Lecture 008 (March 9, 2011)

19 K-theory with coefficients

Suppose that n is some positive number. There is
a natural cofibre sequence

ESEL EM

in the category of spectra (or symmetric spectra),
where xn is multiplication by n, meaning the map
in the stable category represented by the “compos-

: 7

1te . ,
EST[ESVESE,

i=1 i=1
where A is the diagonal map, V is the fold map,
and c is the canonical stable equivalence relating fi-
nite wedges and finite products. This construction
can be made natural in symmetric spectra E: it’s
not hard to see that the defining cofibre sequence
for E//n is weakly equivalent to the sequence

1/\E(><n)

EAs S EAs S 2% B As S/n

where S is the sphere spectrum. It follows that
there is a stable equivalence

E/n~ENs S/n
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so that F//n may be constructed from E by smash-
ing with the “Moore spectrum” S/n.

Alternatively, let P(n) be the homotopy cofibre of
the map xn : S' — S!. Then the comparison of
homotopy fibre sequences

Q(E/n) E . E

lz lg

hom,(P(n), E))[1]— hom.,(S*, E)[l](Whom*(Sl, E)[1]

implies that there is a stable equivalence

Q(E/n) ~ hom,(P(n), B)[1],

(after making F fibrant, at least), so that there are
stable equivalences

E/n~QE/n)1] ~ hom,(P(n), B)2. (1)

Any cofibre sequence in symmetric spectra is a fi-
bre sequence, and so any cofibre sequence induces
a fibre sequence in associated stably fibrant mod-
els, and hence induces a long exact sequence in
stable homotopy groups for symmetric spectra, as
defined above. It follows in particular that there is
a natural long exact sequence

s (B/n) L m(B) 2 mo(B) — mo(Bfn) S
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and corresponding natural short exact sequences
0 — m(E)RZ/n — m,(FE/n) — Tor(Z/n, m,1(F)) — 0.
Thus, if £ is connective then E/n is connective.

Smashing with a fixed symmetric spectrum pre-
serves stable cofibre sequences (in a derived sense),
and therefore also preserves stable fibre sequences.
Thus if E acts on a fibre sequence Fy — Fy — Fj
in the sense that there is a commutative diagram

EAs Fi—E As Fy—E As Fy

| | l

o} o8 o8

then the induced comparison

E/\Z F1 /\2 S/RHE /\2 F2 /\2 S/HHE /\2 F3 /\2 S/n

l | |

FiNs S/n———+F, Ay S/n——=F3 Ay S/n
gives a fibre sequence Fy /n — Fy/n — F3/n with

an action by F.

Suppose that M is an exact category. Then K(M)/n
is the mod n K-theory spectrum, and it is stan-
dard to write

K,(M, Z/n) = (K (M) /n).



Thus, for a scheme (respectively Noetherian scheme)
X we write

Ky(X,Z/n) = m)(K(X)/n)
for the mod n K-groups of X and

KI(X,Z/n) = m,(K'(X)/n)
for the mod n K’-groups of X.

Example: Bott elements

1) Suppose that k is a field with char(k) not di-

viding n. Suppose that k contains a primitive n”
root of unity &.

The composite
Bk* — BGI(k) — K(k)"

(which is a 7rj-isomorphism) induces a map of spec-
tra

Y*Bk* — K(k)
The induced map

mohom, (P(n), 5 BE)[2] —mhom.(P(n), K(k))[2]
= Kok, Z/n)

coincides with the map

mohom,(P(n), 5% Bk*) — mehom,(P(n), K (k)).
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Then the composite

mohom,(P(n), BE*) — mohom,(P(n), >*Bk*)

mohom,(P(n), K(k))
defines a map ¢ : ,k* — Ks(k,Z/n) which splits
the canonical surjection

Ky(k,Z/n) — k" (2)

An element § € Ky(k,Z/n) which maps to £ un-
der the surjection (2) is called a Bott element.
Write 6 = ¢(&), and let this be a fixed choice of
Bott element in all that follows (there are others,
given by other primitive roots).

2) If k is algebraically closed, then K5 (k) is uniquely
divisible [3] so that

KQ(ka Z/n) = Hn

(n' roots of unity) with generator 3. More gener-
ally, Suslin’s rigidity theorem [4], [5] (and a com-
parison with KU /¢) implies that multiplication by
the Bott element induces a map

K(k)/o(k) & Q2K e(k)
which induces an isomorphism in stable homotopy
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groups 7; for j > 0, so there are isomorphisms
Kou(k, Z/n) = 1",

for £ > 0 and
Kyi1(k,Z/n) =0

for all r > 0.

