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5 Grothendieck topologies

A Grothendieck site is a small category C equipped
with a Grothendieck topology T .

A Grothendieck topology T consists of a collec-
tion of subfunctors

R⊂ hom( ,U), U ∈ C ,

called covering sieves, such that the following hold:

1) (base change) If R ⊂ hom( ,U) is covering
and φ : V →U is a morphism of C , then

φ
−1(R) = {γ : W →V | φ · γ ∈ R}

is covering for V .

2) (local character) Suppose R,R′ ⊂ hom( ,U)

and R is covering. If φ−1(R′) is covering for
all φ : V →U in R, then R′ is covering.

3) hom( ,U) is covering for all U ∈ C .
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Typically, Grothendieck topologies arise from cov-
ering families in sites C having pullbacks. Cover-
ing families are sets of maps which generate cov-
ering sieves.

Suppose that C has pullbacks. A topology T on
C consists of families of sets of morphisms

{φα : Uα →U}, U ∈ C ,

called covering families, such that

1) Suppose φα : Uα →U is a covering family and
ψ : V →U is a morphism of C . Then the set
of all V ×U Uα→V is a covering family for V .

2) Suppose {φα : Uα →V} is covering, and
{γα,β : Wα,β →Uα} is covering for all α . Then
the set of composites

Wα,β

γα,β−−→Uα

φα−→U

is covering.

3) The singleton set {1 : U →U} is covering for
each U ∈ C .
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Examples:

1) X = topological space. The site op |X is the
poset of open subsets U ⊂ X . A covering fam-
ily for an open U is an open cover Vα ⊂U .

2) X = topological space. The site loc |X is the
category of all maps f : Y → X which are local
homeomorphisms.

f : Y → X is a local homeomorphism if each x ∈
Y has a neighbourhood U such that f (U) is open
in X and the restricted map U→ f (U) is a homeo-
morphism. A morphism of loc |X is a commutative
diagram

Y g
//

f ��

Y ′

f ′��

X
where f and f ′ are local homeomorphisms. A
family {φα : Yα → Y} of local homeomorphisms
(over X) is covering if X = ∪φα(Yα).

3) S = a scheme (topological space with sheaf
of rings locally isomorphic to affine schemes
Sp(R)). The underlying topology on S is the
Zariski topology.
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The Zariski site Zar|S is the poset with objects
all open subschemes U ⊂ S. A family Vα ⊂U is
covering if ∪Vα =U (as sets).

A scheme homomorphism φ : Y → S is étale at
y ∈ Y if

a) Oy is a flat O f (y)-module (φ is flat at y).

b) φ is unramified at y: Oy/M f (y)Oy is a finite
separable field extension of k( f (y)).

Say that a map φ : Y → S is étale if it is étale at
every y ∈ Y (and locally of finite type).

4) S = scheme. The étale site et|S has as objects
all étale maps φ : V → S and all diagrams

V //

φ ��

V ′

φ ′��

S

for morphisms (with φ ,φ ′ étale).

An étale cover is a collection of étale mor-
phisms φα : Vα → V such that V = ∪φα(Vα).

Equivalently every morphism Sp(Ω)→V lifts
to some Vα if Ω is a separably closed field.
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5) The Nisnevich site Nis|S has the same under-
lying category as the étale site, namely all étale
maps V → S and morphisms between them.

A Nisnevich cover is a family of étale maps
Vα→V such that every morphism Sp(K)→V
lifts to some Vα where K is any field.

6) A flat cover of a scheme T is a set of flat mor-
phisms φα : Tα → T (ie. mophisms which are
flat at each point) such that T = ∪φα(Tα) as a
set (equivalently tTα → T is faithfully flat).

(Sch|S) f l is the “big” flat site.

Here’s a trick: pick a large cardinal κ; then (Sch|S)
is the category of S-schemes X → S such that the
cardinality of both the underlying point set of X
and all sections OX(U) of its sheaf of rings are
bounded above by κ .

7) There are corresponding big sites (Sch|S)Zar,
(Sch|S)et , (Sch|S)Nis, ... and you can play simi-
lar games with topological spaces.
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8) Suppose that G = {Gi} is profinite group such
that all G j → Gi are surjective group homo-
morphisms. Write also G = lim←−Gi.

A discrete G-set is a set X with G-action which
factors through an action of Gi for some i.

G−Setd f is the category of G-sets which are
both discrete and finite. A family Uα → X is
covering if and only if

⊔
Uα → X is surjective.

Main example: G is the profinite group {G(L/K)}
of Galois groups of the finite Galois extensions
L/K of a field K.

9) Suppose that C is a small category. Say that
R⊂ hom( ,x) is covering if and only if 1x ∈ R.
This is the chaotic topology on C .

