
Lecture 011 (October 17, 2014)

26 K-theory of finite fields

We will sketch a proof of the following well-known

result of Quillen [5]:

Theorem 26.1. Suppose that Fq is the field

with q = pn elements. Then there are isomor-

phisms

Ki(Fq) =

{
Z/(qj − 1) if i = 2j − 1, j > 0, and

0 if i = 2j, j > 0.

The proof that is given here appears in [4].

The first step is to completely compute the groups

Kn(Fq) for the algebraic closure Fq. For this, we

use the following form of the Gabber rigidity the-

orem [3]:

Theorem 26.2. Suppose that O is a henselian

local ring with residue field k, and that 1/n ∈
O. Then the residue map π : O → k induces

isomorphisms

π∗ : K∗(O,Z/n)
∼=−→ K∗(k,Z/n).

Examples of henselian local rings O include the

Witt ring W (Fq) of the field Fq. The residue map
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for W (Fq) has the form W (Fq)→ Fq, and W (Fq)
is a complete DVR with a quotient field K of char-

acteristic 0, since Fq is perfect.

It is a consequence of Gabber rigidity that the ring

homomorphisms

Fq
π←− W (Fq)→ K ← Q→ C

induce isomorphisms

K∗(Fq,Z/n) ∼= K∗(W (Fq),Z/n) ∼= K∗(K,Z/n)
∼= K∗(Q,Z/n) ∼= K∗(C,Z/n)

for (n, p) = 1.

Some comments:

1) The map

H∗et(BGlW (Fq),Z/n)→ H∗et(BGlK,Z|/n)

is an isomorphism by smooth proper base change

for algebraic groups [2], and the map

H∗et(BGlW (Fq),Z/n)→ H∗(BGl(W (Fq)),Z/n)

is an isomorphism by the Gabber theorem (the ho-

mology sheaves H̃n(BGlW (Fq),Z/n) are constant)

and the fact that strict local hensel ringsO have no

étale cohomology (global sections on Shv(Sch|O)et
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is exact). From the diagram

H∗et(BGlK,Z/n)
∼= //

∼= **

H∗(BGl(K),Z/n)

��

H∗(BGl(W (Fq)),Z/n))

we see that the map

H∗(BGl(K),Z/n)→ H∗(BGl(W (Fq),Z/n))

is an isomorphism.

2) The map

BGl(C)→ BGl(C)top ' BU

induces a monomorphism

H∗(BU,Z/`)→ H∗(BGl(C),Z/`).

In effect, the comparison

BT (C)→ BT (C)top

induces an isomorphism

H∗(BT (C)top,Z/`) ∼= H∗(BT (C),Z/`)

for any complex torus T (exercise), and the map

H∗(BGln(C)top,Z/`)→ H∗(BT (C)top,Z/`)

which is induced by the inclusion T ⊂ Gln of a

maximal torus induces a monomorphism.
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It follows that the map

Hp(BU,Z/`)→ Hp(BGl(C),Z/`)

is a monomorphism of finite dimensional Z/`-vector

spaces of the same dimension (by Gabber rigidity),

and is therefore an isomorphism, for all p ≥ 0.

3) In complex K-theory, there is an isomorphism

π2BU ∼= π1(U) ∼= Z, with generator β, and com-

plex Bott periodicity says that cup product (in-

duced by tensor product) with the generator β in-

duces a map

β∗ : ku[2] ' S2 ∧ ku→ ku

which is an isomorphism in stable homotopy groups

πi for i ≥ 2. Here, ku is connective (topologi-

cal) complex K-theory, which is formed by group-

completing the monoid⊔
n≥0

BUn '
⊔
n≥0

BGln(C)top,

or rather by taking a fibrant model of the spectrum

associated to the Γ-space which arises from direct

sum of matrices. In particular, there is a weak

equivalence

ku0 ' Z×BU.
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The map of monoids⊔
n≥0

BGln(C)→
⊔
n≥0

BGln(C)top

induces a map of (symmetric) spectra

ε : K(C)→ ku.

Both spectra are ring spectra with ring structure

induced by tensor product, so that ε is a map of

ring spectra.

The map

BGl(C)→ BU

induces an isomorphism

H∗(BGl(C),Z/`)
∼=−→ H∗(BU,Z/`).

In effect, the map is dual to an isomorphism in

mod ` cohomology.

It follows that the induced map

ε : K(C)/`→ ku/`

is a stable equivalence. To see this, one shows that

the homotopy fibre F of the map ε has uniquely `-

divisible homotopy groups, by an argument similar

to that for Theorem 20.4 in Lecture 008.

It follows in particular that the map

π2K(C)/`→ π2ku/`
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is an isomorphism, and therefore takes Bott ele-

ment to Bott element.

