
Lecture 007 (April 13, 2011)

16 Abelian category localization

Suppose that A is a small abelian category, and let

B be a full subcategory such that in every exact

sequence

0→ a′ → a→ a′′ → 0

in A, a is an object of C if and only if b′ and a” are

objects of B. Such a subcategory B is said to be

thick (or dense, or a Serre subcategory). Observe

that B is closed under taking subobjects, quotients

and finite direct sums.

It is common to write Σ for the set of morphisms

of A with kernel and cokernel in B. Then the

quotient category

A/B = A(Σ−1)

is constructed by formally inverting the morphisms

of Σ. The category A/B is constructed from a

calculus of fractions: it has the same objects as

A, and a morphism [s, f ] : a → b of A/B is an

equivalence class of maps

a
s←− c

f−→ b,
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where s ∈ Σ. The equivalence relation is generated

by commutative diagrams

cs
yyrrrrrrr f

%%LLLLLLL

��
a b

c′ f ′

::uuuuuus′
ddJJJJJJ

The category Σ/b of morphisms c → b in Σ is

filtered (this is the calculus of fractions part), and

there is an identification

homA/B(a, b) = lim−→
c

s−→a∈Σ

homA(c, b).

Composition of morphisms in A/B is defined by

pullback. This works, because the set Σ is pre-

served by pullback. Note that

[f, s] = [1, f ] · [s, 1],

and that [1, s] is the inverse of [s, 1] in A/B. It

follows that

[f, s] · [1, s] = [1, f ].

There is a canonical functor

π : A→ A/B

which is the identity on objects, and sends a mor-

phism f : a → b to the morphism [1, f ] of A/B.

2



This functor π satisfies a universal property: every

functor g : A → C which inverts the morphisms

of Σ has a unique factorization g∗ : A/B → C

through π.

The category A/B is abelian, and the functor π

is exact.

The following (Theorem 16.1) is Quillen’s Local-

ization Theorem for abelian categories. It first ap-

peared in [2], and that is still one of the better

writeups of the result. It implies a localization the-

orem for the K-theory of coherent sheaves, which

will be discussed below. The K-theory of coherent

sheaves coincides with ordinary vector bundle K-

theory for regular schemes, on account of the Reso-

lution Theorem (Theorem 14.3, Corollary 14.4), so

that Theorem 16.1 implies a localization result for

the K-theory of regular schemes. There is a more

recent result for the K-theory of perfect complexes

which has far reaching consequences for the K-

theory of singular schemes, which is due to Thoma-

son and Trobaugh [3]. The Thomason-Trobaugh

result is delicate, and will not be discussed in this

course — it is nevertheless that last available word

on this subject.
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Theorem 16.1. Suppose that B is a Serre sub-

category of a small abelian category A, let i :

B→ A be the corresponding inclusion functor,

and let π : A → A/B be the quotient func-

tor. Then the functors i and π induce a fibre

homotopy sequence

BQ(B)
i∗−→ BQ(A)

π∗−→ BQ(A/B).

Write i : Q(B) → Q(A) and π : Q(A) →
Q(A/B) for the induced functors onQ-constructions.

The idea of the proof of the Theorem is to show

that

1) the canonical functor Q(B) → 0/π is a weak

equivalence, and

2) every morphism u : a→ b in Q(A/B) induces

a weak equivalence

b/π
'−→ a/π.

By a duality argument, it suffices to prove state-

ment 2) for morphisms u = i! arising from monomor-

phisms i. In particular, it suffices to prove 2) for

the morphisms ib! associated to maps 0→ b.

Suppose that b ∈ A. The category Eb has as ob-

jects all maps h : a → b of A which are in the
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set Σ of morphisms which induce isomorphisms in

A/B. The morphisms h → h′ of Eb are equiva-

lence classes of pictures

c // i //

p
����

h′′

��

d
h′
��

a
h
// b

where the equivalence relation is defined as in the

formation of the category QA, and composition is

defined by pullback. Observe that the morphisms

p and i must be in Σ, since ker(p) ⊂ ker(h′), and

so π(i) is an isomorphism of A/B.

There is a functor kb : Eb → Q(B) which is defined

by taking the map defined by the picture above to

the map defined by the picture

ker(h) � ker(h′′) � ker(h′).

Let Fb be the full subcategory of b/π whose ob-

jects are isomorphisms θ : b → π(a) (recall that

isomorphisms of Q(M) are isomorphisms of M,

for any exact category M).

The subcategory b/Σ of morphisms b→ a in Σ is

filtering.