The bad news is that the mod n K-theory spec-
trum K (X)/n may not have a ring spectrum struc-
ture in general, because the Moore spectrum S/n
may not have a ring spectrum structure — see [6,

A6).

In all that follows, let £ be a prime which is distinct
from the characteristic of k and let n = ¢”, where
v>2itl =3 and v > 4 if { = 2 (these choices
are made precisely so that S/n has a ring spectrum
structure).

Subject to these conditions, the ring structure on
K, (k,Z/n) is defined by tensor product in the ob-
vious way, and there is a ring isomorphism

Z/nIf) = K.(k, Z/n).

3) Suppose now that k does not contain a prim-
itive n'" root of unity (n = ¢*), and let £ € k
be a fixed choice of primitive root in the algebraic
closure k.



The field k(&) is the splitting field for the polyno-
mial X" — 1. Let f(z) be the irreducible polyno-
mial for & (of degree d) and let G be the Galois
group for k(¢)/k. Then G acts on u,, C k(&)*. If
C is a root of the polynomial f(X) (hence also a
primitive n'® root of unity), then ¢ € Ks(k(¢),Z/n)
via the map

¢ nk(Q)" — Ko(k(C), Z/n)
described above. The product element

B.= |] ¢ € Kalk(¢),Z/n)
f(¢)=0

is G-invariant, and is non-zero since the element
B4 0in Kog(k,Z/n), and B, maps to a non-zero
multiple of 5.

Finally, consider the base change morphism
i* Kk, Z/n) — K. (k(§),Z/n)
as well as the transfer
iv s Ko(k(&),Z/n) — Kk, Z/n).

One can show at the exact category level (exercise)
that the map

it Kok, Z/n) — K.(k,Z/n)
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is multiplication by the degree d, and that the com-
posite

Ui Ku(K(E), Z/n) — K. (K(E), Z/n)

is multiplication by the norm element N = > ge 9
in the evident Galois module structure. The in-
verse image ¢* takes values in the G-invariants
K.(k(£),Z/n)%, and the i*i, restricts to the map

K. (k(€),Z/n)" — K.(k(),Z/n)"

which is multiplication by the degree d. The ele-
ment [d] is a unit of Z/¢" for all r, since d|(¢" — 1)
so that ¢ does not divide d. It follows that transfer
and base change define an isomorphism

K.(k,Z/n) = K.(k(€),Z/n)°,
so that 87 € Kog(k,Z/n).

In other words, some power of the Bott element is
always in the K-theory of the base field k, under
the assumptions that we have made on the coeffi-
cients.



20 K-theory with finite coefficients, and homol-
ogy

Suppose that £ is a prime number.

Lemma 20.1. Suppose that X is a stmply con-

nected space. Then the homotopy groups of X

are uniquely £-divisible if and only if
H.(X,7/0) =0

Here (and as usual), H.(X,Z/{) is the reduced
mod ¢ homology of X: it is the kernel of the map
H.(X,Z/l) — H.x,7Z]?).

The requirement that H,(X,Z/f) = 0 is equiva-
lent to saying that X has the mod ¢ homology of
a point.

Proof. Suppose that A is a uniquely /¢-divisible
abelian group. Then Hi(BA) = A is uniquely
(-divisible, so that H(BA,Z/¢) = 0. Suppose
that H;(BA,Z/l) = 0 for 1 < i < r. Then mul-
tiplication by £ on BA is given by a composite

BA % BAX' Y, BA
and this composite is an isomorphism of simplicial
abelian groups. The induced map

H,1(BA,2/0) Y2 |, (BA,7,)0)
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is multiplication by ¢ by a Kiinneth formula argu-
ment, and this composite is an isomorphism. The
homology groups H.(X,Z/¢) for any space X are
(*>-torsion, so it follows that H,.1(BA,Z/{) = 0.

Thus, inductively, H,(BA,Z/¢) = 0. It follows

from a standard Serre spectral sequence argument
that

H.(K(A,n),Z/l) =0
for all n > 1.

Suppose that X is a simply connected space with
uniquely ¢-divisible homotopy groups. The Post-
nikov sections P, X have the same property, and
there are fibre sequences

K(m,(X),n) = P,X — P,1X.
We know that H, (K (m,(X),n),Z/¢) = 0. Thus

an inductive Serre spectral sequence argument shows
that H,(P,(X),Z/¢) = 0 for all n > 2. A Serre
spectral sequence argument also shows that the
map 7 : X — P,X induces isomorphisms

Hy(X,Z/0) = Hy(Py(X),Z/0) = 0

for 0 < k < n. By taking n sufficiently large, we
see that

Hy(X,Z)0) =0
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for all £ > 0.