The Bott element β ∈ π2ku/` is the image of the

Bott element in π2ku under the map

π2ku→ π2ku/`.

There is a comparison of cofibre sequences

S2 ∧ ku //

β∗
��

S2 ∧ ku //

β∗
��

S2 ∧ ku/`
β∗
��

ku // ku // ku/`

in which all vertical maps are defined by (left) mul-

tiplication by the Bott elelement. It follows that

the map

β∗ : S2 ∧ ku/`→ ku/`

is an isomorphism in πi for i ≥ 2.

If E is a ring spectrum and the Moore spectrum

S/n has a ring spectrum structure, then the com-

posite

E∧S/n∧E∧S/n 1∧τ∧1−−−→ E∧E∧S/n∧S/n m∧m−−−→ E∧S/n

defines a ring spectrum structure on

E/n = E ∧ S/n.
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The Moore spectrum S/n has such a ring spectrum

structure if n = `ν where ` > 3, ν ≥ 2 if ` = 3,

and ν ≥ 4 if ` = 2 [7, p.544]. Assume that n is

such a prime power henceforth.

There is a commutative diagram

S2 ∧ ku/n β∧1 //

β∧1

**

ku ∧ ku/n
p∧1
��

m∧1

))
ku/n ∧ ku/n m

// ku/n

S2 ∧K(C)/n

1∧ε '

OO

β∧1
//K(C)/n ∧K(C)/n m

//

'ε∧ε
OO

K(C)/n

ε'
OO

The top composite (m∧1)(β∧1) is the composite

β∗ above, and is an isomorphism in πi for i ≥ 2.

It follows that the composite

S2∧K(C)/n
β∧1−−→ K(C)/n∧K(C)/n

m−→ K(C)/n

is an isomorphism in πi for i ≥ 2.

We have proved:

Lemma 26.3. Suppose that n = `ν, subject to

the constraints on the prime ` and the power

ν listed above. Then all powers of the Bott el-

ement βk ∈ K2k(C,Z/n) are non-trivial, and

there is an isomorphism

K∗(C,Z/n) ∼= Z/n[β].
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Corollary 26.4. Suppose that n = `ν, sub-

ject to the constraints on the prime ` and the

power ν listed above. Suppose that k is an al-

gebraically closed field with (n, char(k)) = 1.

Then there is an isomorphism

K∗(k,Z/n) ∼= Z/n[β].

For the record, the following is proved with a trans-

fer argument:

Lemma 26.5. Suppose that L is a separably

closed field and that (n, char(L)) = 1. Then the

inclusion L ⊂ L induces an isomorphism

K∗(L,Z/n) ∼= K∗(L,Z/n).

Now let’s talk about finite fields.

Lemma 26.6. Ki(Fq) is a finite abelian group

of order prime to p if i ≥ 0.

Proof. Homological stability [6] says that there is

an isomorphism

Hi(BGl(Fq),Z) ∼= Hi(BGln(Fq),Z)

for n sufficiently large. It follows that the re-

duced homology H̃∗(BGl(Fq),Z) consists of finite

groups.

8



It is known [5] that H̃∗(BGl(Fq),Z/p) = 0. Thus

H̃∗(BGl(Fq),Z) consists of uniquely p-divisible fi-

nite abelian groups.

Lemma 26.7. There are isomorphisms

Ki(Fq) ∼=

{
Q(p)/Z if i = 2j − 1, j ≥ 1 and

0 if i = 2j, j ≥ 1.

Proof. Ki(Fq) = lim−→ Ki(Fq′) is a torsion abelian

group with no p-torsion by the last Lemma.

K2j+1(Fq,Z/n) = 0 for all j ≥ 1 if (n, p) = 1.

It follows that K2j(Fq) is a torsion group with

Tor(Z/n,K2j(Fq)) = 0 for (n, p) = 1, so that

K2j(Fq) = 0 for all j ≥ 1.

It follows that there are isomorphisms

Z/n ∼= K2j(Fq,Z/n) ∼= Tor(Z/n,K2j−1(Fq))

for j ≥ 1. These isomorphisms are functorial in

the poset of numbers n with (n, p) = 1 and with

n ≤ m if n|m.

An element of Q(p) is a fraction m
n such that p does

not divide n, and this element is in Z if n = 1. The

maps

Z/n→ Q(p)/Z
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defined by 1 7→ 1
n define the isomorphism

lim−→
n

Z/n
∼=−→ Q(p)/Z.

Note that

K1(Fq) ∼= F∗q ∼= Q(p)/Z.

Corollary 26.8. The group K2j−1(Fq) is n-divisible

for all n with (n, p) = 1, if j ≥ 1.

