Lecture 011 (October 17, 2014)

26 K-theory of finite fields

We will sketch a proof of the following well-known
result of Quillen [5]:

Theorem 26.1. Suppose that F, is the field
with ¢ = p" elements. Then there are isomor-
phisms

Ki(Fq) - {

The proof that is given here appears in [4].

Z)(¢ —1) ifi=2j—1,7>0, and
0 ifi=2j.7>0.

The first step is to completely compute the groups
K, (F,) for the algebraic closure F,. For this, we
use the following form of the Gabber rigidity the-
orem [3]:

Theorem 26.2. Suppose that O is a henselian
local ring with residue field k, and that 1/n €
O. Then the residue map © : O — k induces
1somorphisms

T KO, Z/n) = K.(k,Z/n).

Examples of henselian local rings O include the
Witt ring W (FF,) of the field F,. The residue map
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for W(F,) has the form W (F,) — F,, and W (TF,)
is a complete DVR with a quotient field K of char-
acteristic 0, since Fq is perfect.

[t is a consequence of Gabber rigidity that the ring
homomorphisms

F, < W(F,) - K+ Q—C
induce isomorphisms
K.(F,,Z/n) = K.W(F,),Z/n) = K.(K,Z/n)
= K.(Q.Z/n) = K.(C,Z/n)
for (n,p) = 1.
Some comments:
1) The map
HZ(BGlyg,), Z/n) = H,(BGlg, Z|/n)

is an isomorphism by smooth proper base change
for algebraic groups [2], and the map

H(BGly5,, Z/n) — H(BGIW(F,)), Z/n)

is an isomorphism by the Gabber theorem (the ho-
mology sheaves f[n(BGlW@q), Z/n) are constant)
and the fact that strict local hensel rings O have no
étale cohomology (global sections on Shv(Sch|p )



is exact). From the diagram

H*(BGly, Z/n) H*(BGIE),Z/n)

T

H*(BGUW (F,)), Z/n))

~

we see that the map

H*(BGI(K),Z/n) — H*(BGI(W (F,),Z/n))
is an isomorphism.
2) The map

BGI(C) — BGI(C)"? ~ BU
induces a monomorphism
H*(BU,Z/¢) — H*(BGI(C),Z/?).
In effect, the comparison
BT(C) — BT(C)™
induces an isomorphism
H*(BT(C)"°,7Z/¢) = H*(BT(C),Z/?)

for any complex torus T (exercise), and the map

H*(BGL,(C)'?,Z/¢) — H*(BT(C)"?,7Z/1)

which is induced by the inclusion T" C Gl,, of a
maximal torus induces a monomorphism.
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It follows that the map
HY(BU,Z/¢) — HY(BGI(C),Z/?)

is a monomorphism of finite dimensional Z /¢-vector
spaces of the same dimension (by Gabber rigidity),
and is therefore an isomorphism, for all p > 0.

3) In complex K-theory, there is an isomorphism
moBU = m(U) = Z, with generator 3, and com-
plex Bott periodicity says that cup product (in-
duced by tensor product) with the generator g in-
duces a map

B, kul2] ~ S* A ku — ku

which is an isomorphism in stable homotopy groups
m; for i > 2. Here, ku is connective (topologi-
cal) complex K-theory, which is formed by group-
completing the monoid

| | BU.~| | BGI.(C),

n=>0 n>0
or rather by taking a fibrant model of the spectrum
associated to the I'-space which arises from direct
sum of matrices. In particular, there is a weak
equivalence

ku' ~ 7 x BU.



The map of monoids
| | BGL.(C) — | | BGL,(C)™
n>0 n>0

induces a map of (symmetric) spectra

e : K(C) — ku.

Both spectra are ring spectra with ring structure
induced by tensor product, so that e is a map of
ring spectra.

The map
BGI(C) — BU

induces an isomorphism
H.(BGI(C),Z/t) = H.(BU,Z/1).
In effect, the map is dual to an isomorphism in
mod ¢ cohomology:.
It follows that the induced map
e: K(C)/t — ku/t

is a stable equivalence. To see this, one shows that
the homotopy fibre F' of the map € has uniquely ¢-
divisible homotopy groups, by an argument similar
to that for Theorem 20.4 in Lecture 008.