There is a functor

E : b/Σ→ cat
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which takes the morphism

a

f
��

b
u 99rrrrrrr

v $$JJJJJJ

a′

to the functor f∗ : Ea → Ea′. There is also, for

each s : b→ a in Σ, a functor

s∗ : Ea → Fb

which takes the object h : d → a to the object

π(s)−1π(h) of Fb. Then it’s relatively easy to show

that the functors s∗, s : b→ a in Σ together induce

a functor

φ : lim−→
b→a∈Σ

Ea → Fb,

and that the functor φ is an isomorphism.

The following diagram commutes up to homotopy

for any morphism s : b→ a in Σ:

Ea
s∗ //

ka
��

Fb
i // b/π

i∗b!��
Q(B) ∼=

//F0 i
// 0/π

(1)

where the morphisms labelled by i are canonical

inclusions, and the indicated isomorphism of cat-

egories is defined by sending an object c to the
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isomorphism iπ(c)! : 0
∼=−→ π(c). The functor Ea →

0/π across the top sends h : c → a to the com-

posite

0
ib!−→ b

π(h)−1π(s)−−−−−−→ c

or ic! : 0→ c, while the functor across the bottom

sends h to the map iker(h)! : 0 → ker(h), and the

map ker(h)→ c defines the homotopy.

To prove Theorem 16.1, it suffices to prove the

following:

Lemma 16.2. The map i : Fb → b/π is a weak

equivalence for all b ∈ A/B.

Lemma 16.3. The map ka : Ea → Q(B) is a

weak equivalence for all a ∈ A.

Lemma 16.4. Suppose that g : b → b′ is a

morphism of Σ. Then the induced functor Eb →
Eb′ is a weak equivalence.

It follows from Lemma 16.4 that Fb is a filtered

colimit of categories, each of which is canonically

equivalent to Eb, and so all maps s∗ : Ea → Fb
are weak equivalences. We therefore know that all

morphisms other than i∗b! in the diagram (1) are

weak equivalences, so i∗b! is a weak equivalence too.

This would complete the proof of Theorem 16.1.
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Proof of Lemma 16.2. This is somehow the key

point.

Suppose that u : b → π(a) is an object of b/π.

We show that the category i/u is contractible.

We need a concept: an admissible layer in a for

an object a of an exact category M is a sequence

(b0, b1) of subobjects

b0 � b1 � a

Say that (b0, b1) ≤ (b′0, b
′
1) if there is a relation

b0��
�����

b1 ��
��;;;

b′0
^^
^^===

��
�����

b′1   
  @@@

a

Then the assignment which takes a layer (b0, b1)

to the morphism of Q(M) which is defined by the

picture

b1
xxxxqqqqqq ##

##HHHHHH

b1/b0 a

(subject to making choices) defines a functorL(a)→
Q(M)/a, and one can show that this functor is an

equivalence of categories. Observe that any two

layers (b0, b1) and (b′0, b
′
1) of a have a least upper
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bound

(b0 ∩ b0, b1 + b′1)

so that the category L(a) is filtered.

Suppose that u : b → π(a) is defined by the ad-

missible layer

b : b0 � b1 � a

of subobjects in A/B (with b = b1/b0). The cat-

egory i/u is equivalent to the category Lv(a) of

layers

c : c0 � c1 � a

in a in the category A such that π(c) = b. The

functor π is exact, so preserves least upper bounds

in layers. It follows that Lv(a) is filtered, and is

therefore contractible.

Proof of Lemma 16.3. Let E ′a be the full subcat-

egory of Ea whose objects are the epimorphisms

c � a of Σ. The objects of E ′a may therefore be

identified with exact sequences

E : 0→ d� c
p
� a→ 0

of A with d ∈ B. Observe that the functor fa
defined by the composite

E ′a ⊂ Ea
ka−→ Q(B)
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sends the exact sequence above to the kernel object

d.

The proof now comes in two parts:

a) show that the functor fa is a weak equivalence,

and

b) show that the inclusion E ′a ⊂ Ea is a weak

equivalence.

Statement a) is proved by showing that all cate-

gories fa/x are contractible. In effect, every mor-

phism

θ : d = fa(E)→ x

in Q(B) has a factorization θ = p!j! where j is a

monomorphism and p is an epimorphism. Write

C ′ for the subcategory of fa/x whose objects are

morphisms q! : fa(E
′) → x which are induced by

epimorphisms q : x � fa(E
′) of B. Then the

pushout diagrams

d // //

j
��

c

��

p // // a

d′ // // c

define a functor fa/x → C ′ which is left adjoint

to the inclusion C ′ ⊂ fa/x, and so the inclusion

C ′ ⊂ fa/x is a weak equivalence. The category C ′
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has an initial object, defined by the picture

0 // //

p!x
��

a 1 // // a

x

so that C ′ is contractible.

