
Lecture 009 (April 12, 2011)

21 Some algebra: filtered and graded rings

A ring A is said to be filtered if the underlying

abelian group has a filtration

0 = F−1(A) ⊂ F0(A) ⊂ · · · ∪i≥−1 Fi(A) = A,

such that

Fp(A) · Fq(A) ⊂ Fp+q(A)

under the ring multiplication, and 1 ∈ F0(A). The

canonical example is a polynomial ring R[t], fil-

tered by degree.

The associated graded ring gr(A) = (grp(A))p≥0
of a filtered ring A has

gr(A)p = Fp(A)/Fp−1(A),

with the obvious multiplication.

An A-module M is said to be filtered if M has a

filtration

0 = F−1(M) ⊂ F0(M) ⊂ · · · ∪i≥−1 Fi(M) = M,

such that

Fp(A) · Fq(M) ⊂ Fp+q(M)
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The associated graded module

gr(M) = (Fp(M)/Fp−1(M))p≥0

is a (positively) graded module over gr(A).

Example: Any ideal in a polynomial ringR[t] can

be filtered by degree.

A given module M has multiple filtered A-module

structures: given a filtration F∗M and n ∈ Z there

is a filtered A-module structure F
(n)
∗ (M) on M

with

F (n)
p (M) =

{
Fp+n(M) if p + n ≥ 0, and

0 if p + n < 0.

Write M (n) for the module M together with the

filtration F
(n)
∗ (M), and observe that there is a nat-

ural isomorphism

gr(M (n)) ∼= gr(M)(n)

where gr(M)(n) is the shifted (or twisted) graded

gr(A)-module in the usual sense (at least if n ≤ 0

— otherwise it is truncated in positive degrees).

Lemma 21.1. Suppose that M is a filtered A-

module such that gr(M) is finitely generated.

Then M is finitely generated.
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Proof. Pick a set of homogeneous generators

xi ∈ FniM/Fni−1M, 1 ≤ i ≤ m,

for gr(M), and choose elements zi ∈ FniM such

that zi 7→ xi under the canonical surjection

FniM → FniM/Fni−1M.

There is a homomorphism of filtered A-modules

φi : F (−ni)A→M

such that φi(1) = zi. Adding up these homomor-

phisms defines a map∑
φi :

m⊕
i=1

F (−ni)A→M

which induces a surjective homomorphism
m⊕
i=1

gr(A)(−ni)→ gr(M)

of graded modules which picks up the generators

xi. But then the filtered module map
∑
φi is sur-

jective by an induction on filtration degree, and so

the underlying A-module homomorphism

⊕ni=1A→M

is surjective.
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Corollary 21.2. Suppose that A is a filtered

ring such that gr(A) is Noetherian. Then A is

Noetherian.

Proof. Every ideal I of A has a filtration

FpI = I ∩ FpA.

Then gr(I) is an ideal of gr(A) and is therefore

finitely generated, so that I is finitely generated

by Lemma 21.1.

Every graded ring B = (Bn) has an associated

(ungraded) ring ⊕Bn, with multiplication defined

by

(an)(bn) = (
∑
i+j=n

aibj).

Any graded module M = (Mn) over the graded

ring B determines a module ⊕Mn over the ring

⊕Bn, in the obvious way. In particular, every

graded ideal I of B determines an ideal ⊕In of

the ring ⊕Bn.

Lemma 21.3. Suppose that M is a graded B-

module, and suppose that ⊕Mn is a finitely gen-

erated ⊕Bn-module. Then M is a finitely gen-

erated B-module
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Proof. The module ⊕Mn is generated over ⊕Bn

by a finite collection of homogeneous elements

x1, . . . , xm

with xi ∈ Mni. There is a graded B-module ho-

momorphism

φi : B(−ni)→M

with φi(1) = xi. The sum of these maps

φ =

m∑
i=1

φi : B(−ni)→M

is a surjective homomorphism of graded modules

because the induced map ⊕φ is surjective.

Corollary 21.4. Suppose that B is a graded

ring. Then the ring ⊕Bn is Noetherian if and

only if B is Noetherian.

Proof. The ring ⊕Bn has a filtration with

Fp(⊕Bn) = ⊕0≤n≤pBn,

and the associated graded ring for this filtration

is isomorphic to B. Corollary 21.2 then says that

⊕Bn is Noetherian if B is Noetherian.

Suppose that the ring ⊕Bn is Noetherian. If I is

a graded ideal in B, then the ideal ⊕In of ⊕Bn is
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finitely generated, so that I is a finitely generated

B-module, by Lemma 21.3.

Lemma 21.5. Suppose that A is a filtered ring

such that gr(A) is Noetherian. Then the graded

ring (FpA) is Noetherian.