[t follows in particular that the map
WQK(C)/E — 7T2/€U/€
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is an isomorphism, and therefore takes Bott ele-
ment to Bott element.

The Bott element 5 € moku /¢ is the image of the
Bott element in moku under the map

7T2]CU — 7T2]€U/€.
There is a comparison of cofibre sequences

S?A ku——=S? N ku——S? AN ku/t

B*l lﬁ* |3

ku ku ku/l

in which all vertical maps are defined by (left) mul-
tiplication by the Bott elelement. It follows that
the map

Be: SPNku/l — ku/l
is an isomorphism in ; for 2 > 2.

If F is a ring spectrum and the Moore spectrum

S/n has a ring spectrum structure, then the com-

posite

EAS/RAEAS/n 222 EAEAS/nAS/n 222 EAS/n
defines a ring spectrum structure on

E/n=FENS/n.



The Moore spectrum S/n has such a ring spectrum
structure if n = ¢ where £ > 3, v > 2 if £ = 3,
and v > 4 if £ = 2 [7, p.544]. Assume that n is
such a prime power henceforth.

There is a commutative diagram

S% A ku/n onl ku A ku/n

WA pAl m\
1Ae |~ ku/n A ku/n—7m—ku/n
ENE| :Te
S’ANK(C)/n—+~+K(C)/n ANK(C)/n—~K(C)/n

BAL

The top composite (m A1)(8 A1) is the composite
B, above, and is an isomorphism in 7; for ¢ > 2.
It follows that the composite

S2AK(C)/n 225 K(C)/nAK(C)/n 2 K(C)/n
is an isomorphism in ; for ¢ > 2.
We have proved:

Lemma 26.3. Suppose that n = ¥, subject to
the constraints on the prime £ and the power
v listed above. Then all powers of the Bott el-
ement % € Ko(C,Z/n) are non-trivial, and
there is an isomorphism

K.(C,Z/n) = Z/n|B].
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Corollary 26.4. Suppose that n = ”, sub-
ject to the constraints on the prime £ and the
power v listed above. Suppose that k is an al-

gebraically closed field with (n,char(k)) = 1.
Then there is an isomorphism

K.(k,Z/n) = Z/n|f)],
For the record, the following is proved with a trans-
fer argument:

Lemma 26.5. Suppose that L is a separably
closed field and that (n,char(L)) = 1. Then the

inclusion L C L induces an isomorphism
K.(L,Z/n) = K.(L,7Z/n).
Now let’s talk about finite fields.

Lemma 26.6. K;(F,) is a finite abelian group
of order prime to p if i > 0.

Proof. Homological stability [6] says that there is
an isomorphism

Hy(BGU(R,), Z) = Hy(BGI,(F,), Z)

for n sufficiently large. It follows that the re-
duced homology H,.(BGI(F,),Z) consists of finite
groups.



[t is known [5] that H.(BGI(F,), Z/p) = 0. Thus

H.(BGI(F,),Z) consists of uniquely p-divisible fi-

nite abelian groups. O

Lemma 26.7. There are isomorphisms

K(F) = Qp/Z ifi=2j—1,7>1 and
0 ifi=2j,5>1.

Proof. K;(F,) = ling K;(F,) is a torsion abelian
group with no p-torsion by the last Lemma.

Kyj1(Fy, Z/n) = 0 for all j > 1if (n,p) = 1.

It follows that Ky;(F,) is a torsion group with

Tor(Z/n, K9j(F,)) = 0 for (n,p) = 1, so that

ng(Fq) = 0 for aﬂj Z 1.

It follows that there are isomorphisms
Z/n = Kyj(Fy, Z/n) = Tor(Z/n, Ka;-1(F,))

for 4 > 1. These isomorphisms are functorial in
the poset of numbers n with (n,p) = 1 and with
n < mif njm.

An element of Q) is a fraction 2+ such that p does
not divide n, and this element isin Z if n = 1. The
maps

Z/n—>@(p)/Z



defined by 1 +— % define the isomorphism

Note that
K\(F,) = F, = Qy)/Z.

