
Lecture 010 (October 27, 2014)

24 Rigidity

We will prove Suslin’s first rigidity theorem [7]:

Theorem 24.1. Suppose that i : k ⊂ L is an

inclusion of algebraically closed fields, and that

n is a number such that (n, char(k)) = 1. Then

the induced map

i∗ : K∗(k,Z/n)→ K∗(L,Z/n)

is an isomorphism.

This is now a baby rigidity theorem by compari-

son with more recent results, but the line of argu-

ment which Suslin introduced to prove Theorem

24.1 essentially survives in all subsequent proofs,

albeit in settings of progressively increasing inter-

est. The proof of Theorem 24.1 uses all of the

basic results and calculational tools of algebraicK-

theory which have been introduced in this course.

How would you prove such a thing?

1) First of all, it suffices, by a Zorn’s Lemma argu-

ment, to assume that L has transcendance degree

one over k.
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The field L is a filtered colimit

L ∼= lim−→
A⊂L

A

of its finitely generated k-subalgebras A. We can

assume that each such A is integrally closed in

its field of fractions, and therefore defines an irre-

ducible smooth affine curve Sp(A) over k.

Every point x of Sp(A) defines a k-rational point

x : Sp(k) → Sp(A), which corresponds to a k-

algebra homomorphism x : A → k which splits

the inclusion k ⊂ A.

It follows that there is a stable equivalence

K(L)/n ' lim−→
A⊂L

K(A)/n

and splitting

K(k)/n→ K(A)/n
x∗−→ K(k)/n

corresponding to each rational point x of each affine

curve Sp(A). It also follows that the induced ho-

momorphisms

i∗ : K∗(k,Z/n)→ K∗(L,Z/n)

in stable homotopy groups are monomorphisms of

groups.
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2) Here is the central idea of the proof: we show

that any two rational points x, y : Sp(k)→ Sp(A)

of a smooth affine curve A induce the same maps

x∗ = y∗ : K∗(A,Z/n)→ K∗(k,Z/n).

Why is this enough? Suppose that x : A→ k is a

point of A. Then x and the inclusion j : A ⊂ L

together induce a diagram of ring homomorphisms

k
i
��

Axoo j //

��

L
=
��

L A⊗k Lx∗
oo

j∗
//L

Then Sp(A⊗K L) is smooth over L, and

x∗ = j∗ : K∗(A⊗k L,Z/n)→ K∗(L,Z/n)

if we can prove the claim. If so, and α ∈ K∗(A,Z/n),

then

j∗(α) = i∗(x∗(α)),

in K∗(L,Z/n), and so the map

i∗ : K∗(k,Z/n)→ K∗(L,Z/n)

is surjective.

3) The next step is to make the problem birational.

Suppose that x ∈ Y (k) is a rational point for a

smooth curve Y/k. Then the local ringOx = Ox,Y
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is a discrete valuation ring with quotient field k(Y )

(function field of Y ) and residue map p : Ox → k.

Let πx be a choice of uniformizing parameter (aka.

generator for the maximal ideal) for Ox. Then it

is a consequence of the results of Section 18 and 19

that the K-theory (symmetric) spectrum K(Ox)
acts on the localization sequence

K ′(k)/n
p∗−→ K ′(Ox)/n

j∗−→ K ′(k(Y ))/n

in such a way that there is a commutative diagram

of pairings

Kp(Ox)⊗K ′q(k,Z/n)
∪·(p∗⊗1)

//

1⊗p∗
��

K ′p+q(k,Z/n)

p∗
��

Kp(Ox)⊗K ′q(Ox,Z/n) ∪ //

1⊗j∗
��

K ′p+q(Ox,Z/n)

j∗
��

Kp(Ox)⊗K ′q(k(Y ),Z/n)∪·(j∗⊗1)
//K ′p+q(k(Y ),Z/n)

