Lecture 007 (April 13, 2011)

16 Abelian category localization

Suppose that A is a small abelian category, and let
B be a full subcategory such that in every exact
sequence

0—=d —a—ad —0

in A, ais an object of C if and only if ¥’ and a” are
objects of B. Such a subcategory B is said to be
thick (or dense, or a Serre subcategory). Observe
that B is closed under taking subobjects, quotients
and finite direct sums.

[t is common to write X for the set of morphisms
of A with kernel and cokernel in B. Then the
quotient category

A/B=AXH

is constructed by formally inverting the morphisms
of 3. The category A/B is constructed from a
calculus of fractions: it has the same objects as

A, and a morphism [s, f] : @ — b of A/B is an
equivalence class of maps



where s € Y. The equivalence relation is generated
by commutative diagrams

c
2N,
8/\ /4
c
The category /b of morphisms ¢ — b in X is

filtered (this is the calculus of fractions part), and
there is an identification

homgyg(a,b) = lim homy(c,b).
c—raey.

Composition of morphisms in A /B is defined by
pullback. This works, because the set X is pre-
served by pullback. Note that

[f,S]:[l,f]'[S,l],

and that [1, s] is the inverse of [s,1] in A/B. It
follows that

[f,S] ) [178] - [Lf]
There is a canonical functor
T:A—A/B

which is the identity on objects, and sends a mor-
phism f : a — b to the morphism [1, f] of A/B.
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This functor 7 satisfies a universal property: every
functor g : A — C which inverts the morphisms
of 3 has a unique factorization g, : A/B — C
through 7.

The category A /B is abelian, and the functor 7
15 exact.

The following (Theorem 16.1) is Quillen’s Local-
ization Theorem for abelian categories. It first ap-
peared in [2], and that is still one of the better
writeups of the result. It implies a localization the-
orem for the K-theory of coherent sheaves, which
will be discussed below. The K-theory of coherent
sheaves coincides with ordinary vector bundle K-
theory for regular schemes, on account of the Reso-
lution Theorem (Theorem 14.3, Corollary 14.4), so
that Theorem 16.1 implies a localization result for
the K-theory of regular schemes. There is a more
recent result for the K-theory of perfect complexes
which has far reaching consequences for the K-
theory of singular schemes, which is due to Thoma-
son and Trobaugh [3]. The Thomason-Trobaugh
result is delicate, and will not be discussed in this
course — it is nevertheless that last available word
on this subject.



Theorem 16.1. Suppose that B is a Serre sub-
category of a small abelian category A, let i :
B — A be the corresponding inclusion functor,
and let 7 : A — A/B be the quotient func-
tor. Then the functors i and m induce a fibre
homotopy sequence

BQ(B) ™ BQ(A) ™ BQ(A/B).

Write 7 : Q(B) — Q(A) and 7 : Q(A) —
Q(A /B) for the induced functors on Q-constructions.
The idea of the proof of the Theorem is to show
that

1) the canonical functor Q(B) — 0/7 is a weak
equivalence, and

2) every morphism u : a — b in Q(A/B) induces
a weak equivalence

b/t = a/T.

By a duality argument, it suffices to prove state-
ment 2) for morphisms u = 4, arising from monomor-
phisms ¢. In particular, it suffices to prove 2) for
the morphisms #; associated to maps 0 — b.

Suppose that b € A. The category Ej has as ob-
jects all maps h : a — b of A which are in the

4



set 2 of morphisms which induce isomorphisms in
A /B. The morphisms h — h' of Ej are equiva-
lence classes of pictures

cs—% d
h//
p l W
{
a——=b

where the equivalence relatlon is defined as in the
formation of the category QQA, and composition is
defined by pullback. Observe that the morphisms
p and ¢ must be in X, since ker(p) C ker(h’), and
so 7(7) is an isomorphism of A/B.

There is a functor ky : £, — Q(B) which is defined
by taking the map defined by the picture above to
the map defined by the picture

ker(h) « ker(h") »— ker(h').

Let Fy be the full subcategory of b/m whose ob-
jects are isomorphisms 6 : b — m(a) (recall that
isomorphisms of Q(M) are isomorphisms of M,
for any exact category M).

The subcategory b/ of morphisms b — a in X is
filtering.