For statement b), let MonΣ(a) be the category

whose objects are monomorphisms e � a in Σ,

and whose morphisms are commutative triangles of

admissible monomorphisms. Then it’s easy to see

that MonΣ(a) is filtered: any two objects e � a

and e′ � a of MonΣ(a) have an upper bound

e + e′ � a.

There is a functor im : Ea → MonΣ(a) which is

defined by taking a morphism h : b → a of Σ to

its image im(h) � a. For each i : k � a in Σ

there is a functor

Fk : E ′k → k/ im

which is defined by taking the epi p : d � k in Σ

to the diagram

d
p
����

k //
1 //

��

i ��???????? k��

i����������

a

11



This functor Fk has a right adjoint, which is essen-

tially defined by pullback, and is therefore a weak

equivalence.

Pulling back along a monomorphism

k′
i
� k � a

in MonΣ(a) defines a functor

i∗ : E ′k → E ′k′.

This functor i∗ commutes with taking kernels (namely

with the functors fk and fk′) up to natural isomor-

phism, and is therefore a weak equivalence. There

is also a homotopy commutative diagram

E ′k
i∗ //

Fk
��

E ′k′
Fk′
��

k/ im
i∗
// k/ im

so that the maps i∗ : k/ im → k′/ im are weak

equivalences. But this means that the sequence

E ′a → Ea → MonΣ(a)

is a homotopy fibre sequence. The category MonΣ(a)

is contractible, so that the inclusion functor E ′a ⊂
Ea is a weak equivalence.
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Proof of Lemma 16.4. Suppose that g : b→ b′ is

a morphism of Σ. The diagram

Eb
g∗ //

kb ��=======
Eb′

kb′���������

Q(B)

is homotopy commutative, with homotopy deter-

mined by the monomorphisms ker(h) � ker(gh).

The maps kb and kb′ are weak equivalences by

Lemma 16.3, so that g∗ is a weak equivalence as

well.

17 Coherent sheaves and open subschemes

1) Suppose that X is a Noetherian scheme and

that U is an open subscheme of X . Write j :

U ↪→ X for the inclusion of U in X . Write Z

for the complement Z = X − U with the reduced

subscheme structure, and let i : Z ↪→ X denote

the corresponding closed immersion. The “kernel”

MX−U of the restriction map

j∗ : M(X)→M(U)

in coherent sheaves consists of all those modulesM

such that j∗(M) = M |U are zero objects, and as

such consists of those modules which are supported
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on X − U in the sense that, in stalks, Mx
∼= 0 for

x ∈ U . Alternatively, M ∈ MX−U if and only

if there is some power In of the defining sheaf of

ideals for Z such that InM = 0. The category

MX−U is a Serre subcategory of M(X), and it’s

an exercise to show that the induced functor

M(X)/MX−U →M(U)

is an equivalence of categories.

The category M(Z) of coherent sheaves on Z can

be identified up to equivalence with those modules

on X which are annihilated by I , via the transfer

map

M(Z)
i∗−→M(X).

The resulting functor

M(Z)→MX−U

induces a stable equivalence

K(M(Z)) ' K(MX−U)

by dévissage (Theorem 15.1), and it follows from

Theorem 16.1 that there is a homotopy fibre se-

quence of (symmetric) spectra

K(M(Z))
i∗−→ K(M(X))

j∗−→ K(M(U)),
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and a corresponding fibre sequence

K ′(Z)
i∗−→ K ′(X)

j∗−→ K ′(U)

of stably fibrant models. It follows that there is a

long exact sequence

. . .
∂−→ K ′q(Z)

i∗−→ K ′q(X)
j∗−→ K ′q(U)→

· · · → K ′1(U)
∂−→ K ′0(Z)

i∗−→ K ′0(X)
j∗−→ K ′0(U)→ 0

Note the surjectivity of the map j∗ : K ′0(X) →
K ′0(U).

2) Suppose that U ⊂ Sp(Z) is an open subset.

Then the reduced closed complement

Z = Sp(Z)− U

can be identified with the scheme

Sp(Fp1) t · · · t Sp(Fpn)

for some finite collection of primes {p1, . . . , pn},
and so there is an equivalence

M(Z) 'M(Fp1)× · · · ×M(Fpn).