Furthermore, for α ∈ Kp(Ox) and β ∈ K ′q(k(Y ),Z/n),

we have the relation

∂x(j
∗(α) ∪ β) = p∗(α) ∪ ∂x(β)

in K ′p+q−1(k,Z/n).
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Now consider the composition

K1(Ox)⊗K ′q(k(Y ),Z/n)
j∗⊗1//K1(k(Y ))⊗K ′q(k(Y ),Z/n)

∪
��

K ′q+1(k(Y ),Z/n)

∂x
��

K ′q(k,Z/n)

This composite is 0 since

∂x(j
∗(α) ∪ β) = p∗(α) ∪ ∂x(β)

and p∗(α) ∈ K1(k), which is n-divisible. The se-

quence

K1(Ox)
j∗−→ K1(k(Y ))

vx−→ Z→ 0

is exact, so there is a uniquely determined map

sx : K ′q(k(Y ),Z/n)→ K ′q(k,Z/n),

called the specialization at x, such that the dia-

gram

K1(k(Y ))⊗K ′q(k(Y ),Z/n)
vx⊗1//

∪
��

Z⊗K ′q(k(Y ),Z/n)

sx
��

K ′q+1(k(Y ),Z/n)
∂x

//K ′q(k,Z/n)

commutes. In equational terms,

sx(α) = ∂x(πx ⊗ α)
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for each α ∈ K ′q(k(Y ),Z/n).

The composite

K1(k(Y ))⊗K ′q(Ox,Z/n)
1⊗j∗//K1(k(Y ))⊗K ′q(k(Y ),Z/n)

∪
��

K ′q+1(k(Y ),Z/n)

is isomorphic to the composite

K ′1(k(Y ))⊗Kq(Ox,Z/n)
1⊗j∗//K ′1(k(Y ))⊗Kq(k(Y ),Z/n)

∪
��

K ′q+1(k(Y ),Z/n)

which arises from the pairing of fibre sequences

K ′(k) ∧K(Ox)/n
∪·(1∧p∗)

//

p∗∧1
��

K ′(k)/n
p∗
��

K ′(Ox) ∧K(Ox)/n ∪ //

j∗∧1
��

K ′(Ox)/n
j∗
��

K ′(k(Y )) ∧K(Ox)/n ∪·(1∧j∗)
//K ′(k(Y ))/n

and it follows (by twisting the action, and thus

introducing signs) that

sx(j
∗(γ)) = ∂x(πx ∪ j∗(γ)) = (−1)qp∗(γ)

for γ ∈ K ′q(Ox,Z/n).

Here are some consequences:
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a) The diagram

K ′q(Y,Z/n)

j∗
��

(−1)qx∗

))

K ′q(k(Y ),Z/n) sx
//K ′q(k,Z/n)

commutes for all k-rational points x ∈ Y .

b) The map x∗ is a split surjection, so that sx is

surjective, as is the boundary map

∂x : K ′q+1(k(Y ),Z/n)→ K ′q(k,Z/n).

In particular, the transfer map

K ′q(k,Z/n)
p∗−→ K ′q(Ox,Z/n)

is the 0 map, and the localization homomorphism

K ′q(Ox,Z/n)
j∗−→ K ′q(k(Y ),Z/n)

is injective.

It therefore suffices to prove the following:

Lemma 24.2. Suppose that Y is a smooth curve

over an algebraically closed field k, and suppose

that (n, char(k)) = 1. Then the specialization

maps

sx : K ′q(k(Y ),Z/n)→ K ′q(k,Z/n)

associated to the closed points x ∈ Y all coin-

cide.
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Some remarks are in order:

a) It suffices to prove Lemma 24.2 for smooth com-

plete curves Y , because any other smooth curve

over k has a smooth compactification.

b) The smooth complete curves Y over k are in

one to one correspondence with the field exten-

sions L/k of transcendance degree 1. Given Y the

corresponding field is the function field k(Y ), and

given L one can make a smooth complete curve

Y (L) whose closed points are all the discrete val-

uation rings O with function field L, and whose

closed subsets are the finite subsets. Finally

Γ(U,OY (L)) = ∩R∈UR

defines the sheaf of rings OY (L) for Y (L).