Suppose, conversely, that H,(X,Z/¢) = 0, and
let m(X) be the bottom non-vanishing homotopy
group. Then 7(X) = Hp(X) by the Hurewicz
Theorem, and Hy(X) is uniquely ¢-divisible since

H.(X,Z/l) = 0. There is a fibre sequence
F— X — K(m(X), k)
where F' is k-connected and £ > 2. Then
H.(K(m(X), k), Z/0) =0

by the first paragraph, so a Serre spectral sequence
argument shows that H.(F,Z/¢) = 0. Then

Tt (F) = i1 (X)

is uniquely ¢-divisible. Inductively, all homotopy
groups of X are uniquely ¢-divisible. O

Recall that the fundamental groupoid 7(Y'), for
a Kan complex Y, can be constructed to have the
vertices of Y as objects and naive homotopy classes
of paths A! — Y rel. end points as morphisms.
The composition laws

m(Y)(z,y) x 7(Y)(y, 2) = n(Y)(x, 2)

are defined by 2-simplex fill-ins. There is a canon-
ical map 7 : Y — B(mw(Y)) which is the identity
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on vertices, and takes an n-simplex o : A" — X
to the string of morphisms

o(0) —=o(l) = -+ — a(n)
which are determined by the non-degenerate faces
AlcAm Ly
of 0. The induced group homomorphisms
m(Y,x) = n(Y)(z, z)

are isomorphisms, by construction. If Z is another
choice of Kan complex, then the groupoid homo-
morphism

(Y x Z) = nw(Y) x n(Z)

is an isomorphism. Any homotopy ¥ x Al — Z
induces a homotopy

he :m(Y)x1— 7n(Z2),

which is defined, as a natural transformation, by
the images of the 1-simplices

RN NN LN

Now suppose that X is a connected H-space. We
can suppose that X is a Kan complex — see the
arguments in Section 12 (Lecture 005).
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It follows that from the paragraph above that the
space B(m(X)) is a connected H-space, and that
the canonical map 7 : X — B(w(X)) is multi-
plicative. The map 7 is also surjective (actually
an isomorphism) on fundamental groups, so that
as in the proof of Lemma 12.1 the fundamental
groupoid of B(w(X)) (which is w(X)) acts triv-
ially on the homology H,(F,Z/{) of the homotopy
fibres F' of the map m, and so the corresponding
Serre spectral sequence has the standard form

Ey* = Hy(B(r(X)),Hy(F, Z/1)) 3)
= H,.,(X,Z)?).

Recall that the homotopy fibre F' of the map 7 :
X — B(w(X)) is the universal cover of X.

Lemma 20.2. Suppose that X is a connected
H-space. Then the homotopy groups of X are
uniquely £-divisible if and only if H (X, Z/0) =
0.

Proof. Suppose that all of the homotopy groups
of X are uniquely ¢-divisible. Then the homotopy
groups of the universal cover F' of X are uniquely
(-divisible, so that H.(F,Z/¢) = 0 by Lemma
20.1. An argument using the spectral sequence
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(3) then shows that the map

H.(X,Z/t) — H.(B(m(X)),Z/?)
is an isomorphism. But then there is a weak equiv-
alence B(m(X)) ~ B(m(X)) and 7 (X) is a uniquely
(-divisible abelian group so that H,(B(m (X)), Z/{) =
0 by the proof of Lemma 20.1.
Suppose conversely that H,(X,Z/¢) = 0. Then
m(X) = Hi(X) is a uniquely ¢-divisible abelian
group, so that

H,.(B(n(X)),Z/t) = 0.

From the spectral sequence (3), we then conclude
that H.(F,Z/¢) = 0. But this means that all of
the homotopy groups of the universal cover F' of
X are uniquely ¢-divisible, by Lemma 20.1. Thus,
all of the homotopy groups of X are uniquely /-
divisible. ]

Lemma 20.3. Suppose that f : A — A’ is a
homomorphism of abelian groups. Then f in-
duces an isomorphism

f.: H(BA,Z/{) = H.(BA',Z/¢)

if and only if the groups ker(f) and cok(f) are
uniquely £-divisible.
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Proof. If ker(f) and cok( f) are uniquely ¢-divisible,
then the maps BA — Bim(f) and Bim(f) —
BA induce H,( ,Z/¢)-isomorphisms, by Serre spec-
tral sequence arguments, since