Then there is a long exact sequence

· · · → K ′1(U)
∂−→

n⊕
i=1

K ′0(Fpi)
i∗−→ K ′0(Z)

j∗−→ K ′0(U)→ 0.
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Taking a filtered colimit of these fibre sequences

over all open subsets U ⊂ Sp(Z) gives a long exact

sequence

· · · → K ′1(Q)
∂−→

⊕
p

K ′0(Fp)
i∗−→ K ′0(Z)

j∗−→ K ′0(Q)→ 0

where the direct sum is indexed over all prime

numbers p. All of the rings appearing in this exact

sequence are regular, so that the sequence can be

rewritten as a K-theory exact sequence

· · · → K1(Q)
∂−→

⊕
p

K0(Fp)
i∗−→ K0(Z)

j∗−→ K0(Q)→ 0

Similarly, if A is any Dedekind domain (such as a

ring of integers in a number field, or the ring of

functions of any smooth affine curve over a field),

there is a long exact sequence

· · · → K1(k(A))
∂−→

⊕
P∈Sp(A)

K0(A/P)

i∗−→ K0(A)
j∗−→ K0(k(A))→ 0

where k(A) is the quotient field of A.

NB: This long exact sequence is also the localiza-

tion sequence associated to the functor

j∗ : M(A)→M(k(A))
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which is defined by localization at the generic point;

this observations specializes to A = Z.

3) Suppose that R is a discrete valuation ring with

quotient field k(R) and residue field k (the exam-

ples include Witt rings, so the characteristics could

be mixed). The kernel of the localization map

M(R)→M(k(R))

is the collection of finitely generated R modules

which are annihilated by some power πn of the

uniformizing parameter π (aka. generator of the

maximal ideal of R). It follows that there is a

fibre sequence

K(k)
p∗−→ K(R)

j∗−→ K(k(R))

and hence a long exact sequence

· · · → K1(R)→ K1(k(R))
∂−→ K0(k)

p∗−→ K0(R)
j∗−→ K0(k(R))→ 0.

The ring R is local, so that all finitely generated

projective R-modules are free, and so K0(R) ∼= Z.

The map K0(R) → K0(k(R)) is isomorphic to

the identity map Z→ Z, and so we have an exact

sequence

K1(R)→ K1(k(R))
∂−→ Z→ 0
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Since R is local, the group Sl(R) is generated by

elementary transformation matrices, so that this

sequence can be identified up to isomorphism with

the sequence

R∗ → k(R)∗
v−→ Z→ 0

which is defines the valuation v.

4) Suppose that the Noetherian scheme X has

Krull dimension 1 over an algebraically closed field

k, and let j : U ⊂ X be an open subscheme. The

reduced complement Z is finite over k and there is

an isomorphism

Z ∼= Sp(k) t · · · t Sp(k).

Then there is a long exact sequence

. . . K ′1(U)
∂−→

n⊕
i=1

K ′0(k)
i∗−→ K ′0(X)→ K ′0(U)→ 0.

The transfer map i∗ is a sum
∑
ix∗ of the transfer

maps corresponding to the points x ∈ Z.

If X is irreducible, then taking a filtered colimit of

these sequences over all U open in X gives a long

exact sequence

. . . K ′1(k(X))
∂−→

⊕
x∈X

K ′0(k)
∑
ix∗−−−→ K ′0(X)→ K ′0(k(X))→ 0
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where k(X) is the function field of X .

Finally, ifX is a smooth curve over k then all of the

local rings Ox,X are discrete valuation rings, and

there is a comparison of localization sequences

K1(X) //

��

K1(k(X)) ∂ //

=
��

⊕
x∈X K0(k)

prx
��

K1(Ox,X) //

∼=
��

K1(k(X)) ∂ //

∼=
��

K0(k)
∼=
��O∗x,X // k(X)∗ vx
//Z

It follows that the boundary map

∂ : K1(k(X))→
⊕
x∈X

K0(k) ∼=
⊕
x∈X

Z

can be identified with sum
∑

x∈X vx of the valu-

ation maps vx. It follows as well that there is an

exact sequence

K1(k(X))
∂−→

⊕
x∈X

K0(k)→ Cl(X)→ 0

where Cl(X) is the divisor class group of X . If X

is also separated then there is an exact sequence

K1(k(X))
∂−→

⊕
x∈X

K0(k)→ Pic(X)→ 0

where

Pic(X) = H1
et(X,Gm)
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is the Picard group of X .

18 Product formulas

As usual, we begin with a little homotopy theory.