There i1s a functor
E :b/¥ — cat
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which takes the morphism

7
bk;f

a

to the functor f, : £, — E,. There is also, for
each s : b — a in X, a functor

S*ZEa—>Fb

which takes the object h : d — a to the object
7(s)"tm(h) of F},. Then it’s relatively easy to show
that the functors s*, s : b — a in X together induce
a functor
gb : 11_13 E, — Fb,
b—acX
and that the functor ¢ is an isomorphism.

The following diagram commutes up to homotopy
for any morphism s : b — a in X:

E,~*—~F,—b/m (1)

N !

QB)=Fy—~0/7

where the morphisms labelled by 7 are canonical
inclusions, and the indicated isomorphism of cat-
egories is defined by sending an object ¢ to the
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isomorphism i) : 0 = 7(c). The functor E, —
0/7 across the top sends h : ¢ — a to the com-
posite

0y m(h)~'n(s)

> C
or 1o : 0 — ¢, while the functor across the bottom

sends A to the map dyer(py : 0 — ker(h), and the
map ker(h) — ¢ defines the homotopy.

To prove Theorem 16.1, it suffices to prove the
following;:

Lemma 16.2. The map i : F, — b/m is a weak
equivalence for allb € A/B.

Lemma 16.3. The map k, : E, — Q(B) is a
weak equivalence for all a € A.

Lemma 16.4. Suppose that g : b — b is a
morphism of X. Then the induced functor Ej, —
Ey is a weak equivalence.

It follows from Lemma 16.4 that F} is a filtered
colimit of categories, each of which is canonically
equivalent to Ej, and so all maps s* : E, — F
are weak equivalences. We therefore know that all
morphisms other than 4, in the diagram (1) are
weak equivalences, so ¢, is a weak equivalence too.
This would complete the proof of Theorem 16.1.
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Proof of Lemma 16.2. This is somehow the key
point.

Suppose that u : b — w(a) is an object of b/7.
We show that the category i/u is contractible.

We need a concept: an admissible layer in a for

an object a of an exact category M is a sequence
(bg, b1) of subobjects

b0>—>b1>—>CL

Say that (by, b1) < (bf, b}) if there is a relation

N
b b
L\,/O

W

Then the assignment which takes a layer (bg, b;)
to the morphism of (M) which is defined by the
picture

(subject to making choices) defines a functor L(a) —
Q(M)/a, and one can show that this functor is an
equivalence of categories. Observe that any two
layers (bg, by) and (b, b}) of a have a least upper
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bound
(bo N by, by + b'l)

so that the category L(a) is filtered.

Suppose that u : b — w(a) is defined by the ad-
missible layer

b : bo>—>b1>—>a

of subobjects in A/B (with b = b1 /by). The cat-
egory i/u is equivalent to the category L,(a) of
layers

C. Chpr—C — a

in a in the category A such that m(c¢) = b. The
functor 7 is exact, so preserves least upper bounds
in layers. It follows that L,(a) is filtered, and is
therefore contractible. ]

Proof of Lemma 16.3. Let E! be the full subcat-
egory of E, whose objects are the epimorphisms
¢ — a of X2. The objects of E! may therefore be
identified with exact sequences

E O—>d>—>c—p»a—>0

of A with d € B. Observe that the functor f,
defined by the composite

E c E, % Q(B)
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sends the exact sequence above to the kernel object

d.

The proof now comes in two parts:

a) show that the functor f, is a weak equivalence,
and

b) show that the inclusion E! C FE, is a weak
equivalence.

Statement a) is proved by showing that all cate-
gories f,/x are contractible. In effect, every mor-
phism

0:.d=f,F)—=x

in Q(B) has a factorization 6 = p'j; where j is a
monomorphism and p is an epimorphism. Write
C" for the subcategory of f,/x whose objects are
morphisms ¢' : f,(E') — x which are induced by
epimorphisms ¢ : * — f,(E’) of B. Then the
pushout diagrams

o
d—¢
define a functor f,/x — C’ which is left adjoint

to the inclusion ¢" C f,/x, and so the inclusion
C' C f./x is a weak equivalence. The category C’
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has an initial object, defined by the picture
0—a—=a

|

X

so that C' is contractible.

For statement b), let Mony(a) be the category
whose objects are monomorphisms e — a in X,
and whose morphisms are commutative triangles of
admissible monomorphisms. Then it’s easy to see
that Mony(a) is filtered: any two objects e = a
and ¢ — a of Mony(a) have an upper bound
e+ e — a.

