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1 Simplicial sets

The finite ordinal number n is the set of counting
numbers

n = {0,1, . . . ,n}.
There is an obvious ordering on this set which
gives it the structure of a poset, and hence a (tiny)
category.

Fact: If C is a category then the functors α : n→C
can be identified with strings of arrows

α(0)→ α(1)→ ··· → α(n)

of length n.

The collection of all finite ordinal numbers and
all order-preserving functions between them (aka.
poset morphisms, or functors) form the ordinal
number category ∆.
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Examples:
1) The monomorphisms di : n−1→ n are defined
by the strings of relations

0≤ 1≤ ·· · ≤ i−1≤ i+1≤ ·· · ≤ n

for 0≤ i≤ n. These morphisms are called cofaces.

2) The epimorphisms s j : n+1→ n are defined by
the strings

0≤ 1≤ ·· · ≤ j ≤ j ≤ ·· · ≤ n

for 0≤ j ≤ n. These are the codegeneracies.

The cofaces and codegeneracies together satisfy
the cosimplicial identities:

d jdi = did j−1 if i < j,
s jsi = sis j+1 if i≤ j

s jdi =


dis j−1 if i < j,

1 if i = j, j+1,

di−1s j if i > j+1.

∆ is generated by the cofaces and codegeneracies,
subject to the cosimplicial identities [5].

Every morphism of ∆ has a unique epi-monic fac-
torization, and has a canonical form defined by
strings of codegeneracies and strings of cofaces.
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A simplicial set is a functor

X : ∆
op→ Set,

ie. a contravariant set-valued functor on ∆.

We usually write n 7→ Xn, and Xn is called the set
of n-simplices of X .

A simplicial map f : X → Y is a natural transfor-
mation of such functors.

The simplicial sets and simplicial maps form the
category of simplicial sets, which is denoted by
sSet in these notes.

A simplicial set is a simplicial object in the set
category. Generally, sA denotes the category of
simplicial objects ∆op→A in a category A .

Examples include the categories sGr of simpli-
cial groups, s(R−Mod) of simplicial R-modules,
s(sSet) = s2Set of bisimplicial sets, and so on.
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Examples of simplicial sets:

1) The topological standard n-simplex is the space

|∆n|= {(t0, . . . , tn) ∈ Rn+1 | 0≤ ti ≤ 1,∑ ti = 1}

The assignment n 7→ |∆n| defines a functor ∆→
Top, which is a cosimplicial space.

All spaces |∆n| are compact Hausdorff spaces, and
it’s better [1], [2] to assume that the topological
standard n-simplices are compactly generated Haus-
dorff spaces. CGHaus is the category of such
things.

If X is a space, then the singular set (or singular
complex) S(X) is defined by

S(X)n = hom(|∆n|,X).

The assignment X 7→ S(X) defines a functor

S : CGHaus→ sSet,

called the singular functor.

2) The ordinal number n represents a simplicial set

∆
n = hom∆( ,n),

which is called the standard n-simplex. Write

ιn ∈ hom∆(n,n) = ∆
n
n
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for the identity map 1n : n→ n.

ιn is the classifying n-simplex: there is a natural
bijection

homsSet(∆
n,Y )∼= Yn,

such that σ : ∆n→ Y maps to σ(ιn) ∈ Yn.

I say that a map ∆n→ Y is an n-simplex of Y .

If σ : ∆n→ X is a simplex of X , then the ith face
di(σ) is the composite

∆
n−1 di
−→ ∆

n σ−→ X ,

while the jth degeneracy s j(σ) is the composite

∆
n+1 s j
−→ ∆

n σ−→ X .

3) ∂∆n is the subobject of ∆n which is generated
by the (n− 1)-simplices di, 0 ≤ i ≤ n, and let Λn

k
be the subobject of ∂∆n which is generated by the
simplices di, i 6= k. ∂∆n is called the boundary of
∆n, and Λn

k is called the kth horn.

The faces di : ∆n−1→ ∆n determine a covering
n⊔

i=0

∆
n−1→ ∂∆

n,
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and for each i < j there are pullback diagrams

∆n−2 d j−1
//

di
��

∆n−1

di
��

∆n−1
d j

//∆n

It follows that there is a coequalizer⊔
i< j,0≤i, j≤n ∆n−2 //

//
⊔

0≤i≤n ∆n−1 // ∂∆n

in sSet. Similarly, there is a coequalizer⊔
i< j,i, j 6=k ∆n−2 //

//
⊔

0≤i≤n,i 6=k ∆n−1 //Λn
k.

4) Suppose that a category C is small in the sense
that the morphisms Mor(C) and objects Ob(C) are
sets.

Examples include all finite ordinal numbers n, all
monoids (small categories having one object), and
all groups.

If C is a small category there is a simplicial set BC
with

BCn = hom(n,C),

meaning the functors n→C. The simplicial struc-
ture on BC is defined by precomposition with or-
dinal number maps.
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The object BC is called, variously, the classifying
space or nerve of C. One often sees the notation
NC for BC.

Note that Bn = ∆n in this notation.

