A))
p
��

B(Mon(A)/P ) //B(Mon(A)).

It therefore suffices to show that the maps p∗ are

weak equivalences. We do this by showing that if

m : P � P ′ is a monic with quotient P ′/P in B,
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then the induced map m∗ : p−1(P ) → p−1(P ′) is

a weak equivalence.

To see that this is enough, observe that the n-

simplices of p−1(P ) are strings of monics

A0 � · · ·� An � P

of A with Aj/Ai ∈ B for all i ≤ j. If P is

a zero object, then p−1(P ) = B(0/P ), which is

contractible. By assumption, every object P ∈ A

has a filtration

0 = F−1 � F0 � · · ·� Fn = P

with Fi/Fi−1 ∈ B, and so it would follow that

there is a weak equivalence

∗ ' p−1(0) ' p−1(P ).

Suppose that P � P ′ has P ′/P ∈ B, and let the

string of monics

B0 � · · ·� Bn � P ′ (2)

be an n-simplex of p−1(P ′). Then pulling back

over P � P ′ defines a string of monomorphisms

B∗0 � · · ·� B∗n � P ′ (3)

of monomorphisms, and there are monomorphisms

B∗j /B
∗
i � Bj/Bi, so that all B∗j /B

∗
i are in B.
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Assigning the string (3) to the string (2) therefore

defines a simplicial set map

σ : p−1(P ′)→ p−1(P ).

For i ≤ j there is a monomorphism

Bj/B
∗
i � Bj/Bi ⊕Bj/B

∗
j ,

and it follows that Bj/B
∗
i is in B. All strings

B∗0 � · · ·� B∗i � Bi � · · ·� Bn � P ′

are therefore elements of p−1(P ′). It follows that

there is a homotopy

m∗σ ' 1 : p−1(P ′)→ p−1(P ′).

There is also a homotopy

σm∗ ' 1 : p−1(P )→ p−1(P ),

so that m∗ is a weak equivalence as required.
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