There is a functor im : F, — Mony(a) which is
defined by taking a morphism A : b — a of X to
its image im(h) — a. For each 7 : kK »— a in ¥
there is a functor

Fy: E;, — k/im

which is defined by taking the epi p : d — k in X
to the diagram



This functor F}, has a right adjoint, which is essen-
tially defined by pullback, and is therefore a weak
equivalence.

Pulling back along a monomorphism
Koo koo a
in Mony(a) defines a functor

kLl /
1 Ek_>E/{J/

This functor 7* commutes with taking kernels (namely
with the functors fi and f;/) up to natural isomor-
phism, and is therefore a weak equivalence. There

is also a homotopy commutative diagram

E, " -E,
Fki le/
k/im—~k/im

so that the maps ¢* : k/im — k'/im are weak
equivalences. But this means that the sequence

E! — E, — Mong(a)

is a homotopy fibre sequence. The category Mony(a)
is contractible, so that the inclusion functor £/ C
E, is a weak equivalence. O
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Proof of Lemma 16.4. Suppose that g : b — b’ is
a morphism of . The diagram

Eb I Ebl
/

kb\ ky
Q(B)

is homotopy commutative, with homotopy deter-
mined by the monomorphisms ker(h) »— ker(gh).
The maps k, and ky are weak equivalences by
Lemma 16.3, so that g, is a weak equivalence as
well. ]

17 Coherent sheaves and open subschemes

1) Suppose that X is a Noetherian scheme and
that U is an open subscheme of X. Write j :
U — X for the inclusion of U in X. Write Z
for the complement Z = X — U with the reduced
subscheme structure, and let ¢ : Z — X denote
the corresponding closed immersion. The “kernel”
M x_y of the restriction map

75 M(X) — M(U)

in coherent sheaves consists of all those modules M
such that j*(M) = M|y are zero objects, and as
such consists of those modules which are supported
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on X — U in the sense that, in stalks, M, = 0 for
x € U. Alternatively, M € My _y if and only
if there is some power I" of the defining sheaf of
ideals for Z such that I"M = 0. The category
My _y is a Serre subcategory of M(X), and it’s
an exercise to show that the induced functor

M(X)/Mx-vy — M(U)

is an equivalence of categories.
The category M(Z) of coherent sheaves on Z can
be identified up to equivalence with those modules
on X which are annihilated by I, via the transfer
map |

M(Z) & M(X).
The resulting functor

M(Z ) — Mx_py
induces a stable equivalence

K(M(Z)) =~ K(Mxv)

by dévissage (Theorem 15.1), and it follows from
Theorem 16.1 that there is a homotopy fibre se-
quence of (symmetric) spectra

K(M(2)) = K(M(X)) 2 K(M(U)),
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and a corresponding fibre sequence
K'(Z) 5 K'(X) L K'(U)

of stably fibrant models. It follows that there is a
long exact sequence

D) » J*
S K(Z) S K)(X) & K)(U) —
= KY(U) = K((2) 5 K((X) 5 Ky(U) = 0

Note the surjectivity of the map j* : Kj(X) —
Ky(U).

2) Suppose that U C Sp(Z) is an open subset.
Then the reduced closed complement

Z =5pz)—-U
can be identified with the scheme
Sp(Fm) L. Sp(Fpn)

for some finite collection of primes {pi,...,pn},
and so there is an equivalence

M(Z) ~ M(Fy,) % - -+ x M(F,,).
Then there is a long exact sequence

%

s K {(U) S @D EY(EF,) 5 K (Z) D KYU) 0.
1=1
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Taking a filtered colimit of these fibre sequences
over all open subsets U C Sp(Z) gives a long exact
sequence

-k

= KI(Q) 2 @ K(F,) 5 Kj(Z) & Kj(Q) =0
p

where the direct sum is indexed over all prime
numbers p. All of the rings appearing in this exact
sequence are regular, so that the sequence can be
rewritten as a /{-theory exact sequence

o K(Q) S @D K(F,) B Ko(Z) D Ko(Q) -0

Similarly, if A is any Dedekind domain (such as a
ring of integers in a number field, or the ring of
functions of any smooth affine curve over a field),
there is a long exact sequence

s Kik(A) S P Ko(A/P)
PeSp(A)
I Ko(A) L Ko(k(A)) — 0
where k(A) is the quotient field of A.