Example: The projective line P1 over k is the

curve associated to the field k(t). The DVRs in

k(t) are of the form k[t](t−a) or k[ 1
t−a]( 1

t−a)
. Define

the points 0 and∞ by 0 = k[t](t) and∞ = k[1t ](1t )
,

respectively.

We need another calculational tool:

Suppose that φ : Y → X is a finite (surjective),

flat morphism of complete smooth curves over k.

Localization commutes with transfer, so that there
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is a comparison of long exact sequences⊕
y∈Y K

′
q(k,Z/n) //

φ1
��

K ′q(Y,Z/n)
j∗ //

φ∗
��

K ′q(k(Y ),Z/n) ∂ //

φ∗
��

. . .

⊕
x∈X K

′
q(k,Z/n) //K ′q(X,Z/n)

j∗
//K ′q(k(X),Z/n)

∂
// . . .

The fibre

Sp(k)×X Y
over x : Sp(k)→ X is finite over Sp(k), and there-

fore has reduced subscheme tφ−1(x) Sp(k). It fol-

lows that the transfer map

φ∗ : K ′q(Sp(k)×X Y,Z/n)→ K ′q(k,Z/n)

is isomorphic to the fold map

∇ :
⊕
φ−1(x)

K ′q(k,Z/n)→ K ′q(k,Z/n).

This means that there is a commutative diagram

K ′q(k,Z/n)
iny //

inφ(y) ))

⊕
y∈Y K

′
q(k,Z/n)

φ1
��⊕

x∈X K
′
q(k,Z/n)

which defines φ1.

Suppose that Y is a smooth complete curve over

k, as in the statement of Lemma 24.2. The degree

9



homomorphism

deg : Div(Y ) =
⊕
y∈Y

Z→ Z

on the group of divisors of Y is just the standard

fold map ∇ on the direct sum. Write Div0(Y ) for

the kernel of the degree homomorphism. Observe

that if x, y are rational points (aka. divisors) of Y

then the divisor x− y is an element of Div0(Y ).

If φ : Y → X is a finite flat map of smooth com-

plete curves over k then the inverse image functor

φ∗ is exact on coherent sheaves, and there is an

induced comparison of localization sequences

k(X)∗
(vx)//

φ∗
��

⊕
x∈X Z
φ2
��

//K0(X) //

��

K0(k(X))

��

k(Y )∗
(vy)
//
⊕

y∈Y Z //K0(Y ) //K0(k(Y ))

(1)

One isolates φ2(x) in the component corresponding

to y such that φ(y) = x by localizing the sequences

at x and y, and then one sees that

φ2(x) = vyφ
∗(πx) = ny

where φ∗(πx) = π
ny
y , and so ny is the ramification
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index of x at y. It follows that

φ2(x) =
∑
φ(y)=x

nyy

for points x ∈ X in Div(Y ).

There is a commutative diagram

k(X)∗
(vx)//

φ∗
��

⊕
x∈X Z
φ2
��

deg //Z
d
��

k(Y )∗
(vy)
//
⊕

y∈Y Z
deg

//Z

where d is multiplication by the degree

d = [k(Y ); k(X)]

of the extension — it is the common dimension

of all fibres of the map φ, and therefore coincides

with the dimension of the fibre Sp(k) ×X Y over

x, which is
∑

φ(y)=x ny, as well as the dimension of

the generic fibre, which is d.

It is a standard fact that the valuation map

v : k(Y )∗ → Div(Y )

takes values in Div0(Y ): one sees this for α ∈
k(Y )∗ by choosing a homomorphism k(t)→ k(Y )

with t 7→ α, and then using the instance of dia-

gram (1) for the corresponding morphism φ : Y →
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P1. The punch line is that

deg(t) = 0−∞ ∈ Div(P1).

