Lecture 009 (April 12, 2011)

21 Some algebra: filtered and graded rings

A ring A is said to be filtered it the underlying
abelian group has a filtration

0= F_l(A) C Fo(A) C---Ui>1 E(A) = A,
such that
F,(A)-F,(A) C F)1,(A)

under the ring multiplication, and 1 € Fy(A). The
canonical example is a polynomial ring R[t], fil-
tered by degree.

The associated graded ring gr(A) = (g7,(A))p>0
of a filtered ring A has

gr(A)y = Fp(A)/F)-1(A),

with the obvious multiplication.

An A-module M is said to be filtered if M has a
filtration

0= F_l(M) C F()(M) C Ui E(M) = M,
such that
FP(A> ' FC](M> C Fp+q(M)
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The associated graded module
gr(M) = (Fy(M)/F,1(M))>0
is a (positively) graded module over gr(A).

Example: Any ideal in a polynomial ring R[t] can
be filtered by degree.
A given module M has multiple filtered A-module

structures: given a filtration F,M and n € Z there
is a filtered A-module structure F\"(M) on M

with
(M) — Foin(M) ifp+n>0,and
0 if p+n<0.

Write M for the module M together with the
filtration F*(m(M ), and observe that there is a nat-
ural isomorphism

gr(M™) 2 gr(M)(n)

where gr(M)(n) is the shifted (or twisted) graded
gr(A)-module in the usual sense (at least if n < 0
— otherwise it is truncated in positive degrees).

Lemma 21.1. Suppose that M is a filtered A-
module such that gr(M) is finitely generated.
Then M 1is finitely generated.



Proof. Pick a set of homogeneous generators
z; € F, M/F,. 1M, 1<i<m,

for gr(M), and choose elements z; € F,, M such
that z; — x; under the canonical surjection

F,M — F, M/F, M.
There is a homomorphism of filtered A-modules
¢ FUA 5 M

such that ¢;(1) = z;. Adding up these homomor-
phisms defines a map

> i é FCmA 5 M
1=1

which induces a surjective homomorphism

B or(A)(=n) = gr(nr)

of graded modules which picks up the generators
x;. But then the filtered module map > ¢; is sur-
jective by an induction on filtration degree, and so
the underlying A-module homomorphism

&L A—- M

Is surjective. []



Corollary 21.2. Suppose that A is a filtered
ring such that gr(A) is Noetherian. Then A is
Noetherian.

Proof. Every ideal I of A has a filtration
F,I =INEA.

Then gr(I) is an ideal of gr(A) and is therefore
finitely generated, so that [ is finitely generated
by Lemma 21.1. []

Every graded ring B = (B,,) has an associated
(ungraded) ring @ B,,, with multiplication defined
by
(@) = (3 i)
1+7=n

Any graded module M = (M,) over the graded
ring B determines a module @M, over the ring
®B,, in the obvious way. In particular, every
graded ideal I of B determines an ideal I, of
the ring & B,,.

Lemma 21.3. Suppose that M s a graded B-
module, and suppose that ®M,, is a finitely gen-
erated D B,-module. Then M 1is a finitely gen-
erated B-module



Proof. The module @M, is generated over B,
by a finite collection of homogeneous elements

Llyeooy Ly

with z; € M,,. There is a graded B-module ho-
momorphism

with ¢;(1) = x;. The sum of these maps

1=1

is a surjective homomorphism of graded modules
because the induced map ®¢ is surjective. ]

Corollary 21.4. Suppose that B is a graded
ring. Then the ring ®B, is Noetherian if and
only if B is Noetherian.

Proof. The ring & B,, has a filtration with
Fy(®By) = Go<n<pBn,

and the associated graded ring for this filtration
is isomorphic to B. Corollary 21.2 then says that
@ B,, is Noetherian if B is Noetherian.

Suppose that the ring &B,, is Noetherian. If I is
a graded ideal in B, then the ideal &1, of B, is
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finitely generated, so that I is a finitely generated
B-module, by Lemma 21.3. ]

Lemma 21.5. Suppose that A is a filtered ring
such that gr(A) is Noetherian. Then the graded
ring (F,A) is Noetherian.