NB: This long exact sequence is also the localiza-
tion sequence associated to the functor

" M(A) = M(k(A))
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which is defined by localization at the generic point;
this observations specializes to A = Z.

3) Suppose that R is a discrete valuation ring with
quotient field k£(R) and residue field £ (the exam-
ples include Witt rings, so the characteristics could
be mixed). The kernel of the localization map

M(R) — M(k(R))

is the collection of finitely generated R modules
which are annihilated by some power «" of the
uniformizing parameter 7 (aka. generator of the
maximal ideal of R). It follows that there is a
fibre sequence

K(k) 2 K(R) L K(k(R))
and hence a long exact sequence
= Ky(R) = K (k(R)) 2 Ko(k)
Py Ko(R) L Ko(k(R)) — 0.

The ring R is local, so that all finitely generated
projective R-modules are free, and so Ko(R) = Z.
The map Ko(R) — Ky(k(R)) is isomorphic to
the identity map Z — 7, and so we have an exact
sequence

Ki(R) = Ki(k(R) 3 Z — 0
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Since R is local, the group SI(R) is generated by
elementary transformation matrices, so that this
sequence can be identified up to isomorphism with
the sequence

R* - k(RS Z—0

which is defines the valuation v.

4) Suppose that the Noetherian scheme X has
Krull dimension 1 over an algebraically closed field
k, and let 5 : U C X be an open subscheme. The
reduced complement Z is finite over £ and there is
an isomorphism

Z = Sp(k)U---USp(k).

Then there is a long exact sequence
) 2 @KO B KH(X) = KL(U) = 0.

The transfer map i, is a sum Y _ i, of the transfer
maps corresponding to the points x € Z.

If X isirreducible, then taking a filtered colimit of
these sequences over all U open in X gives a long

exact sequence
LENR(XO) S @D K (k) =5 K(X) = Kj(k(X)) = 0
reX
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where k(X)) is the function field of X.

Finally, if X is a smooth curve over k then all of the
local rings O, x are discrete valuation rings, and
there is a comparison of localization sequences

Ki(X) —— Ky (k(X)) > @,ex Ko(k)

X))~ Ko(k)

~

k(X)) —; Z
[t follows that the boundary map

0 Ki(k —>@KO g@z

can be identified with sum ) _, v, of the valu-
ation maps v,. It follows as well that there is an

o

KO, x)—Ki(k

Y

*
Ox,X

I

exact sequence

Ky (k(X)) = @D Ko(k) = Cl(X) = 0

where CI(X) is the divisor class group of X. If X
is also separated then there is an exact sequence

—> @ Ky(k) = Pic(X) = 0
zeX
where

Pie(X) = H},(X, G,n)
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is the Picard group of X.

18 Product formulas

As usual, we begin with a little homotopy theory.

Suppose given a diagram of pointed maps

ZAX, X, (2)
1/\f1l if2
ZNY1T—Y)

There is a model structure on the category of ar-
rows of pointed maps for which a map

A2 A,
f1i lf2
3172)32

from fi to fo is a weak equivalence (respectively
cofibration) if and only if the maps «; and ay are
weak equivalences (respectively cofibrations). It’s
not hard to see that an object f : X — Y in
this category is fibrant if and only if Y is fibrant
and f is a fibration. It follows that by taking fi-
brant models for both fi and fs, the square (2) can
be replaced up to weak equivalence by a square
for which the maps f; and fy are fibrations and
the spaces X1, X5, Y] and Y5 are fibrant. Suppose
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henceforth that the maps and spaces in the dia-
gram (2) satisfy these criteria.

Let Fy and F, be the fibres of f; and fs, respec-
tively, over the respective base points of Y7 and Y5.
Then there is a unique induced map m : Z A\ F; —
F5 such that the diagram

Z N F "~ F,

1Ail li

Z N Xy X

commutes.
The map m : Z A'Y] — Y5 induces an action

m : Z AN hom,(K,Y;) = hom,(K,Y3)

for any pointed space K: this map m is adjoint to
the composite

1Aev

Z ANhom, (K, Y1) ANK =5 ZAY 5 Y,

where ev : hom,(K,Y;) A K — Y is the evalu-
ation map. This induced pairing is natural in /.