5) Suppose that I is a small category, and that X :
I → Set is a set-valued functor. The category of
elements (or translation category, or slice cate-
gory)

∗/X = EI(X)

associated to X has as objects all pairs (i,x) with
x ∈ X(i), or equivalently all functions

∗ x−→ X(i).

A morphism α : (i,x)→ ( j,y) is a morphism α :
i→ j of I such that α∗(x) = y, or equivalently a
commutative diagram

X(i)
α∗
��

∗
x 77

y ''X( j)

The simplicial set B(EIX) is often called the ho-
motopy colimit for the functor X , and one writes

holim−−−→ I X = B(EIX).

Example: BI = holim−−−→ I ∗.
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There is a canonical functor EIX → I that is de-
fined by the assignment (i,x) 7→ i. It induces a
canonical simplicial set map

π : B(EIX) = holim−−−→ I X → BI.

The functors n→EIX can be identified with strings

(i0,x0)
α1−→ (i1,x1)

α2−→ . . .
αn−→ (in,xn).

Such a string is uniquely specified by the underly-
ing string i0→ ·· ·→ in in the index category I and
x0 ∈ X(i0). It follows that there is an identification

(holim−−−→ I X)n = B(EIX)n =
⊔

i0→···→in

X(i0).

The construction is natural with respect to natu-
ral transformations in X . Thus a diagram X : I→
sSet in simplicial sets determines a bisimplicial set
with (n,m) simplices

B(EIX)m =
⊔

i0→···→in

X(i0)m.

The diagonal d(Y ) of a bisimplicial set Y is the
simplicial set with n-simplices Yn,n. Equivalently,
d(Y ) is the composite functor

∆
op ∆−→ ∆

op×∆
op Y−→ Set

where ∆ is the diagonal functor.
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The diagonal dB(EIX) of the bisimplicial set B(EIX)

is the homotopy colimit holim−−−→ I X in sSet of the
functor X : I→ sSet, and there is a natural simpli-
cial set map

π : holim−−−→ I X → BI.

6) Suppose that X and Y are simplicial sets. There
is a simplicial set hom(X ,Y ) with n-simplices

hom(X ,Y )n = hom(X×∆
n,Y ),

called the function complex.

There is a natural simplicial set map

ev : X×hom(X ,Y )→ Y

which sends the pair (x, f : X × ∆n → Y ) to the
simplex f (x, ιn).

Suppose that K is another simplicial set. The func-
tion

ev∗ : hom(K,hom(X ,Y ))→ hom(X×K,Y ),

which is defined by sending the map g : K→hom(X ,Y )
to the composite

X×K
1×g−−→ X×hom(X ,Y ) ev−→ Y,
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is a natural bijection, giving the exponential law

hom(K,hom(X ,Y ))∼= hom(X×K,Y ).

This natural isomorphism gives sSet the structure
of a cartesian closed category.

The function complexes also give sSet the struc-
ture of a category enriched in simplicial sets.

2 The simplex category and realization

The simplex category ∆/X for a simplicial set
X has for objects all simplices ∆n → X ; its mor-
phisms are the incidence relations between the sim-
plices, meaning all commutative diagrams

∆m
τ
&&

θ
��

X
∆n σ

88

(1)

Fact: Every simplicial set X is a colimit of its sim-
plices. The simplices ∆n → X define an isomor-
phism

lim−→
∆n→X

∆
n ∼=−→ X .
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The realization |X | of a simplicial set X is defined
by

|X |= lim−→
∆n→X

|∆n|.

The assignment X 7→ |X | defines a functor

| | : sSet→ CGHaus.

Lemma 2.1. The realization functor is left adjoint
to the singular functor S : CGHaus→ sSet.

Proof. Exercise.

Examples:

1) |∆n| = |∆n|, since the simplex category ∆/∆n

has a terminal object, namely 1 : ∆n→ ∆n.

2) |∂∆n|= ∂ |∆n|, and |Λn
k| is the part of the bound-

ary ∂ |∆n| with the face opposite the vertex k
removed, since the realization functor is a left
adjoint and therefore preserves coequalizers and
coproducts.
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The nth skeleton skn X of a simplicial set X is the
subobject generated by the simplices Xi, 0≤ i≤ n.

The ascending sequence of subcomplexes

sk0 X ⊂ sk1 X ⊂ sk2 X ⊂ . . .

defines a filtration of X , and there are pushouts⊔
x∈NXn ∂∆n //

��

skn−1 X

��⊔
x∈NXn ∆n // skn X

NXn is the set of non-degenerate n-simplices of X .

Facts: 1) The realization of a simplicial set is a
CW -complex.
2) Every monomorphism A→ B of simplicial sets
induces a cofibration |A| → |B| of spaces. In fact,
|B| is constructed from |A| by attaching cells.

The following is more serious:

Lemma 2.2. The realization functor preserves fi-
nite limits. Equivalently, it preserves finite prod-
ucts and equalizers.

See [2] or [1] for a proof.
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3 Model structure for simplicial sets

This section summarizes material which is pre-
sented in some detail in [4]. See also [2].