Now recall that the Frobenius automorphism

φ : Fq → Fq
is defined by φ(α) = αq. Recall that φ is the

identity on Fq, since Fq is the splitting field of the

polynomial xq − x.

The Frobenius induces a morphism of spectra φ :

K(Fq)→ K(Fq), and there is a commutative dia-

gram of spectra

K(Fq) i //

i
��

K(Fq)
∆
��

K(Fq)
(φ,1)

//K(Fq)×K(Fq)

where i is induced by the inclusion Fq ⊂ Fq.
Here’s the main theorem:
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Theorem 26.9. The square

K(Fq) i //

i
��

K(Fq)
∆
��

K(Fq) (φ,1)
//K(Fq)×K(Fq)

is homotopy cartesian.

This result is often paraphrased by saying that the

spectrum K(Fq) is the homotopy fixed points of

the Frobenius.

Corollary 26.10. There are isomorphisms

Ki(Fq) =

{
Z/(qj − 1) if i = 2j − 1, j > 0, and

0 if i = 2j, j > 0.

Proof. The squares in the diagram

K(Fq) i //

i
��

K(Fq)
∆
��

// ∗

��

K(Fq) (φ,1)
//K(Fq)×K(Fq)(1,−1)

//K(Fq)

are homotopy cartesian, so that there is a fibre

sequence

K(Fq)
i−→ K(Fq)

φ−1−−→ K(Fq). (1)

It follows from the Suslin calculations that the map

φ∗ : K2j(Fq)→ K2j(Fq)
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is multiplication by qj. In effect,

φ∗ : K2(Fq,Z/n)→ K2(Fq,Z/n)

is multiplication by q (ie. β 7→ qβ) since

K2(Fq,Z/n) ∼= Tor(Z/n,F∗q).

It follows that the map

φ∗ : K2j(Fq,Z/n)→ K2j(Fq,Z/n)

is multiplication by qj (βj 7→ (qβ)j). Thus, the

map

φ∗ : Tor(Z/n,K2j−1(Fq))→ Tor(Z/n,K2j−1(Fq))

is also multiplication by qj. ButK2j−1(Fq) consists

of torsion prime to p, so that φ∗ : K2j−1(Fq) →
K2j−1(Fq) is multiplication by qj.

It follows that the map

φ∗ − 1 : K2j−1(Fq)→ K2j−1(Fq)

is multiplication by qj − 1. This number is prime

to p, so that the map φ∗−1 is surjective. It follows

from the long exact sequence for the fibre sequence

(1) that

K2j−1(Fq) = Tor(Z/(qj−1), K2j−1(Fq)) ∼= Z/(qj−1).

and K2j(Fq) = 0.
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To prove Theorem 26.9, form the homotopy pull-

back diagram

Fφ(Fq) //

��

K(Fq)
∆
��

K(Fq) (φ,1)
//K(Fq)×K(Fq)

The game is to show that the induced map

K(Fq)→ Fφ(Fq)

is a stable equivalence.

It suffices to do this at the level of 1-connected

covers. In effect, if K̃(R) → K(R) denotes the

1-connected cover (ie. fibre of the map K(R) →
P1K(R)), form the homotopy pullback

F̃φ(Fq) //

��

K̃(Fq)
∆
��

K̃(Fq) (φ,1)
// K̃(Fq)× K̃K(Fq)

(2)

Then F̃φ(Fq) → Fφ(Fq) is the 1-connected cover,

while we already know that the map πiK(Fq) →
πiFφ is an isomorphism for i = 0, 1.

Note that the map F∗q → F∗q defined by α 7→
α/φ(α) is an isomorphism (Lang isomorphism) so

that F̃φ is simply-connected.
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We therefore want to show that the map

K̃(Fq)→ F̃φ(Fq)

is a stable equivalence. Both spectra are 1-connected,

so it suffices to show that the map

K̃0(Fq)→ F̃ 0
φ(Fq)

of pointed simplicial sets is a weak equivalence.

Both spaces are simply-connected and have homo-

topy groups which are finite and of order prime to

p, so it is enough to show that the maps

H∗(K̃
0(Fq),Z/`)→ H∗(F̃

0
φ(Fq),Z/`)

are isomorphisms for all primes ` with (`, p) = 1.