Suppose given a diagram of pointed maps

Z ∧X1
//

1∧f1
��

X2

f2
��

Z ∧ Y1
// Y2

(2)

There is a model structure on the category of ar-

rows of pointed maps for which a map

A1
α1 //

f1
��

A2

f2
��

B1 α2
//B2

from f1 to f2 is a weak equivalence (respectively

cofibration) if and only if the maps α1 and α2 are

weak equivalences (respectively cofibrations). It’s

not hard to see that an object f : X → Y in

this category is fibrant if and only if Y is fibrant

and f is a fibration. It follows that by taking fi-

brant models for both f1 and f2, the square (2) can

be replaced up to weak equivalence by a square

for which the maps f1 and f2 are fibrations and

the spaces X1, X2, Y1 and Y2 are fibrant. Suppose
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henceforth that the maps and spaces in the dia-

gram (2) satisfy these criteria.

Let F1 and F2 be the fibres of f1 and f2, respec-

tively, over the respective base points of Y1 and Y2.

Then there is a unique induced map m : Z∧F1 →
F2 such that the diagram

Z ∧ F1
m //

1∧i
��

F2

i
��

Z ∧X1 m
//X2

commutes.

The map m : Z ∧ Y1 → Y2 induces an action

m : Z ∧ hom∗(K,Y1)→ hom∗(K,Y2)

for any pointed space K: this map m is adjoint to

the composite

Z ∧ hom∗(K,Y1) ∧K 1∧ev−−→ Z ∧ Y1
m−→ Y2,

where ev : hom∗(K,Y1) ∧K → Y1 is the evalu-

ation map. This induced pairing is natural in K.

It follows that there is an induced pairing

Z ∧ PY1
m //

1∧π
��

PY2

π
��

Z ∧ Y1 m
// Y2
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for the path-loop fibration π, and there is a com-

mutative diagram

Z ∧ F1
m //

'1∧v1
��

F2

' v2
��

Z ∧ (PY1 ×Y1 X1) //PY2 ×Y2 X2

Z ∧ ΩY1 m
//

1∧u1
OO

ΩY2

u2

OO

The map v−1
i ui is the boundary homomorphism

∂ : ΩYi → Fi in the pointed homotopy category,

and it follows that there is a commutative diagram

Z ∧ ΩY1
m //

1∧∂
��

ΩY2

∂
��

Z ∧ F1 m
//F2

in the homotopy category.

Generally, a pairing m : Z ∧ X → X induces a

map

∪ : πp(Z)⊗ πq(X)→ πp+q(X).

In effect, if α : Sp → Z and β : Sq → X rep-

resent elements [α] ∈ πp(Z) and [β] ∈ πq(X)

respectively, then [α] ∪ [β] is represented by the

composite

Sp+q ∼= Sp ∧ Sq α∧β−−→ Z ∧X m−→ X.
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Here, Sr is the r-fold smash power S1∧· · ·∧S1 of

copies of S1, and it’s an exercise to show that the

homotopy group πr(X) for a pointed Kan complex

X is isomorphic to the set π∗(S
r, X) of pointed

homotopy classes of maps of pointed simplicial sets

from Sr to X .

Suppose that α : Sp → Z and β : Sq+1 → Y1 rep-

resent elements of the groups πp(Z) and πq+1(Y1)

respectively. The boundary map

∂ : πq+1(Y1)→ πq(F1)

is defined for [β] by taking the adjoint β∗ : Sq →
ΩY1 and forming the composite

Sq
β∗−→ ΩY1

∂−→ F1

in the pointed homotopy category:

∂([β]) = ∂ · [β∗].
The composite

Sp+q ∼= Sp ∧ Sq α∧β∗−−−→ Z ∧ ΩY1
m−→ ΩY2

is adjoint to the composite

Sp+q+1 ∼= Sp ∧ Sq+1 α∧β−−→ Z ∧ Y1
m−→ Y2.

It follows that

∂([α] ∪ [β]) = [α] ∪ ∂([β]). (3)
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Now suppose thatX is a Noetherian scheme. Then

tensor product defines a biexact pairing

⊗ : P(X)×M(X)→M(X). (4)

By Proposition 9.3 (Lecture 004), the biexact pair-

ing (4) induces a smash product pairing

K(P(X)) ∧Σ K(M(X))
∪−→ K(M(X))

of symmetric spectra, but we have to be a lit-

tle careful to interpret it properly. The pairing

must be derived in the stable category, because

the smash product doesn’t quite preserve stable

equivalences.