[t follows that there is an induced pairing

Z N PY, - PY,

. B

4 NY1—m= Yo
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for the path-loop fibration 7, and there is a com-
mutative diagram

Z N Fy uL Iy
1/\v1i: lew

Z N (PY] xy; X1)—=PY5 Xy, Xy
lAulT TUQ
Z N\ QY] — QY5

1

The map v, “u; is the boundary homomorphism
0 : QY; — F; in the pointed homotopy category,

and it follows that there is a commutative diagram

Z N\ QY] -"=QY,
100 E
ZNF——F)
in the homotopy category.

Generally, a pairing m : Z A X — X induces a
map

U my(Z) @ m(X) = mpg(X).
In effect, if a : SP — Z and 8 : S — X rep-
resent elements (o] € m,(Z) and [f] € m(X)
respectively, then [a] U [3] is represented by the
composite

Gra o g A G1 M0 x I
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Here, S™ is the r-fold smash power STA---A St of
copies of ST, and it’s an exercise to show that the
homotopy group m,(X) for a pointed Kan complex
X is isomorphic to the set 7, (S", X) of pointed
homotopy classes of maps of pointed simplicial sets

from S" to X.

Suppose that a : S? — Z and B : ST — Y] rep-
resent elements of the groups m,(Z) and m,41(Y7)
respectively. The boundary map

0 : mpr (Vi) = m(FY)

is defined for [] by taking the adjoint g, : S —
QY7 and forming the composite

U9} ANy o}
in the pointed homotopy category:
o(lp]) = 9 - 5.
The composite
srta e gr p St 7 A vy I Y,
is adjoint to the composite
grtatl o gr p gl 0 7 Ay I,
[t follows that
d(a]U[B]) = o] UO((5]). (3)
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Now suppose that X is a Noetherian scheme. Then
tensor product defines a biexact pairing

©: P(X) x M(X) — M(X). (4)

By Proposition 9.3 (Lecture 004), the biexact pair-
ing (4) induces a smash product pairing

K(P(X)) As K(M(X)) = K(M(X))

of symmetric spectra, but we have to be a lit-
tle careful to interpret it properly. The pairing
must be derived in the stable category, because
the smash product doesn’t quite preserve stable
equivalences.

Generally, if m : Y7 Ay Yo — Y3 is a morphism of
symmetric spectra, then by taking stably fibrant
models gy : V' — F'V and stably cofibrant models
mw : CW — W one constructs a diagram

YinsYo—"—Y; (5)
7Ty1/\7TY2T Tﬂ'yg
CYi As CY, ™ -CYs
Jey; Neys, i ljcyg)

where the map m’ exists because C'Y; A CY5 is
stably cofibrant, and m” exists because joy; A Jev,
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is a stably trivial cofibration (see [1, Prop. 4.19],
for example). The maps 7y and jey, can be cho-
sen functorially because the stable model struc-
ture on symmetric spectra is cofibrantly generated,
and the maps m’ and m” are uniquely determined
up to simplicial homotopy. The induced maps
m, - FCY; — F'Y; are stable hence levelwise weak
equivalences of stably fibrant symmetric spectra,
and so the objects F'C'Y; are stably fibrant models
for the objects Y;, respectively.

Recall that the functor Spty — sSet, which takes
a symmetric spectrum X to the pointed space X"
at level n has a left adjoint

F, : sSet, — Spty, .
One way to define this functor is to set
F.(K)=V(X*K[n)),

where V' : Spt — Spty, is the left adjoint to the
functor U : Spty — Spt which forgets the sym-
metric group actions. The functor V' preserves
cofibrations, so that all symmetric spectra F),(K)
are cofibrant. It follows that if jx : X — F X isa
stably fibrant model for a symmetric spectrum X,
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then there are isomorphisms
[Fu(K), X| = |Fy(K), FX] = n(F,(K), FX)
=K, FX") = X*K[n|,UFX]

In particular, a map f : X — Y of symmetric

spectra is a stable equivalence if and only if the
induced maps

[Fu(S7), X] L5 [F,(57), Y]

are group isomorphisms for all n and r. This re-
quirement is over determined: it suffices that f,
be an isomorphism in the cases where » = 0 if
n > 0 and for all r if n = 0, since there are stable
equivalences of spectra

X8 [n] — EOO(ST_l)[n —1].
Write
f(X) = {[Fo(S”)O, X] ?fn > (), and
[F_,(SY, X] ifn <0,

Then a map f : X — Y of symmetric spectra is a
stable equivalence if and only if the induced maps

fe o my(X) = mo(Y)

n

are isomorphisms for all n € Z.
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Note that the stable homotopy groups 73 (X) co-
incide up to natural isomorphism with the tra-
ditional stable homotopy groups 7 (UF(X)) of
the spectrum U F'(X) underlying a stably fibrant
model F(X) of X.