Say that a map f : X → Y of simplicial sets is a
weak equivalence if the induced map f∗ : |X | →
|Y | is a weak equivalence of CGHaus.

A map i : A→ B of simplicial sets is a cofibration
if and only if it is a monomorphism, meaning that
all functions i : An→ Bn are injective.

A simplicial set map p : X → Y is a fibration if
and only if it has the right lifting property with
respect to all trivial cofibrations.

Theorem 3.1. With these definitions of weak equiv-
alence, cofibration and fibration, the category sSet
of simplicial sets satisfies the axioms for a closed
model category.

Here are the basic ingredients of the proof:

Lemma 3.2. A map p : X→Y is a trivial fibration
if and only if it has the right lifting property with
respect to all inclusions ∂∆n ⊂ ∆n, n≥ 0.

The proof of this Lemma is formal.

The following can be proved with simplicial ap-
proximation techniques [3]:
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Lemma 3.3. Suppose that a simplicial set X has at
most countably many non-degenerate simplices.

Then the set of path components π0|X | and all ho-
motopy groups πn(|X |,x) are countable.

Here’s a consequence:

Lemma 3.4 (Bounded cofibration lemma). Sup-
pose that i : X→Y is a trivial cofibration and that
A⊂ Y is a countable subcomplex.

Then there is a countable subcomplex B ⊂ Y with
A ⊂ B such that the map B∩X → B is a trivial
cofibration.

Lemma 3.4 means that the set of countable trivial
cofibrations generate the class of all trivial cofi-
brations, while the set of all inclusions ∂∆n ⊂ ∆n

generates the class of all cofibrations.

Theorem 3.1 then follows from small object argu-
ments.

Remark 3.5. The realization functor preserves cofi-
brations and trivial cofibrations, so the singular
functor S preserves fibrations and trivial fibrations,
by adjointness. The adjoint pair

| | : sSet � CGHaus : S,

is a Quillen adjunction.
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Kan fibrations
A Kan fibration is a map p : X → Y of simpli-
cial sets which has the right lifting property with
respect to all inclusions Λn

k ⊂ ∆n.

A Kan complex is a simplicial set X for which the
canonical map X →∗ is a Kan fibration.

Every fibration is a Kan fibration. Every fibrant
simplicial set is a Kan complex.

Kan complexes Y have combinatorially defined ho-
motopy groups: if x ∈ Y0 is a vertex of Y , then

πn(Y,x) = π((∆n,∂∆
n),(Y,x))

where π( , ) denotes simplicial homotopy classes
of maps.

The set of path components π0X of a simplicial
set X is defined by the coequalizer

X1 ⇒ X0→ π0X ,

where the maps X1→ X0 are the face maps d0,d1.

Say that a map f : Y → Y ′ of Kan complexes is
a combinatorial weak equivalence if it induces
isomorphisms

πn(Y,x)
∼=−→ πn(Y ′, f (x))
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for all x ∈ Y0, and

π0(Y )
∼=−→ π0(Y ′).

Going further requires the following major theo-
rem, due to Quillen:

Theorem 3.6. The realization of a Kan fibration is
a Serre fibration.

The proof of this result uses much of the classical
homotopy theory of Kan complexes (in particular
the theory of minimal fibrations), and will not be
discussed here.

Here are the consequences:

Theorem 3.7 (Milnor theorem). Suppose that Y is
a Kan complex and that η : Y → S(|Y |) is the ad-
junction homomorphism. Then η is a combinato-
rial weak equivalence.

It follows that the combinatorial homotopy groups
of πn(Y,x) coincide up to natural isomorphism with
the ordinary homotopy groups πn(|Y |,x) of the re-
alization, for all Kan complexes Y .

The proof of Theorem 3.7 is a long exact sequence
argument using path-loop fibre sequences in sim-
plicial sets. These are Kan fibre sequences, and
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the key is to know that their realizations are fibre
sequences.

Theorem 3.8. Every Kan fibration is a fibration.

The key step in the proof of Theorem 3.8 is to
show, using Theorem 3.7, that every map which
is a Kan fibration and a weak equivalence is a triv-
ial fibration.

This is used to show that every trivial cofibration
has the left lifting property with respect to all Kan
fibrations, or that every Kan fibration has the right
lifting property with respect to all trivial cofibra-
tions.

Remark 3.9. Theorem 3.8 implies that the model
structure of Theorem 3.1 consists of cofibrations,
Kan fibrations and weak equivalences.

This is the standard, classical model structure for
simplicial sets.

The identification of the fibrations with Kan fibra-
tions is the “hard” part of its construction.
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Theorem 3.10. The adjunction maps η : X→ S(|X |)
and ε : |S(Y )| → Y are weak equivalences, for all
simplicial sets X and spaces Y , respectively.

In particular, the standard Quillen model structures
on sSet and CGHaus are Quillen equivalent.
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[3] J. F. Jardine. Simplicial approximation. Theory Appl. Categ., 12:No. 2, 34–72
(electronic), 2004.

[4] J. F. Jardine. Lectures on Homotopy Theory. http://www.math.uwo.ca/

~jardine/papers/HomTh, 2016.

[5] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

18