Generally, if m : Y1 ∧Σ Y2 → Y3 is a morphism of

symmetric spectra, then by taking stably fibrant

models jV : V → FV and stably cofibrant models

πW : CW → W one constructs a diagram

Y1 ∧Σ Y2
m // Y3

CY1 ∧Σ CY2

πY1∧πY2
OO

jCY1
∧jCY2 ��

m′ //CY3

πY3

OO

jCY3��

FCY1 ∧Σ FCY2 m′′
//FCY3

(5)

where the map m′ exists because CY1 ∧ CY2 is

stably cofibrant, and m′′ exists because jCY1 ∧ jcY2
24



is a stably trivial cofibration (see [1, Prop. 4.19],

for example). The maps πYi and jCYi can be cho-

sen functorially because the stable model struc-

ture on symmetric spectra is cofibrantly generated,

and the maps m′ and m′′ are uniquely determined

up to simplicial homotopy. The induced maps

π∗ : FCYi → FYi are stable hence levelwise weak

equivalences of stably fibrant symmetric spectra,

and so the objects FCYi are stably fibrant models

for the objects Yi, respectively.

Recall that the functor SptΣ → sSet∗ which takes

a symmetric spectrum X to the pointed space Xn

at level n has a left adjoint

Fn : sSet∗ → SptΣ .

One way to define this functor is to set

Fn(K) = V (Σ∞K[n]),

where V : Spt → SptΣ is the left adjoint to the

functor U : SptΣ → Spt which forgets the sym-

metric group actions. The functor V preserves

cofibrations, so that all symmetric spectra Fn(K)

are cofibrant. It follows that if jX : X → FX is a

stably fibrant model for a symmetric spectrum X ,
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then there are isomorphisms

[Fn(K), X ] ∼= [Fn(K), FX ] ∼= π(Fn(K), FX)
∼= π(K,FXn) ∼= [Σ∞K[n], UFX ]

In particular, a map f : X → Y of symmetric

spectra is a stable equivalence if and only if the

induced maps

[Fn(Sr), X ]
f∗−→ [Fn(Sr), Y ]

are group isomorphisms for all n and r. This re-

quirement is over determined: it suffices that f∗
be an isomorphism in the cases where r = 0 if

n > 0 and for all r if n = 0, since there are stable

equivalences of spectra

Σ∞(Sr)[n]→ Σ∞(Sr−1)[n− 1].

Write

πsn(X) =

{
[F0(Sn), X ] if n ≥ 0, and

[F−n(S0, X ] if n < 0.

Then a map f : X → Y of symmetric spectra is a

stable equivalence if and only if the induced maps

f∗ : πsn(X)→ πsn(Y )

are isomorphisms for all n ∈ Z.
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Note that the stable homotopy groups πsn(X) co-

incide up to natural isomorphism with the tra-

ditional stable homotopy groups πsn(UF (X)) of

the spectrum UF (X) underlying a stably fibrant

model F (X) of X .

There are natural isomorphisms

Fn(K) ∧Σ Fm(L) ∼= Fn+m(K ∧ L)

(see [1, Cor. 4.18]). From the diagram (5) above,

we see that any smash product pairing

m : Y1 ∧Σ Y2 → Y3

induces pairings

[Fn(K), Y1]⊗ [Fm(L), Y2]
∼=
��

∪ // [Fn+m(K ∧ L), Y3]
∼=
��

[Fn(K), FCY1]⊗ [Fm(L), FCY2]
∼=
��

[Fn+m(K ∧ L), FCY3]
∼=
��

π(Fn(K), FCY2)⊗ π(Fm(L), FCY2)
m′′∗

// π(Fn+m(K ∧ L), FCY3)

where the pairing m′′∗ takes the pair ([α], [β]) to

map represented by the composite

Fn+m(K∧L) ∼= Fn(K)∧ΣFm(L)
α∧β−−→ FCY1∧ΣFCY2

m′′−→ FCY3.

In this way, we see that the smash product pairing

m induces a cup product pairing

πsn(Y1)⊗ πsm(Y2)
∪−→ πsn+m(Y3). (6)
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If all symmetric spectra Yi are connective, then

there are isomorphisms

πsn(Yi) ∼= πn(FCY 0
i ),

and the pairing (6) is isomorphic to the pairing

πn(FCY 0
1 )⊗ πm(FCY 0

2 )
∪−→ πn+m(FCY 0

3 )

which is induced by the space-level smash product

pairing

FCY 0
1 ∧ FCY 0

2 → FCY 0
3

which is a component of the map of symmetric

spectra m′′. Observe also that the component

FCY 1
1 ∧ FCY 1

2 → FCY 2
3

can be looped to give a map

Ω(FCY 1
1 ) ∧ Ω(FCY 1

2 )→ Ω2(FCY 2
3 )

and that there is a commutative diagram

FCY 0
1 ∧ FCY 0

2
//

σ∗∧σ∗ '
��

FCY 0
3

σ∗'
��

Ω(FCY 1
1 ) ∧ Ω(FCY 1

2 ) //Ω2(FCY 2
3 )