Corollary 26.8. The group Kyj_1(F,) is n-divisible
for all n with (n,p) =1, if 7 > 1.

Now recall that the Frobenius automorphism
o : Fq — Fq

is defined by ¢(a) = af. Recall that ¢ is the
identity on IF,, since IF, is the splitting field of the
polynomial ¢ — x.

The Frobenius induces a morphism of spectra ¢ :

K(F,) — K(F,), and there is a commutative dia-
gram of spectra

K(F,)——K(F,)
| s

K(FC])mK(Fq) < K(F,)

where 7 is induced by the inclusion F, C F,.

Here’s the main theorem:
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Theorem 26.9. The square
K(F,) ——K(F,)
l_ } |a }
K<Fq)mK(]Fq) x K(F,)

18 homotopy cartesian.

This result is often paraphrased by saying that the
spectrum K (IF,) is the homotopy fixed points of
the Frobenius.

Corollary 26.10. There are isomorphisms

Z/(¢ —1) ifi=2j—1,7>0, and
Ki(Fq)_{

0 if 1 =275,7 > 0.
Proof. The squares in the diagram
K(F,) K (Fq) *
| | |

K (Fq)mK (Fy) x K (Fq)(ﬁ)K (Fy)

are homotopy cartesian, so that there is a fibre

sequernce
K(F,) 5 K(F,) “=> KF,). (1)

It follows from the Suslin calculations that the map

Gs : Koj(Fy) — Koj(IFy)
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is multiplication by ¢’. In effect,
Oy - Ko(F,, Z/n) — Ko(F,, Z/n)
is multiplication by ¢ (ie. 5+~ ¢f3) since
K»(F,,Z/n) = Tor(Z/n,F,).
It follows that the map
O« Kaj(Fy, Z/n) — Koj(Fy, Z/n)

is multiplication by ¢’ (87 — (¢B)’). Thus, the
map

¢x - Tor(Z/n, Koj_1(F,)) — Tor(Z/n, Koj_1(F,))

is also multiplication by ¢/. But Ky, 1(F,) consists
of torsion prime to p, so that ¢. : Ky;—1(F,) —
Ky;_1(FF,) is multiplication by ¢’.

It follows that the map

¢s —1: K2j—1<Fq> — K2j—1<Fq>

is multiplication by ¢/ — 1. This number is prime
to p, so that the map ¢, — 1 is surjective. It follows
from the long exact sequence for the fibre sequence

(1) that
Koy-1(F,) = Tor(Z/(@'—1), Koy-1(F,) = Z/(¢—1).
and ng(Fq) = 0. []
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To prove Theorem 26.9, form the homotopy pull-

back diagram
Fsﬁ(Fq) K(Fq)

I
K<Fq)mK(Fq) x K(F,)

The game is to show that the induced map

K(Fq) - F¢(FQ)
is a stable equivalence.

[t suffices to do this at the level of 1-connected
covers. In effect, if K(R) — K(R) denotes the
lI-connected cover (ie. fibre of the map K(R) —
P K(R)), form the homotopy pullback

ﬁ%@z) - K(]Fq) (2)

K@(J)@K(Fq) x KK(F,)

Then Fy(F,) — Fy(FF,) is the 1-connected cover,
while we already know that the map m K(F,) —
miFy is an isomorphism for ¢ = 0, 1.

Note that the map FZ — FZ defined by a
a/¢(a) is an isomorphism (Lang isomorphism) so
that Fy is simply-connected.
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We therefore want to show that the map
R(Fq) - F¢(Fq)

is a stable equivalence. Both spectra are 1-connected,
so it suffices to show that the map

- - =
K'(F,) — Fy (Fy)

of pointed simplicial sets is a weak equivalence.

Both spaces are simply-connected and have homo-

topy groups which are finite and of order prime to
p, so it is enough to show that the maps

are isomorphisms for all primes ¢ with (¢, p) = 1.