There are natural isomorphisms
F,(K)Ns F,(L) = F (KAL)

(see [1, Cor. 4.18]). From the diagram (5) above,
we see that any smash product pairing

m: Y1 Ax Yo — Y3
induces pairings

(oK), Yi] © [F(L), V3] Y = [Fom(K A L), Vi)

lw

(), FOYi) & [Fo(L), FOYs)  [Fuom(K A L), FOYy

| -

m(F(K), FCY3) @ w(F,,(L), FCY3) Wﬁ(me(K A L), FCY3)

I

112

where the pairing m! takes the pair ([a],[5]) to
map represented by the composite

From(KAL) = Fy(K)AsFa(L) 2% FOYIASFCY; ™ FCOYs,

In this way, we see that the smash product pairing
m induces a cup product pairing

T8 (Y1) @ 1, (Ya) = o (V3). (6)
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If all symmetric spectra Y; are connective, then
there are isomorphisms

(V) & 7, (FCOYY),

and the pairing (6) is isomorphic to the pairing
Tn(FCYY) @ i (FCYY) 2 i (FOYY)

which is induced by the space-level smash product
pairing
FCY) NFCYy — FCYY

which is a component of the map of symmetric
spectra m”. Observe also that the component

FCY! NFCY} — FCY?
can be looped to give a map
QFCYH) AQ(FCYY) — QX(FOYY)
and that there is a commutative diagram

FCYPANFCYY————FCYY (7)
O'*/\O'*iﬁ ’:J/O'*

QIFCY}) ANQUFCY,) —= Q2 (FCYF)

in which the maps o, (which are weak equivalences
since the objects FCY; are stably fibrant) are ad-
joint bonding maps.
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It follows that the tensor product pairing
P(X) x M(X) S M(X)
induces cup product pairings

K,(X)® K" (X)> K/

n+m

(X)

for all n,m, which can (and in fact has been for
some time) defined as the pairing in homotopy
groups which is induced by the map

QK (P(X))AQUK (M(X)') = Q2(K(M(X()))Q)
8

which, in turn, is induced by the pairing
se(P(X)) x so(M(X)) = s2(M(X)).

We have been writing K (X) for “the” fibrant model

of the symmetric spectrum K(P(X)) and K'(X)
for “the” fibrant model of the symmetric spectrum
K(M(X)). We can and will write

K(X)AK'(X) = K'(X)°
for the map (8).

Here are some applications of these ideas:

1) Suppose that j : U C X is an open subscheme
of X with reduced closed complement Z = X —U.
The tensor product pairing

P(X) x M(X) 2 M(X)
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respects restriction to open subsets U and pre-
serves modules supported on Z = X — U, so that
there is a commutative diagram of functors

P(X) X MX—U&MX—U (9)
1XZ¢ i
P(X) x M(X)-—=-M(X)
7% | 7

PU) x M(U) —-M(U)

There is an induced biexact pairing
P(X) x M(U) 5 P(U) x M(U) & M(U)
so that the space K (X)" acts on the fibre sequence
Ky (X)) = K'(X) & K'(U)',

arising from the Localization Theorem (Theorem

16.1), where K’ (X)) is the stably fibrant model
for the (connective) symmetric spectrum K (Mx_p)

with homotopy groups
Ky _g(X)m = m, Ky _p(X) = 7TmKS(—U(X)O-
[t follows that there is a commutative diagram of
cup product pairings
Ko(X) @ K7, (X) == K, (X)
or ;
Ko(X) © K}y (U) - K}, (U)

n+m
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and a corresponding induced pairing
Ka(X) ® Ky (X)n % K p(X)nin

One uses the relation (3) to show that there is a
diagram

Ko(X) ® Kj, o (U) —=—~ K}, 1 (U) - (10)
1®8l la
Kn(X) %Y KS{—U(X)mWKS(—U(X)ner

where 0 is the boundary map in the long exact
sequence which is associated to the fibre sequence

Kl (X)) = K'(X)° L5 K'(U)".