Suppose that E(R) ⊂ Gl(R) is the subgroup of el-

ementary transformations, and recall that E(R) =

[Gl(R), Gl(R)], naturally in ringsR. There is map

BE → K̃0

of simplicial presheaves on the big étale site (Sch|Fq)et
which is an H∗( ,Z)-isomorphism on affine patches

(K̃0(R) = BE(R)+). It therefore suffices to show

that the composition map

BE(Fq)→ K̃0(Fq)→ F̃ 0
φ(Fq)

is an H∗( ,Z/`)-isomorphism for (`, p) = 1.
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The Frobenius homomorphism induces a natural

map φ : E → E for presheaves of spectra on

(Sch|Fq)et, and we can form the sectionwise homo-

topy cartesian diagram

F̃φ //

��

K̃

∆
��

K̃
(φ,1)

// K̃ × K̃

The diagram (2) is global sections of this diagram

of presheaves of spectra. There is a corresponding

pointwise homotopy cartesian diagram

F̃ 0
φ

//

��

K̃0

∆
��

K̃0
(φ,1)

// K̃0 × K̃0

of pointed simplicial presheaves.

Lemma 26.11. The simplicial presheaf F̃ 0
φ is

rigid in the sense that the map

Γ∗F̃ 0
φ(Fq)→ F̃ 0

φ

induces an isomorphism in homology sheaves

H̃∗( ,Z/`) for all (`, p) = 1.

Proof. TheK-theory presheaf is rigid in mod ` sta-

ble homotopy groups (Gabber rigidity), and P1K
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is rigid (calculation), so that K̃ is rigid and then

F̃φ is rigid, as presheaves of spectra. Extract the

homology statement in the usual way.

In particular, there is an isomorphism

H∗et(F̃
0
φ ,Z/`) ∼= H∗(F̃ 0

φ(Fq),Z/`),

and it suffices to show that the maps

H∗et(F̃
0
φ ,Z/`)→ H∗et(Γ

∗BE(Fq),Z/`) ∼= H∗(BE(Fq),Z/`)

are isomorphisms.

The natural inclusion En(R) ⊂ Sln(R) induces

local weak equivalences

BEn → BSln, BE → BSl

of simplicial presheaves on (Sch|Fq)et since the groups

in question coincide on local rings.

Lemma 26.12. There is a homotopy cartesian

diagrams of simplicial presheaves

Γ∗BSln(Fq) //

��

BSln
∆
��

BSln (φ,1)
//BSln ×BSln

Proof. Any inclusion G ⊂ H of groups determines

a homotopy fibre sequence

EG×G H → BG→ BH
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and all homotopy groups πi(EG ×G H) are triv-

ial for i ≥ 1. Checking that the diagram above is

homotopy cartesian amounts to showing that the

induced map on homotopy fibres is a local equiv-

alence, but this amounts to showing that the in-

duced map

Sln/Γ∗Sln(Fq)→ Sln

defined by A 7→ φ(A)A−1 is an isomorphism. The

fact that the displayed map is an isomorphism is

well known — this map is called the Lang isomor-

phism [1, Prop. 2].

Form the comparisons of homotopy cartesian dia-

grams

Γ∗BE(Fq) //

ζ

%%

��

BE

''
∆

��

F̃ 0
φ

��

// K̃0

∆

��

BE
(φ,1)

//

&&

BE ×BE
((

K̃0
(φ,1)

// K̃0 × K̃0
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and

X1

��

ζ∗

''

ε∗ // Γ∗BE(Fq)

��

ζ

%%
X2

ε∗ //

��

F̃ 0
φ

��

Γ∗BE(Fq) ε //

''

BE

%%
Γ∗K̃0(Fq) ε

// K̃0

We want to show that the map ζ induces an iso-

morphism in étale cohomology, and we do this by

showing that the maps ε∗ and ζ∗ are isomorphisms

in étale cohomology.

1) The map ε∗ is a mod ` homology sheaf iso-

morphism, because the object K̃0 is rigid. Use a

comparison of Serre spectral sequences in stalks to

see this.

2) There is a weak equivalence

Y1 ' ESl(Fq)×Sl(Fq) ×Sl ×(Sl(Fq) ESl(Fq).
The idea is to show that

H̃∗et(ESl(Fq)×Sl(Fq) Sl,Z/`) = 0

But there is an isomorphism

H∗et(ESl(Fq)×Sl(Fq)Sl,Z/`) ∼= H∗(ESl(C)×Sl(C)Sl
top,Z/`)
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by rigidity (and GAGA), and ESl(C)×Sl(C) Sl
top

is the homotopy fibre of BSl(C)→ BSltop, which

fibration is a mod ` cohomology isomorphism (by

rigidity) with simply connected base. The fibre is

therefore mod ` cohomologically acyclic.

3) To show that γ is an étale cohomology isomor-

phism, it suffices to show that the map E → ΩK̃0

is a mod ` étale cohomology isomorphism. One

uses a comparison of Serre-type spectral sequences,

eg.

Hp(K̃0(Fq), Hq
et(ΩK̃

0,Z/`))⇒ Hp+q
et (X2,Z/`)

to see this. But again the question about E →
ΩK̃0 base changes to topology, where there is an

actual weak equivalence.
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