The Jacobian J(Y ) is the cokernel of the map

v : k(Y )∗ → Div0(Y )

The group J(Y ) is the group of points of an abelian

variety over k, and is uniquely n-divisible.

For the proof of Lemma 24.2, the specialization

maps

sy : K ′q(k(Y ),Z/n)→ K ′q(k,Z/n)

together determine a homomorphism

s : Div(Y )⊗K ′q(k(Y ),Z/n)→ K ′q(k,Z/n),

and restrict to a homomorphism

s : Div0(Y )⊗K ′q(k(Y ),Z/n)→ K ′q(k,Z/n),

in the obvious way. Lemma 24.2 will be proved if

we can show that the composite

k(Y )∗ ⊗K ′q(k(Y ),Z/n) v⊗1//

++

Div0(Y )⊗K ′q(k(Y ),Z/n)

s
��

K ′q(k,Z/n)

is 0, for then s factors through the group

J(Y )⊗K ′q(k(Y ),Z/n) ∼= 0,
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and x− y ∈ Div0(Y ).

Pick α ∈ k(Y )∗ and let φ : Y → P1 be the finite

flat morphism of smooth complete curves such that

t 7→ α under the induced map k(t) → k(Y ). Let

x be an element of P1(k). Let γ be an element of

K ′q(k(Y ),Z/n).

We have a commutative diagram

K ′q+1(k(Y ),Z/n)
(∂y) //

φ∗
��

⊕
y∈φ−1(x)K

′
q(k,Z/n)

∇
��

K ′q+1(k(t),Z/n)
∂x

//K ′q(k,Z/n)

and the projection formula

K1(k(Y ))⊗Kq(k(Y ),Z/n) ∪ // K ′q+1(k(Y ),Z/n)

φ∗

��

K1(k(t))⊗K ′q(k(Y ),Z/n)

φ∗⊗1
44

1⊗φ∗ **
K1(k(t))⊗Kq(k(t),Z/n) ∪

// K ′q+1(k(t),Z/n)
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It follows that

sx(φ∗(γ)) = ∂x(πx ∪ φ∗(γ))

=
∑

y∈φ−1(x)

∂y(φ
∗(πx) ∪ γ)

=
∑

y∈φ−1(x)

ny∂y(πy ∪ γ)

=
∑

y∈φ−1(x)

nysy(γ).

It follows that the diagram

Div0(P1)⊗K ′q(k(Y ),Z/n)
1⊗φ∗ //

φ2⊗1
��

Div0(P1)⊗K ′q(k(t),Z/n)
sP1
��

Div0(Y )⊗K ′q(k(Y ),Z/n) sY
//K ′q(k,Z/n)

commutes. Thus,

sY (v ⊗ 1)(α⊗ γ) = sY (vY ⊗ 1)(φ∗ ⊗ 1)(t⊗ γ)

= sP1(1⊗ φ∗)(vP1 ⊗ 1)(t⊗ γ)

= s0(φ∗(γ))− s∞(φ∗(γ)).

It follows that sY · (vY ⊗ 1) = 0 on

Div0(Y )⊗K ′q(k(Y ),Z/n)

if s0 = s∞ on K ′q(k(t),Z/n), and this is what we

shall prove.

14



From the localization sequence

· · · → K ′q(k[t],Z/n)→ K ′q(k(t),Z/n)→
⊕
a∈k

K ′q−1(k,Z/n)→ . . .

and the isomorphism

K ′q(k,Z/n) ∼= K ′q(k[t],Z/n)

(homotopy property) one sees that

K ′q(k(t),Z/n) ∼= K ′q(k,Z/n)⊕(
⊕
a∈k

K ′q−1(k,Z/n)),

where the splitting on the summand corresponding

to a ∈ K is defined for γ ∈ K ′q−1(k,Z/n) by the

assignment γ 7→ (t− a) ∪ γ, where γ 7→ γ under

the homomorphism

Kq−1(k,Z/n)→ Kq−1(k(t),Z/n).