Proof. The ring @[, A is isomorphic to the subring

A" C Alz] consisting of those polynomials
f(z)=ap+arz+ -+ a,2"

with a; € F;(A). We show that A’ is Noetherian,

and then invoke Corollary 21.4.

Filter A’ by requiring F},A’ to consist of those poly-
nomials f(z) with all coefficients in F,A. The as-
sociated graded ring of this filtration has

F,A'JF, A" = @gr(A)pz”.

nzp
There is an isomorphism of graded rings
P oran — Doria)

n=>0 n>p

which is defined at level p by multiplication by 2?.
There is an isomorphism of rings

B(ED gr(A),2") = (@gr(A),)[

n>0



and the ring (®gr(A),)[z] is Noetherian by Corol-
lary 21.4 (and the Hilbert basis theorem). It fol-
lows, again by Corollary 21.4, that the graded ring
(F,A'/F,_1A’) is Noetherian, so that A" is Noethe-
rian by Corollary 21.2. ]

22 K-theory of graded rings

Suppose that B = (B,,) is a graded ring, and let
k = By.

For a graded B-module N = (IV,,), define
T(N) = Tor(k, ),

as a graded B-module, where k is a graded B-
module via the augmentation. Then in particular
there are natural isomorphisms

To(N), = N,./(BiN,—1 + -+ -+ B.Ny).

In other words, Ty/N is N mod decomposables in
all degrees.

Let F,(IN) be the graded submodule of N which
is generated by N, with n < p. Then there is an
isomorphism

TO(N>p = (Fp(N)/Fp—l(N))p (1)



for each p > 0. There are also isomorphisms

To(E,N) = {

0 if n > p, and

To(N), ifn <p. 2

The natural isomorphism (1) induces a natural sur-
jective homomorphism

¢p : B(—p) @1 To(N)p — F(N)/Fp-1(N)
of graded B-modules.

Lemma 22.1. Suppose that N s a graded B-
module such that Ty(N) =0 and

Tor¥(B, Ty(N)) = 0

for all v > 0. Then the map ¢, s an tsomor-
phism.

Proof. Suppose that P, — M is a projective res-
olution of a graded k-module M. Then

Tor¥(B, M) =0

for all 2 > 0 means that B ®; P, — B ®. M 1is a
B-projective resolution of B ®; M. But then

for © > 0. It follows that
T:(B®,To(N)) =0
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for 2 > 0.

Form the exact sequence of graded B-modules

0= K — B(—p)@yTo(N), 2 F(N)/E,_1(N) = 0.

We show that K = 0 by showing that Ty(K) = 0.

There is an isomorphism of graded k-modules
N)= P Ty(N
p=0
so that there are isomorphisms

T:(B @i Th(N)) = @Tz(B Ok TO(N)p(_p))

p>0

N@T p) @i To(N),).

p>0

It follows that
T(B(—p) ® To(N),) = 0
for all 2+ > 0 and for all p > 0.

The induced map

To(B(—p) @k To(N),) 2 Ty(Fy(N)/F,1(N))

is isomorphic to a shift of the isomorphism (1),
and is therefore an isomorphism. It follows that
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the boundary map
0
TE,N)/ By (N)) S Ty(K)
is an isomorphism, so it suffices to show that
TL(E,(N)/Fpa(N)) = 0
In the exact sequence
0 i
T(F(N)) = TW(Fp(N)/Fpa(N)) = To(Fp-1N) = To(FL(N)),

the map 1, is always monic on account of the iso-
morphisms (2), and so it suffices to show that

Ti(F,(N)) =0 for all p.

Fix a number s > 0. We show by descending
induction on p that

Ty (Fy(N))n =0 (3)
for n <'s.

The condition (3) holds for large p. In effect,
(N/Fp(N))n =0
for n < p, so that
Ti(N/Fy(N)) = Tory' (k, N/F,(N)) = 0

for n < p, by suitable choice of projective resolu-
tion for N/F,(N). It follows that the map

Ti(Fp(N))n — Ti(N)y,
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is an isomorphism for n < p. We assume that
Ti(N) =0, so it follows that

Tl(Fp(N))n =0
if n < p. Thus, (3) holds for p > s.