(7)

in which the maps σ∗ (which are weak equivalences

since the objects FCYi are stably fibrant) are ad-

joint bonding maps.
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It follows that the tensor product pairing

P(X)×M(X)
⊗−→M(X)

induces cup product pairings

Kn(X)⊗K ′m(X)
∪−→ K ′n+m(X)

for all n,m, which can (and in fact has been for

some time) defined as the pairing in homotopy

groups which is induced by the map

Ω(K(P(X))1)∧Ω(K(M(X))1)
∪−→ Ω2(K(M(X))2)

(8)

which, in turn, is induced by the pairing

s•(P(X))× s•(M(X))
⊗−→ s2

•(M(X)).

We have been writingK(X) for “the” fibrant model

of the symmetric spectrum K(P(X)) and K ′(X)

for “the” fibrant model of the symmetric spectrum

K(M(X)). We can and will write

K(X)0 ∧K ′(X)0 ∪−→ K ′(X)0

for the map (8).

Here are some applications of these ideas:

1) Suppose that j : U ⊂ X is an open subscheme

of X with reduced closed complement Z = X−U .

The tensor product pairing

P(X)×M(X)
⊗−→M(X)
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respects restriction to open subsets U and pre-

serves modules supported on Z = X − U , so that

there is a commutative diagram of functors

P(X)×MX−U
⊗ //

1×i
��

MX−U

i
��

P(X)×M(X) ⊗ //

j∗×j∗
��

M(X)

j∗
��

P(U)×M(U) ⊗
//M(U)

(9)

There is an induced biexact pairing

P(X)×M(U)
j∗×1−−→ P(U)×M(U)

⊗−→M(U)

so that the space K(X)0 acts on the fibre sequence

K ′X−U(X)0 → K ′(X)0 j∗−→ K ′(U)0,

arising from the Localization Theorem (Theorem

16.1), where K ′X−U(X) is the stably fibrant model

for the (connective) symmetric spectrumK(MX−U)

with homotopy groups

K ′X−U(X)m = πsmK
′
X−U(X) = πmK

′
X−U(X)0.

It follows that there is a commutative diagram of

cup product pairings

Kn(X)⊗K ′m(X) ∪ //

1⊗j∗
��

K ′n+m(X)

j∗
��

Kn(X)⊗K ′m(U) ∪
//K ′n+m(U)
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and a corresponding induced pairing

Kn(X)⊗K ′X−U(X)m
∪−→ K ′X−U(X)n+m.

One uses the relation (3) to show that there is a

diagram

Kn(X)⊗K ′m+1(U) ∪ //

1⊗∂
��

K ′n+m+1(U)

∂
��

Kn(X)⊗K ′X−U(X)m ∪
//K ′X−U(X)n+m

(10)

where ∂ is the boundary map in the long exact

sequence which is associated to the fibre sequence

K ′X−U(X)0 → K ′(X)0 j∗−→ K ′(U)0.

2) Suppose that π : Y → X is a finite morphism

of Noetherian schemes, and recall that such a map

π induces a morphism π∗ : M(Y ) → M(X) in

coherent sheaves (the transfer) and an inverse im-

age map π∗ : P(X) → P(Y ) in vector bundles.

There is a homotopy commutative diagram of biex-

act pairings

P(Y )×M(Y ) ⊗ //M(Y )

π∗
��

P(X)×M(Y )

π∗×1 33ffffffff

1×π∗
++XXXXXXXX

P(X)×M(X) ⊗
//M(X)

(11)
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This diagram is homotopy commutative in the sense

that it commutes up to a canonical morphism

P ⊗ π∗(M)→ π∗(π
∗(P )⊗M)

which is an isomorphism for all vector bundles P

on X and coherent sheaves M on Y . This di-

agram induces, in various levels of complexity, a

homotopy commutative diagram

K(Y ) ∧K ′(Y ) ∪ //K ′(Y )

π∗
��

K(X) ∧K ′(Y )

π∗∧1 33ffffffff

1∧π∗
++XXXXXXXX

K(X) ∧K ′(X) ∪
//K ′(X)