Then

sx((t− a) ∪ γ) = ∂x(πx ∪ (t− a) ∪ γ)

= (−1)q−1∂x(πx ∪ (t− a)) ∪ γ
= 0

for all x and a, since ∂x(πx ∪ (t − a)) ∈ K1(k),

and K1(k) is n-divisible.

Finally, s∞ = s0 on the image of the map

Kq(k,Z/n) ∼= Kq(k[t],Z/n)→ Kq(k(t),Z/n),

and Theorem 24.1 is proved.
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25 Gabber rigidity

In all that follows, suppose that k is an algebraically

closed field and that ` is a prime number such that

(`, char(k)) = 1.

Here is an obvious consequence of Theorem 24.1

(with Theorem 20.4):

Corollary 25.1. Suppose that i : k ⊂ L is an

inclusion of algebraically closed Then the in-

duced maps

i∗ : H∗(BGl(k),Z/`)→ H∗(BGl(L),Z/`),
i∗ : H∗(BGl(L),Z/`)→ H∗(BGl(k),Z/`)

are isomorphisms.

The homology statement is equivalent to the mod

` version of Theorem 24.1. Furthermore, the col-

lection of mod ` versions of Theorem 24.1, for all

primes ` such that (`, char(k)) = 1, implies the

full statement of Theorem 24.1.

Suslin’s rigidity theorem was followed rather closely

by the Gabber rigidity theorem. The following is

the first published statement of this result, which

appeared in a paper of Gillet and Thomason [2]:

Theorem 25.2. Suppose that X is a smooth

variety over k, and let x ∈ X(k) be a k-rational
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point. Suppose that Oh
x is the (strict) henseliza-

tion of the local ring Ox = Ox,X. Then the

residue homomorphism Oh
x → k induces an iso-

morphism

K∗(Oh
x,Z/`)

∼=−→ K∗(k,Z/`).

A more modern version and proof of this result

appears in [9]. The proof given in [8] is a more

axiomatic and more general. Gabber’s full rigidity

result (which is about henselian pairs), was pub-

lished in [1].

Here’s the obvious corollary:

Corollary 25.3. Suppose given the conditions

of Theorem 25.2. Then the residue homomor-

phism Oh
x → k induces an isomorphism

H∗(BGl(Oh
x),Z/`)

∼=−→ H∗(BGl(k),Z/`).

Of course, Corollary 25.3 is equivalent to Theo-

rem 25.2, via Theorem 20.4. Corollary 25.3 is

also equivalent to the assertion that the k-algebra

structure map k → Oh
x induces an isomorphism

H∗(BGl(k),Z/`)
∼=−→ H∗(BGl(Oh

x),Z/`). (2)

Now to say something about what you can do with

this result.
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The algebraic groupGln represents a sheaf of groups

on the étale site (Sm|k)et of smooth k-schemes,

which sheaf will have the same name. Taking the

filtered colimit of the presheaves

Gl1 ⊂ Gl2 ⊂ Gl3 ⊂ . . .

along the standard inclusions defines a presheaf of

groups

Gl = lim−→
n

Gln

and so one is entitled to a simplicial presheaf BGl

which is defined by applying the classifying space

functor B to all of the groups of sections Gl(U).

The maps U → Sp(k) (U smooth) define transi-

tion maps

BGl(k)→ BGl(U),

which together define a canonical morphism

ε : Γ∗BGl(k)→ BGl

of simplicial presheaves, where Γ∗BGl(k) is the

constant simplicial presheaf on the simplicial set

BGl(k). Simplicial presheaves X have mod ` ho-

mology presheaves Hn(X,Z/`) defined by

U → Hn(X(U),Z/`)
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and associated homology sheaves H̃n(X,Z/`). The

stalks of the induced morphism

H̃n(Γ∗BGl(k),Z/`)→ H̃n(BGl,Z/`)

are the group homomorphisms

Hn(BGl(k),Z/`)→ Hn(BGl(Oh
x),Z/`),

which are isomorphisms by Gabber rigidity (Corol-

lary 25.3).