2) Suppose that 7 : Y — X is a finite morphism
of Noetherian schemes, and recall that such a map
7 induces a morphism m, : M(Y) — M(X) in
coherent sheaves (the transfer) and an inverse im-
age map 7* : P(X) — P(Y) in vector bundles.
There is a homotopy commutative diagram of biex-
act pairings

P(Y) x M(Y)-2-M(Y)
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This diagram is homotopy commutative in the sense
that it commutes up to a canonical morphism

PR (M) = m.(m"(P) @ M)

which is an isomorphism for all vector bundles P
on X and coherent sheaves M on Y. This di-
agram induces, in various levels of complexity, a
homotopy commutative diagram

K(Y)ANK'(Y) 2= K'(Y)

AL

AL
K(X)ANK'(Y) L
fVyone
TK(X) A K'(X) - K(X)
(12)
of symmetric spectra, a homotopy commutative
diagram
o KV AK(Y) = K'(Y)
77/7
K(X)ANK'(Y) lﬂ*
AT 0 /(%0 el
K(X)' A K'(X)' 5 K'(X)

(13)
of pointed spaces, and commutative diagrams of
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abelian group homomorphisms

T®1 Kn(Y> ® Kyln(Y> $Ké+m(Y)
/
Ky (X) ® K, (Y) m
e / /
(14)
In any of the forms (11), (12), (13) or (14), this

phenomenon is called the projection formula.

3) Suppose again that U is an open subscheme
of a Noetherian scheme X, and let 7 = X — U
be the closed complement with the reduced sub-
scheme structure. Recall that the category M(Z)
can be identified up to equivalence with the sub-
category M (X)) of M x_y which consists of those
modules which are annihilated by the defining ideal
I, and that this identification is induced by the
transfer map i, : M(Z) — M(X) which is as-
sociated to the closed immersion 7. Recall further
that the inclusion M;(X) — My _y is a K-theory
equivalence, by dévissage. The map ¢ is a finite
morphism of Noetherian schemes, so that there is
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a projection formula
xl.
P(X) x M(Z) lz*
xS
" P(X) x M(X)VM(X)
It follows that there is a homotopy commutative
diagram of pairings

w P(Z)x M(Z)—~M(Z)

P(X) x M(Z)
P(X) x M;(X)—~M;(X)
in which the maps 7, are K-theory equivalences.
It follows that in the diagram
K(X)ANK'(Z)—K'(Z)°
1 i
K(X)ANK'(X)"—=-K'(X)°
1/\j* ]*
K(X)' AK'(U)0 - K'(U)0

the induced pairing K (X )°AK'(Z)" — K'(Z)" on
the homotopy fibre of 5% coincides up to homotopy

with the composite

0 *Al
—

K(X)°AK'(Z) K(Z)'AK'(Z)° 2 K'(2)°,
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where the indicated cup product arises from the
tensor product pairing

P(Z) x M(Z) = M(Z).
We have proved the following:
Lemma 18.1. Suppose that X is a Noetherian

scheme, with open subscheme i1 : U C X and

(reduced) closed complement j : Z C X. Sup-

pose that v € K,(X) and b e K], ,(U). Then
d(vUb) =1i"(v)UI(b)

in Kyim(Z2).

Here are some other things to notice:

1) Tensor product is commutative up to natural

isomorphism, meaning that the diagram of biexact
pairings

P(X) x M(X)-=-M(X)

Tlg K

M(X) x P(X)
commutes up to canonical natural isomorphism,
where 7 is the isomorphism which reverses factors.
Thus K(X) acts on K'(X) on both the right and
the left, and the induced cup product pairings are
related by the equations

wUJv=(—-1)"vUu
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in K/(X), foru € K,(X)and v € K, (X). The
sign comes from the fact that the map

S A S S gm A gm

which is induced by the shuffle ¢, ,,, € %4, wWhich
moves the first n letters past the last m letters, in
order, has degree mn.

2) Tensor product gives K (X)) the structure of a
ring spectrum, and gives the spectrum K’(X) the
structure of a module spectrum over the ring spec-
trum K (X). Further, all morphisms of schemes
m .Y — X induce homomorphisms of ring spec-
tra 7" : K(X) — K(Y). Restriction of scalars
along 7* gives K'(Y) the structure of a module
spectrum over K(X). When 7w : Y — X is fi-
nite scheme morphism, then the transfer homo-
morphism 7, : K'(Y) — K'(X) is K(X)-linear
— this is the content of the projection formula
(12).
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