(12)

of symmetric spectra, a homotopy commutative

diagram

K(Y )0 ∧K ′(Y )0 ∪ //K ′(Y )0

π∗
��

K(X)0 ∧K ′(Y )0

π∗∧1 22ffffffff

1∧π∗
,,XXXXXXXX

K(X)0 ∧K ′(X)0
∪
//K ′(X)0

(13)

of pointed spaces, and commutative diagrams of
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abelian group homomorphisms

Kn(Y )⊗K ′m(Y ) ∪ //K ′n+m(Y )

π∗
��

Kn(X)⊗K ′m(Y )

π∗⊗1 22fffffffff

1⊗π∗
,,XXXXXXXXX

Kn(X)⊗K ′m(X) ∪
//K ′n+m(X)

(14)

In any of the forms (11), (12), (13) or (14), this

phenomenon is called the projection formula.

3) Suppose again that U is an open subscheme

of a Noetherian scheme X , and let Z = X − U

be the closed complement with the reduced sub-

scheme structure. Recall that the category M(Z)

can be identified up to equivalence with the sub-

category MI(X) of MX−U which consists of those

modules which are annihilated by the defining ideal

I , and that this identification is induced by the

transfer map i∗ : M(Z) → M(X) which is as-

sociated to the closed immersion i. Recall further

that the inclusion MI(X)→MX−U is aK-theory

equivalence, by dévissage. The map i is a finite

morphism of Noetherian schemes, so that there is
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a projection formula

P(Z)×M(Z) ⊗ //M(Z)

i∗
��

P(X)×M(Z)

i∗×1 33ffffffff

1×i∗
++XXXXXXXX

P(X)×M(X) ⊗
//M(X)

It follows that there is a homotopy commutative

diagram of pairings

P(Z)×M(Z) ⊗ //M(Z)

i∗
��

P(X)×M(Z)

i∗×1 33ffffffff

1×i∗
++XXXXXXXX

P(X)×MI(X) ⊗
//MI(X)

in which the maps i∗ are K-theory equivalences.

It follows that in the diagram

K(X)0 ∧K ′(Z)0 //

1∧i∗
��

K ′(Z)0

i∗
��

K(X)0 ∧K ′(X)0 ∪ //

1∧j∗
��

K ′(X)0

j∗
��

K(X)0 ∧K ′(U)0
∪
//K ′(U)0

the induced pairingK(X)0∧K ′(Z)0 → K ′(Z)0 on

the homotopy fibre of j∗ coincides up to homotopy

with the composite

K(X)0∧K ′(Z)0 i∗∧1−−→ K(Z)0∧K ′(Z)0 ∪−→ K ′(Z)0,
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where the indicated cup product arises from the

tensor product pairing

P(Z)×M(Z)
⊗−→M(Z).

We have proved the following:

Lemma 18.1. Suppose that X is a Noetherian

scheme, with open subscheme i : U ⊂ X and

(reduced) closed complement j : Z ⊂ X. Sup-

pose that v ∈ Kn(X) and b ∈ K ′m+1(U). Then

∂(v ∪ b) = i∗(v) ∪ ∂(b)

in Kn+m(Z).

Here are some other things to notice:

1) Tensor product is commutative up to natural

isomorphism, meaning that the diagram of biexact

pairings

P(X)×M(X) ⊗ //

τ ∼=
��

M(X)

M(X)× P(X)
⊗

66mmmmmmmmmmmm

commutes up to canonical natural isomorphism,

where τ is the isomorphism which reverses factors.

Thus K(X) acts on K ′(X) on both the right and

the left, and the induced cup product pairings are

related by the equations

u ∪ v = (−1)mnv ∪ u
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in K ′∗(X), for u ∈ Kn(X) and v ∈ K ′m(X). The

sign comes from the fact that the map

Sn ∧ Sm
cn,m−−→ Sm ∧ Sm

which is induced by the shuffle cn,m ∈ Σm+n which

moves the first n letters past the last m letters, in

order, has degree mn.

2) Tensor product gives K(X) the structure of a

ring spectrum, and gives the spectrum K ′(X) the

structure of a module spectrum over the ring spec-

trum K(X). Further, all morphisms of schemes

π : Y → X induce homomorphisms of ring spec-

tra π∗ : K(X) → K(Y ). Restriction of scalars

along π∗ gives K ′(Y ) the structure of a module

spectrum over K(X). When π : Y → X is fi-

nite scheme morphism, then the transfer homo-

morphism π∗ : K ′(Y ) → K ′(X) is K(X)-linear

— this is the content of the projection formula

(12).
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