The map

ε : Γ∗BGl(k)→ BGl

is therefore a mod ` homology sheaf isomorphism,

by Gabber rigidity — in fact, the two statements

are equivalent. The mod ` étale cohomology groups

Hn(X,Z/`) for a simplicial presheaf X are defined

by morphisms

Hn(X,Z/`) = [X,K(Z/`, n)]

in the homotopy category of simplicial presheaves

on the site (Sm|k)et associated to the (injective)

model structure on simplicial presheaves, for which

the cofibrations are monomorphisms and the weak

equivalences are defined stalkwise. ThenHn(X,Z/`)
coincides with the étale cohomology groupHn

et(X,Z/`)
if X is represented by a scheme, and there is a
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similar coincidence for simplicial presheaves repre-

sented by simplicial schemes. There are lim−→
1 exact

sequences for the étale cohomology of filtered col-

imits, just as for spaces, as well as naturally defined

cup product structures. It follows that there are

isomorphisms

H∗(BGl,Z/`) ∼= H∗(BU,Z/`) ∼= Z/`[c1, c2, . . . ]

where the ith Chern class ci has degree 2i. At

the same time, the simplicial sheaf associated to

the constant simplicial presheaf Γ∗BGl(k) is rep-

resented by the simplicial scheme
⊔
BGl(k) Sp(k).

Algebraically closed fields are points in the eyes of

étale cohomology, so there is an isomorphism

H∗(Γ∗BGl(k),Z/`) ∼= H∗(BGl(k),Z/`).

Homology sheaf isomorphisms induce cohomology

group isomorphisms, so we have proved

Theorem 25.4. Suppose that k is an algebraically

closed field, and let ` be a prime such that (char(k), `) =

1. Then the canonical map ε : Γ∗BGl(k) →
BGl induces isomorphisms

H∗(BGl(k),Z/`) ∼= H∗et(BGl,Z/`).

In other words, the discrete and étale mod ` coho-

mology groups coincide for the general linear group
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Gl.

Suslin’s first rigidity theorem (Theorem 24.1) is a

consequence:

Corollary 25.5. Suppose that i : k ⊂ L is an

inclusion of algebraically closed fields, and let `

be a prime such that (char(k), `) = 1. Then the

induced maps

H∗(BGl(k),Z/`)→ H∗(BGl(L),Z/`)
K∗(k,Z/`)→ K∗(L,Z/`)

are isomorphisms.

Proof. There is a commutative diagram

H∗et(BGlL,Z/`)
ε∗
∼=
//

i∗
��

H∗(BGl(L),Z/`)
i∗
��

H∗et(BGlk,Z/`) ε∗
∼= //H∗(BGl(k),Z/`)

in which the base change morphism i∗ in étale co-

homology is an isomorphism by standard theory.

It follows that the map

i∗ : H∗(BGl(L),Z/`)→ H∗(BGl(k),Z/`)

is an isomorphism of finite dimensional Z/`-vector

spaces in each degree, and so the map

i∗ : H∗(BGl(k),Z/`)→ H∗(BGl(L),Z/`)
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is also an isomorphism of finite dimensional Z/`-
vector spaces.

On the topological side, there is a map of simplicial

spaces

ε : BGl(C)→ BGl(C)top ' BU.

The displayed weak equivalence is due to the fact

that the unitary group Un is the maximal compact

subgroup of the topological group Gln(C). Write

Hn for the subgroup of diagonal matrices in Gln.