Proof. The ring⊕FpA is isomorphic to the subring

A′ ⊂ A[z] consisting of those polynomials

f (z) = a0 + a1z + · · · + anz
n

with ai ∈ Fi(A). We show that A′ is Noetherian,

and then invoke Corollary 21.4.

FilterA′ by requiring FpA
′ to consist of those poly-

nomials f (z) with all coefficients in FpA. The as-

sociated graded ring of this filtration has

FpA
′/Fp−1A

′ ∼=
⊕
n≥p

gr(A)pz
n.

There is an isomorphism of graded rings⊕
n≥0

gr(A)pz
n →

⊕
n≥p

gr(A)pz
n

which is defined at level p by multiplication by zp.

There is an isomorphism of rings

⊕(
⊕
n≥0

gr(A)pz
n) ∼= (⊕gr(A)n)[z]
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and the ring (⊕gr(A)n)[z] is Noetherian by Corol-

lary 21.4 (and the Hilbert basis theorem). It fol-

lows, again by Corollary 21.4, that the graded ring

(FpA
′/Fp−1A

′) is Noetherian, so thatA′ is Noethe-

rian by Corollary 21.2.

22 K-theory of graded rings

Suppose that B = (Bn) is a graded ring, and let

k = B0.

For a graded B-module N = (Nn), define

Ti(N) = TorBi (k,N),

as a graded B-module, where k is a graded B-

module via the augmentation. Then in particular

there are natural isomorphisms

T0(N)r ∼= Nr/(B1Nr−1 + · · · + BrN0).

In other words, T0N is N mod decomposables in

all degrees.

Let Fp(N) be the graded submodule of N which

is generated by Nn with n ≤ p. Then there is an

isomorphism

T0(N)p ∼= (Fp(N)/Fp−1(N))p (1)
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for each p ≥ 0. There are also isomorphisms

T0(FpN) =

{
0 if n > p, and

T0(N)n if n ≤ p.
(2)

The natural isomorphism (1) induces a natural sur-

jective homomorphism

φp : B(−p)⊗k T0(N)p � Fp(N)/Fp−1(N)

of graded B-modules.

Lemma 22.1. Suppose that N is a graded B-

module such that T1(N) = 0 and

Torki (B, T0(N)) = 0

for all i > 0. Then the map φp is an isomor-

phism.

Proof. Suppose that P∗ → M is a projective res-

olution of a graded k-module M . Then

Torki (B,M) = 0

for all i > 0 means that B ⊗k P∗ → B ⊗k M is a

B-projective resolution of B ⊗k M . But then

Ti(B ⊗k M) = Hi(k ⊗B B ⊗k P∗) = 0

for i > 0. It follows that

Ti(B ⊗k T0(N)) = 0
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for i > 0.

Form the exact sequence of graded B-modules

0→ K → B(−p)⊗kT0(N)p
φp−→ Fp(N)/Fp−1(N)→ 0.

We show that K = 0 by showing that T0(K) = 0.

There is an isomorphism of graded k-modules

T0(N) ∼=
⊕
p≥0

T0(N)p(−p),

so that there are isomorphisms

Ti(B ⊗k T0(N)) ∼=
⊕
p≥0

Ti(B ⊗k T0(N)p(−p))

∼=
⊕
p≥0

Ti(B(−p)⊗k T0(N)p).

It follows that

Ti(B(−p)⊗k T0(N)p) = 0

for all i > 0 and for all p ≥ 0.

The induced map

T0(B(−p)⊗k T0(N)p)
k⊗φp−−−→ T0(Fp(N)/Fp−1(N))

is isomorphic to a shift of the isomorphism (1),

and is therefore an isomorphism. It follows that
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the boundary map

T1(Fp(N)/Fp−1(N))
∂−→ T0(K)

is an isomorphism, so it suffices to show that

T1(Fp(N)/Fp−1(N)) = 0

In the exact sequence

T1(Fp(N))→ T1(Fp(N)/Fp−1(N))
∂−→ T0(Fp−1N)

i∗−→ T0(Fp(N)),

the map i∗ is always monic on account of the iso-

morphisms (2), and so it suffices to show that

T1(Fp(N)) = 0 for all p.

Fix a number s ≥ 0. We show by descending

induction on p that

T1(Fp(N))n = 0 (3)

for n ≤ s.

The condition (3) holds for large p. In effect,

(N/Fp(N))n = 0

for n ≤ p, so that

Ti(N/Fp(N))n = TorBi (k,N/Fp(N)) = 0

for n ≤ p, by suitable choice of projective resolu-

tion for N/Fp(N). It follows that the map

T1(Fp(N))n → T1(N)n
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is an isomorphism for n ≤ p. We assume that

T1(N) = 0, so it follows that

T1(Fp(N))n = 0

if n ≤ p. Thus, (3) holds for p ≥ s.