Suppose that E(R) C GI(R) is the subgroup of el-
ementary transformations, and recall that E(R) =

|GI(R), GI(R)|, naturally in rings R. There is map
BE — K"

of simplicial presheaves on the big étale site (S ch\Fq)et
which is an H,( , Z)-isomorphism on affine patches

(K°(R) = BE(R)*). It therefore suffices to show

that the composition map
BE(F,) — K"(F,) — FQ(R)
is an H,( ,Z/{)-isomorphism for (¢, p) = 1.
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The Frobenius homomorphism induces a natural
map ¢ : E — FE for presheaves of spectra on
(S ch|Fq)et, and we can form the sectionwise homo-
topy cartesian diagram

[
Y
K WK X K
The diagram (2) is global sections of this diagram

of presheaves of spectra. There is a corresponding
pointwise homotopy cartesian diagram

B R
~J/O 0 iA~O
K mK X K

of pointed simplicial presheaves.

Lemma 26.11. The simplicial presheaf F£ 18
rgid in the sense that the map

*F)(F,) — E)
induces an isomorphism in homology sheaves
H.(,Z/t) for all (¢,p) = 1.

Proof. The K-theory presheaf is rigid in mod ¢ sta-
ble homotopy groups (Gabber rigidity), and PiK
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is rigid (calculation), so that K is rigid and then
Fy is rigid, as presheaves of spectra. Extract the
homology statement in the usual way. O

In particular, there is an isomorphism
Hy\(F), 2/0) = H*(F)(F,), /1),
and it suffices to show that the maps
H}\(F9, Z/0) — H(I"BE(F,), Z/0) = H*(BE(F,),Z/1)
are isomorphisms.
The natural inclusion E,(R) C SI,(R) induces
local weak equivalences

BE, — BSIl,, BE — BSI

of simplicial presheaves on (S ch|Fq)et since the groups
in question coincide on local rings.

Lemma 26.12. There is a homotopy cartesian
diagrams of simplicial presheaves

*BSI,(F,) BSL,

l ja

BSI, D ———BSI, x BSI,

Proof. Any inclusion G C H of groups determines

a homotopy fibre sequence

EFG xqgH— BG — BH
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and all homotopy groups m;(EG x¢ H) are triv-
ial for ¢ > 1. Checking that the diagram above is
homotopy cartesian amounts to showing that the
induced map on homotopy fibres is a local equiv-
alence, but this amounts to showing that the in-
duced map

St /TS, (F,) — Sl,
defined by A — ¢(A)A™! is an isomorphism. The

fact that the displayed map is an isomorphism is
well known — this map is called the Lang isomor-

phism [1, Prop. 2]. (]
Form the comparisons of homotopy cartesian dia-
grams
[*BE(F,) BE
\ \
0 A 0
Fy A K
BE\<T) BE x BE A
K K% x KV
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and

X, ) c *BE(F,) C
\X2 6* \Fg
r*BE(F,) ‘ BE
IS )

We want to show that the map ¢ induces an iso-
morphism in étale cohomology, and we do this by
showing that the maps €, and (, are isomorphisms
in étale cohomology.

1) The map €, is a mod ¢ homology sheaf iso-
morphism, because the object K is rigid. Use a
comparison of Serre spectral sequences in stalks to
see this.

2) There is a weak equivalence
The idea is to show that

H(ESUE,) X g5,y S1,2/€) =0
But there is an isomorphism

H(BSIF,)x g5, SL Z/ 1) = H'(ESI(C) x ) SI, Z£)

18



by rigidity (and GAGA), and ESI(C) x gc) SI'?
is the homotopy fibre of BSI(C) — BSI"P, which
fibration is a mod ¢ cohomology isomorphism (by
rigidity) with simply connected base. The fibre is
therefore mod ¢ cohomologically acyclic.

3) To show that ~ is an étale cohomology isomor-
phism, it suffices to show that the map F — QK
is a mod ¢ étale cohomology isomorphism. One
uses a comparison of Serre-type spectral sequences,

eg.
HP(K°(F,), HY(QK, Z/0)) = H}(Xs, 2 /1)

(&

to see this. But again the question about £ —
QK" base changes to topology, where there is an
actual weak equivalence.
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