Then it’s relatively easy to see that the map

ε : BHn(C)→ BHn(C)top

is a mod ` homology isomorphism, since both spaces

have the mod ` homology of the space B(µ`∞)×n

where µ`∞ is the group of `-primary roots of unity

in C. It follows that the induced map

ε∗ : H∗(BU,Z/`)→ H∗(BGl(C),Z/`)

is a monomorphism. But ε∗ is, by Theorem 25.4,

a monomorphism of Z/`-vector spaces having the

same dimension in each degree, and is therefore an

isomorphism. We have essentially proved

Corollary 25.6. The canonical map ε : BGl(C)→
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BGl(C)top induces isomorphisms

H∗(BU,Z/`)
∼=−→ H∗(BGl(C),Z/`)

H∗(BGl(C),Z/`)
∼=−→ H∗(BU,Z/`)

K∗(C,Z/`)
∼=−→ π∗(BU/`).

One has to be a little careful about the last state-

ment but it follows from the homology isomor-

phism by an argument similar to that for Theorem

20.4 — see [3].

We also know that there is an isomorphism of Ga-

lois group modules

Kq(Fp,Z/`) ∼=

{
µ⊗r` if q = 2r, and

0 otherwise.

for the algebraic closure Fp of the finite field Fp (for

p 6= `), by Quillen’s calculation of the K-theory of

finite fields [5] [6] (see also [4]). A modern proof

of Quillen’s result for finite fields is sketched in

Lecture 011.

The last isomorphism in the statement of Corol-

lary 25.6 was one of the major outcomes of Suslin’s

paper [10]. With this result, we have a complete

calculation of the algebraic K-theory of an alge-

braically closed field k with torsion coefficients:
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Theorem 25.7 (Suslin). Suppose that k is an

algebraically closed field and that ` is a prime

such that (char(k), `) = 1. Then there are iso-

morphisms

Kq(k,Z/`) ∼=

{
µ⊗r` if q = 2r, and

0 otherwise.

Note that, when the Moore spectrum S/` is a ring

spectrum (see the remarks in Section 19), Suslin’s

calculation devolves to a ring isomorphism

K∗(k,Z/`) ∼= Z/`[β],

so that the the mod ` K-theory of k is a polyno-

mial ring which is generated over Z/` by the Bott

element, most of the time.

References

[1] Ofer Gabber. K-theory of Henselian local rings and Henselian pairs. In Algebraic K-
theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989),
volume 126 of Contemp. Math., pages 59–70. Amer. Math. Soc., Providence, RI, 1992.

[2] Henri A. Gillet and Robert W. Thomason. The K-theory of strict Hensel local rings
and a theorem of Suslin. In Proceedings of the Luminy conference on algebraic K-theory
(Luminy, 1983), volume 34, pages 241–254, 1984.

[3] J. F. Jardine. Simplicial objects in a Grothendieck topos. In Applications of algebraic
K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983),
pages 193–239. Amer. Math. Soc., Providence, RI, 1986.

[4] J. F. Jardine. The K-theory of finite fields, revisited. K-Theory, 7(6):579–595, 1993.

[5] Daniel Quillen. The Adams conjecture. Topology, 10:67–80, 1971.

[6] Daniel Quillen. On the cohomology and K-theory of the general linear groups over a
finite field. Ann. of Math. (2), 96:552–586, 1972.

[7] A. Suslin. On the K-theory of algebraically closed fields. Invent. Math., 73(2):241–245,
1983.

[8] A. A. Suslin. Algebraic K-theory of fields. In Proceedings of the International Congress
of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 222–244, Providence, RI,
1987. Amer. Math. Soc.

24



[9] Andrei Suslin and Vladimir Voevodsky. Singular homology of abstract algebraic varieties.
Invent. Math., 123(1):61–94, 1996.

[10] Andrei A. Suslin. On the K-theory of local fields. In Proceedings of the Luminy conference
on algebraic K-theory (Luminy, 1983), volume 34, pages 301–318, 1984.

25