To complete the induction, observe that the con-

dition (3) implies that T0(K)n = 0 for n ≤ s, so

that Kn = 0 for n ≤ s. But then T2(K)n = 0 for

n ≤ s, so that

0 = T2(B(−p)⊗kT0(N)p) ∼= T2(Fp(N)/Fp−1(N))n

for n ≤ s. It follows that

T1(Fp−1(N))n = 0

for n ≤ s.

Remark 22.2. Suppose given a graded ring ho-

momorphism

f : A→ B,

where A and B are Noetherian. Suppose fur-

ther that B has finite Tor dimension as an A-

module — this means that there is some integer

n such that TorAi (B,N) = 0 for all i > n, and

for all A-modules N . Let Nd ⊂ Mg(A) be the

full subcategory of those modules N for which

TorAi (B,N) = 0 for i > d. Then the inclusions
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Nd ⊂ Nd+1 satisfy the hypotheses of the Reso-

lution Theorem (Theorem 14.1, Lecture 006), so

that the inclusion

N0 ⊂Mg(A)

induces a stable equivalence

K(N0) ' K(Mg(A)).

The functor M 7→ B ⊗A M is exact for all M ∈
N0, and hence induces a map

K(N0)→ K(Mg(B)).

It follows that there is a map f∗ : K(Mg(A)) →
K(Mg(B)) in the stable category, which is defined

by the diagram

K(N0) //

'
��

K(Mg(B))

K(Mg(A))
f∗

66

Suppose that a graded ring B is Noetherian, and

let Mg(B) be the exact category of finitely gen-

erated graded B-modules. Suppose that B is flat

as a k-module, where k = B0. Then the functor

M 7→ B ⊗k N is exact on M(k), and induces a

map

(B⊗)∗ : K ′(k)→ K(Mg(B))
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of associated K-theory spectra.

The shift operator N 7→ N(−1) defines an action

of the ring Z[t] on the group Kn(Mg(B)).

Theorem 22.3. Suppose that B is a graded

Noetherian ring such that B is flat as a k-module,

where k = B0. Suppose that k has finite Tor di-

mension as a B-module. Then the map

(B⊗)∗ : K ′n(k)→ Kn(Mg(B))

induces an isomorphism of Z[t]-modules

Z[t]⊗Z K
′
n(k) ∼= Kn(Mg(B)).

Proof. Let Nn ⊂Mg(B) be the full exact subcat-

egory of objects N such that Ti(N) = 0 for i > n.

Then, as in Remark 22.2, the inclusion

N0 ⊂Mg(B)

induces a stable equivalence

K(N0) ' K(Mg(B)).

Write N
(k)
0 for the full subcategory of N0 which

consists of those graded modules N such that

Fk(N) = N

(meaning that N has a set of generators in degrees

≤ k). This category is closed under taking kernels
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and quotients, and is therefore exact. In effect, if

0→ K →M → N → 0

is an exact sequence of N0 then the sequence

0→ T0(K)→ T0(M)→ T0(N)→ 0

is exact, and T0(K)r = T0(N)r = 0 for r > k if

T0(M)r = 0 for r > k.

There are exact functors

M(k)×(n+1) b−→ N
(n)
0

c−→M(k)×(n+1)

where b is defined by

(F0, . . . , Fn) 7→
n⊕
j=0

B(−j)⊗k Fj

and c is defined by

N 7→ (T0(N)0, . . . T0(N)n).

The ring B is a flat (graded) k-module, so that

TorBi (k,B(−j)⊗k Fj) = 0

for i > 0. To see this, one tensors a projective res-

olution P∗ → Fj, first by the free module B(−j)
to obtain a shifted projective resolution

B(−j)⊗k P∗ → B(−j)⊗k Fj
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Then tensoring with k gives the shifted resolution

P∗(−j)→ Fj(−j). In particular, the definition of

the functor b makes sense.

One also sees that

T0(B(−j)⊗k Fj) ∼= k(−j)⊗k Fj ∼= Fj(−j),
so that c · b ∼= 1. On the other hand, as maps of

K-theory spectra

b∗c∗ =

n∑
j=0

(B(−j)⊗k T0( )j)∗

=

n∑
j=0

Fj/Fj−1( )∗

= 1

by Lemma 22.1 and additivity (Corollary 7.1 of

Lecture 003).

Taking a filtered colimit of these equivalences over

all subcategories N
(n)
0 of N0 finishes the proof.

23 The homotopy property

The following result is variously called the “Fun-

damental Theorem of Algebraic K-theory”, or the

“homotopy property”. It is presented here in a

simplified form.
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Theorem 23.1. Suppose that A is a Noethe-

rian ring. Then tensoring with A[t] induces a

stable equivalence

K ′(A) ' K ′(A[t]).