To complete the induction, observe that the con-
dition (3) implies that Ty(K), = 0 for n < s, so
that K,, = 0 for n < s. But then T5(K),, = 0 for
n < s, so that

0 =To(B(=p)@;To(N),) = To(F(N)/ Fpr(N))n
for n < s. It follows that

T3(Fy 1 (N)) = 0
forn < s. ]

Remark 22.2. Suppose given a graded ring ho-
momorphism

f:A— B,

where A and B are Noetherian. Suppose fur-
ther that B has finite Tor dimension as an A-
module — this means that there is some integer
n such that Tor (B, N) = 0 for all i > n, and
for all A-modules N. Let N; C M,(A) be the
full subcategory of those modules N for which
Tor(B,N) = 0 for i > d. Then the inclusions
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N; C Ny satisfy the hypotheses of the Reso-
lution Theorem (Theorem 14.1, Lecture 006), so
that the inclusion

N, C Mg(A)
induces a stable equivalence
K(No) ~ K(Mgy(A)).
The functor M — B ® 4 M 1s exact for all M &
Ny, and hence induces a map
K(No) = K(My(B)).

[t follows that there is a map f. : K(M,(A4)) —
K(M,(B)) in the stable category, which is defined
by the diagram

K<TO>%@<M9<B»
K(M,(A))

Suppose that a graded ring B is Noetherian, and
let M,(B) be the exact category of finitely gen-
erated graded B-modules. Suppose that B is flat
as a k-module, where £ = By. Then the functor

M — B ® N is exact on M(k)
map

and induces a

)

(B®). : K'(k) = K(M,(B))
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of associated K-theory spectra.
The shift operator N — N(—1) defines an action
of the ring Z[t] on the group K, (M,(B)).

Theorem 22.3. Suppose that B s a graded
Noetherian ring such that B s flat as a k-module,
where k = By. Suppose that k has finite Tor di-
mension as a B-module. Then the map

(B®). : K, (k) = Ky(My(B))
induces an isomorphism of Z[t|-modules
Z[t] @z K, (k) = Ky (My(B)).

Proof. Let N,, C M(B) be the full exact subcat-
egory of objects N such that T;(N) = 0 for i > n.
Then, as in Remark 22.2, the inclusion

N, C Mg(B)
induces a stable equivalence
K(Ny) ~ K(My(B)).

Write Nék) for the full subcategory of Ny which
consists of those graded modules N such that

F.(N)=N

(meaning that IV has a set of generators in degrees
< k). This category is closed under taking kernels
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and quotients, and is therefore exact. In effect, if
0=+ K —=>M-—=>N-—=0
is an exact sequence of Ny then the sequence
0— Ty(K)— To(M) = To(N) — 0

is exact, and To(K), = To(N), = 0 for r > k if
To(M), =0 for r > k.

There are exact functors
M (k)< 2 NI S M (k)<
where b is defined by

j=0

and c is defined by
N — (To(N)o, - .. To(N),).

The ring B is a flat (graded) k-module, so that
Tor? (k, B(—7) @ F;) =0

for ¢ > 0. To see this, one tensors a projective res-
olution P, — F}, first by the free module B(—j)
to obtain a shifted projective resolution

B(—j) ®y P = B(—j) @4 Fj
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Then tensoring with k gives the shifted resolution
P.(—7) — Fj(—7). In particular, the definition of
the functor b makes sense.

One also sees that

To(B(—j) @k Fj) = k(—=j) @k Fj = Fj(—]),
so that ¢- b = 1. On the other hand, as maps of
K-theory spectra

n

byCy = Z(B(—J) R To( );)+

= ZFj/Fj—l( )«

=1
by Lemma 22.1 and additivity (Corollary 7.1 of
Lecture 003).