~ ~

H.(Bker(f),Z/0) = H.(Bcok(f),Z/t) = 0.
Conversely, if the map
f«: H(BA,Z/t) — H.(BA',Z/{)
is an isomorphism, then the map
fo  H(B’AZ/0) — H.(B*A',Z/0)

is an isomorphism, by an iterated Kiinneth for-
mula argument. The homotopy fibre F' of the
map f, : B3A — B3A’ is a simply connected
space with H,(F,Z/¢) = 0. Lemma 20.1 implies
that the homotopy groups of F' are uniquely ¢-
divisible. The non-trivial homotopy groups of F
are m3(F') = ker(f) and mo(F') = cok(f), so that
ker(f) and cok(f) are uniquely ¢-divisible. (]

Theorem 20.4. Suppose that f : O — O is
a local homomorphism of local rings. Then the
induced map

fo i K(O)/0 — K(O)/¢
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1 a stable equivalence if and only if the map
f«: H(BGIl(0),Z/l) — H.(BGI(O"), 7))
1S an isomorphism.

The requirement that f : O — O’ is a local homo-
morphism means that f(M) C M’, where M and
M are the respective maximal ideals. Morphisms
of this type include all residue maps O — O/ M,
all morphisms k& — O where k is a field, and all
field homomorphisms k& — L.

Proof. Let F' be the homotopy fibre of the map
K(O) — K(O') in the stable category. Then F
is a connective spectrum. The map

K(0) — K(O")"
is an isomorphism in 7 (since Ko(O) = Ky(O') =
Z), so there is a fibre sequence

F' - BGIO)" &5 BGLO)*

by the ) = + theorem (Theorem 11.1).

The standard inclusion R* — GI(R) of groups (R*
is units in R) induces a natural splitting

det

BR* — BGI(R) %% BR*
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of the determinant homomorphism. Thus, if the
natural homomorphism K;(R) — R* is an isomor-
phism, then the long exact sequence for resulting
fibre sequence

BSI(R)" — BGI(R)" — BR*
breaks up into short exact sequences
0 — m,(BSI(R)") = m,(BGI(R)") — 7,(BR") = 0
which are split by the induced map 7,(BR*) —
m.(BGI(R)"). It follows that the composite
BSI(R)"x BR* — BGI(R)"xBGI(R)" = BGI(R)*
is a weak equivalence in all such cases.

It follows that there is a homotopy commutative
diagram
BSI(O)t x BO*—=BSI(O")* x BO*

gl lg

BGI(O)* BGI(O')*

I+
in which the vertical maps are weak equivalences.
It also follows that the map f, : BGI(O) —
BGI(O') is an H,( ,Z/{)-isomorphism if and only
if the maps

BSI(O)" L5 BSI(O)*
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and
BO* — BO™
are H,( ,Z/¢)-isomorphisms.
The map BSI(O)t — BSI(O')" is the map of
spaces in level 0 of the 1-connected covers

K(0)(1) = K(0)(1)

of the respective K-theory spectra. Let E be the
homotopy fibre of this map. Then the space E” is
a connected H-space, and so by Lemma 20.2 the
homotopy groups of EV are uniquely ¢-divisible if
and only if H,(E°,Z/¢) = 0. But this is true if
and only if the map

f.: BSI(O)" — BSI(O')*

is an H,( ,Z/¢)-isomorphism, by a Serre spectral
sequence argument.

It follows that the map
BGI(0) L BGI(O)

is an H,( ,Z/¢)-isomorphism if and only if the
groups m.(F), and the kernel and cokernel of the
map fy : O — O™ are all uniquely ¢-divisible.
The homotopy groups of the fibre F of the map
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K(0)" — K(O")? are of the form

(cok(O* — O™) if j =0,
mi(F") = m(EY) @ ker(O* — ©O™) if j =1, and
\wj(EO) if j > 1.

It follows that the homotopy groups of F* are all
uniquely ¢-divisible if and only if the map

f« : BGI(O) — BGI(O")
is an H,( ,Z/{)-isomorphism. But this means that
f« is an H,( ,Z/¢)-isomorphism if and only if the
map

f« i K(O)/t — K(O)/t
is a stable equivalence, because F'/{ is stably triv-

ial if and only if the homotopy groups of F, are
uniquely /-divisible. O

The n-connected cover E(n) of a spectrum FE' is
the fibre of the n'" Postnikov section £ — P,(E).
A construction of the functor £ — P,(F) is given
in [2, Sec. 4.7], but the construction can also be
fudged by playing with the diagrams

P 0 P . .Qr
k n+k9* k41t n+k ¥ ntk41 k41
Pn—f—kE —>Pn+kQE * —>Pn—|—kQPn+k+1E *
Wn+kT Wn+kT:
QE!{H—l a QPn+k:+1Ek+1

Tn+k+1
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Here, 7, : Z — P.Z denotes the standard map
taking values in the Postnikov section P.Z for a
simplicial set Z.
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