Note that A[t] is a flat A-module, so the statement

of the Theorem makes sense.

Proof. Filter A[t] by degree, let

B = (Fp(A[t])/Fp−1(A[t]))p≥0

be the associated graded ring, and let A′ be the

graded ring

A′ = (Fp(A[t]))p≥0.

Then B and A′ are Noetherian, by Corollary 21.4

and Lemma 21.5, respectively.

Let z = 1 ∈ F1(A[t]), identified with an element

of homogeneous degree 1 in A′. There is an exact

functor

L : Mg(A
′)→M(A[t])

of abelian categories, which takes a graded module

M = (Mp) to the colimit of the system

M0
×z−→M1

×z−→M2
×z−→ . . .

There are various details to check, but this functor

is localizing with kernel consisting of those graded
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A′-modules which are annihilated by some power

of z. There is a graded ring isomorphism

A′/zA′ ∼= B,

so by dévissage (Theorem 15.1) and the localiza-

tion theorem (Theorem 16.1), there is a fibre ho-

motopy sequence

K(Mg(B))
π∗−→ K(Mg(A

′))
L−→ K ′(A[t])

of K-theory spectra, where π∗ is transfer along the

surjective graded ring homomorphism π : A′ →
B.

By Theorem 22.3 (for the graded rings A′ and B),

there is a commutative diagram

Z[t]⊗K ′i(A)
∼= //

��

Ki(Mg(B))

π∗
��

Z[t]⊗K ′i(A) ∼=
//Ki(Mg(A

′)

The isomorphism

Z[t]⊗K ′i(A)
∼=−→ Ki(Mg(B))

restricts to the map

B(−n)⊗A ( )∗ : K ′i(A)→ Ki(Mg(B))

on the summand corresponding to tn. There is an

exact sequence of exact functors

0→ A′(−n−1)⊗A( )→ A′(−n)⊗A( )→ B(−n)⊗A( )→ 0
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Thus,

π∗(B(−n)⊗A( ))∗ = A′(−n)⊗A( )∗−A′(−n−1)⊗A( )∗

by additivity, so that the dotted arrow is multipli-

cation by 1− t.
It follows that the homomorphism π∗ is injective,

and the short split exact sequence

0→ Z[t]⊗K ′i(A)
1−t−−→ Z[t]⊗K ′i(A)

ε−→ K ′i(A)→ 0

(the map ε is defined by t 7→ 1) defines an isomor-

phism

K ′i(A) ∼= K ′i(A[t]). (4)

The evaluation map ε is split by the map

A′ ⊗ ( )∗ : K ′i(A)→ Ki(Mg(A
′)),

and so the isomorphism (4) coincides with the the

map K ′i(A) → K ′i(A[t]) which is defined by ten-

soring with the A-module A[t].

Corollary 23.2. Suppose that A is a regular

Noetherian ring. Then the ring homomorphism

A→ A[t] induces a stable equivalence

K(A)
'−→ K(A[t]).

Proof. The polynomial ringA[t] is a regular Noethe-

rian ring ifA is. Use the resolution theorem (Corol-

lary 14.4) with Theorem 23.1.
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Corollary 23.3. Suppose that A is a Noethe-

rian ring. Then there is a short split exact se-

quence

0→ K ′i(A)→ K ′i(A[t, t−1])→ K ′i−1(A)→ 0

for each i ≥ 1.

Proof. The localization sequence for the localizing

functor

M(A[t])→M(A[t, t−1])

has the form

· · · → K ′i(A)→ K ′i(A[t])→ K ′i(A[t, t−1])→ . . .

The A-algebra homomorphism

ε : A[t, t−1]→ A

defined by t 7→ 1 makes A an A[t, t−1]-module of

Tor dimension 1, and so there is a map

ε∗ : K ′(A[t, t−1])→ K ′(A)

in the stable category. The map

M(A)→M(A[t, t−1])

defined by tensoring with the flatA-moduleA[t, t−1]

takes values in the subcategory N0 of M(A[t, t−1)

for which the module ε : A[t, t−1]→ A is flat, and

the composite

M(A)→ N0 →M(A)
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is isomorphic to the identity on M(A). It follows

that the diagram

K ′i(A[t]) //K ′i(A[t, t−1])
ε∗

��

K ′i(A)

∼=
OO

1
//K ′i(A)

commutes, giving the required split exact sequence.

Corollary 23.4. Suppose that A is a regular

Noetherian ring. Then there is a short split

exact sequence

0→ Ki(A)→ Ki(A[t, t−1])→ Ki−1(A)→ 0

for each i ≥ 1.
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