Taking a filtered colimit of these equivalences over
all subcategories Nén) of Ny finishes the proof. [J

23 The homotopy property

The following result is variously called the “Fun-
damental Theorem of Algebraic K-theory”, or the
“homotopy property”. It is presented here in a
simplified form.
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Theorem 23.1. Suppose that A is a Noethe-
rian ring. Then tensoring with A[t] induces a
stable equivalence

K'(A) ~ K'(A[t]).
Note that A[t] is a flat A-module, so the statement
of the Theorem makes sense.
Proof. Filter A[t] by degree, let
B = (Fy(Alt])/ Fyp-1(Alt]))p=0

be the associated graded ring, and let A" be the
graded ring

A" = (F(Alt])p=0-
Then B and A’ are Noetherian, by Corollary 21.4
and Lemma 21.5, respectively.

Let z = 1 € Fi(A[t]), identified with an element
of homogeneous degree 1 in A’. There is an exact
functor

L:M,(A) — M(At])
of abelian categories, which takes a graded module
M = (M,) to the colimit of the system

My =5 M, =5 My, =5 ..

There are various details to check, but this functor
is localizing with kernel consisting of those graded
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A’-modules which are annihilated by some power
of z. There is a graded ring isomorphism

A'JzA"= B,
so by dévissage (Theorem 15.1) and the localiza-
tion theorem (Theorem 16.1), there is a fibre ho-
motopy sequence
Ty L
K(M,y(B)) = K(My(A")) = K'(A[t])

of K-theory spectra, where m, is transfer along the
surjective graded ring homomorphism 7 : A" —

B.

By Theorem 22.3 (for the graded rings A" and B),
there is a commutative diagram

Z[t] ® K{(A)—Ki(M,(B))

lw*

ZIt) & KJ(A) <~ K, (M,(4)
The isomorphism
Z[t]) ® Ki(A) = Ki(M,(B))
restricts to the map
B(—n) ®a ()« : Ki(A) = Ki(My(B))

on the summand corresponding to t". There is an
exact sequence of exact functors

0— A(—n—1)®4() = A(—n)®@4() = B(—n)®@4() — 0
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Thus,

T(B(=n)®@a( ) = A'(—=n)@a( )= A'(=n—1)®4( )
by additivity, so that the dotted arrow is multipli-
cation by 1 — ¢.

It follows that the homomorphism 7, is injective,
and the short split exact sequence

0 — Z[]RK/(A) =5 ZRK!(A) < K!/(A) = 0
(the map € is defined by t — 1) defines an isomor-
phism
Ki(A) = Kj(Alt]). (4)
The evaluation map e is split by the map
A @ ()1 Ki(A) = Ki(My(A)),
and so the isomorphism (4) coincides with the the
map K/(A) — KI(A[t]) which is defined by ten-
soring with the A-module Alt]. (]

Corollary 23.2. Suppose that A s a reqular
Noetherian ring. Then the ring homomorphism
A — Alt] induces a stable equivalence

K(A) S K(A]).

Proof. The polynomial ring A[t] is a regular Noethe-
rian ring if A is. Use the resolution theorem (Corol-
lary 14.4) with Theorem 23.1. (]
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Corollary 23.3. Suppose that A is a Noethe-
rian ring. Then there is a short split exact se-
quence

0— K/(A) = K[(A[t,t™!]) = K|_(A) = 0
for each 1 > 1.

Proof. The localization sequence for the localizing
functor

M(A[t]) — M(A[t,t71])
has the form
o KI(A) = KJ(Alt]) — K/(A[t,t7']) — ...
The A-algebra homomorphism
e Alt,t7'] — A

defined by ¢ — 1 makes A an A[t, ¢ ]-module of
Tor dimension 1, and so there is a map

e, K'(At,t71]) — K'(A)
in the stable category. The map

M(A) — M(A[t, t1])

defined by tensoring with the flat A-module A[t, ¢!
takes values in the subcategory Ng of M(A[t, 1)
for which the module € : A[t,t71] — A is flat, and
the composite

M(A) - Ny — M(A)
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is isomorphic to the identity on M(A). It follows
that the diagram
Ki(Alt]) — K(A[t, t71])

QT le*

KA K1 A)

1
commutes, giving the required split exact sequence.
[l

Corollary 23.4. Suppose that A s a reqular
Noetherian ring. Then there is a short split
exact sequence

0 — K;j(A) = Kj(Alt,t 7)) = K;_1(A) =0
for each v > 1.
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