10) Suppose that C is a site and that U ∈ C . The
slice category C /U inherits a topology from
C : the set of maps Vα→V →U covers V →U
if and only if the family Vα →V covers V .
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Definitions: Suppose that C is a Grothendieck site.

1) A presheaf (of sets) on C is a functor

C op→ Set.

If A is a category, an A -valued presheaf on C
is a functor C op→A .

The set-valued presheaves on C form a category
(morphisms are natural transformation), written Pre(C ).

One defines presheaves taking values in any cate-
gory: I write sPre(C ) for presheaves on C taking
values in simplicial sets — this is the category of
simplicial presheaves on C .

2) A sheaf (of sets) on C is a presheaf F : C op→
Set such that the canonical map

F(U)→ lim←−
V→U∈R

F(V )

is an isomorphism for each covering sieve R⊂
hom( ,U).

Morphisms of sheaves are natural transformations:
write Shv(C ) for the corresponding category.

The sheaf category Shv(C ) is a full subcategory
of Pre(C ).
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One defines sheaves in any complete category, such
as simplicial sets: sShv(C ) denotes the category
of simplicial sheaves on the site C .

Exercise: If the topology on C is defined by a pre-
topology (so that C has all pullbacks), show that
F is a sheaf if and only if all pictures

F(U)→∏
α

F(Uα)⇒ ∏
α,β

F(Uα×U Uβ)

arising from covering families Uα →U are equal-
izers.

Lemma 5.1. 1) If R ⊂ R′ ⊂ hom( ,U) and R is
covering then R′ is covering.

2) If R,R′ ⊂ hom( ,U) are covering then R∩R′ is
covering.

Proof. 1) φ−1(R) = φ−1(R′) for all φ ∈ R.

2) φ−1(R∩R′) = φ−1(R′) for all φ ∈ R.

Suppose that R ⊂ hom( ,U) is a sieve, and F is a
presheaf on C . Write

F(U)R = lim←−
V→U∈R

F(V )

I say that F(U)R is the set of R-compatible fami-
lies in U .
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If S⊂ R then there is an obvious restriction map

F(U)R→ F(U)S

Write
LF(U) = lim−→

R
F(U)R

where the colimit is indexed over the filtering di-
agram of all covering sieves R⊂ hom( ,U). Then
x 7→ LF(U) is a presheaf and there is a natural
presheaf map

η : F → LF

Say that a presheaf G is separated if (equivalently)

1) the map η : G→ LG is monic in each section,
ie. all functions G(U)→ LG(U) are injective,
or

2) Given x,y ∈ G(U), if there is a covering sieve
R ⊂ hom( ,U) such that φ ∗(x) = φ ∗(y) for all
φ ∈ R, then x = y.

Lemma 5.2. 1) LF is separated, for all F.

2) If G is separated then LG is a sheaf.

3) If f : F→G is a presheaf map and G is a sheaf,
then f factors uniquely through a presheaf map
f∗ : LF → G.

Proof. Exercise.
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Corollary 5.3. 1) The object L2F is a sheaf for
every presheaf F.

2) The functor F 7→ L2F is left adjoint to the in-
clusion Shv(C )⊂ Pre(C ). The unit of the ad-
junction is the composite

F
η−→ LF

η−→ L2F (5.1)

One often writes

η : F → L2F = F̃

for the composite (5.1).

L2F = F̃ is the associated sheaf for F , and η is
the canonical map.

6 Exactness properties

Lemma 6.1. 1) The associated sheaf functor pre-
serves all finite limits.

2) Shv(C ) is complete and co-complete. Limits
are formed sectionwise.

3) Every monic is an equalizer.

4) If θ : F→G in Shv(C ) is both monic and epi,
then θ is an isomorphism.
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Proof. 1) LF is defined by filtered colimits, and
finite limits commute with filtered colimits.

2) If X : I→ Shv(C ) is a diagram of sheaves, then
the colimit in the sheaf category is L2(lim−→X), where
lim−→X is the presheaf colimit.

3) If A⊂ X is a subset, then there is an equalizer

A //X
p
//

∗
//X/A

The same holds for subobjects A⊂X of presheaves,
and hence for subobjects of sheaves, since L2 is
exact.

4) The map θ appears in an equalizer

F θ //G
f
//

g
//K

since θ is monic. θ is an epi, so f = g. But then
1G : G → G factors through θ , giving a section
σ : G→ F . Finally, θσθ = θ and θ is monic,
so σθ = 1.

Definitions:
1) A presheaf map f : F → G is a local epimor-
phism if for each x ∈ G(U) there is a covering
sieve R ⊂ hom( ,U) such that φ ∗(x) = f (yφ) for
all φ : V →U in R.
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2) f : F→G is a local monic if given x,y ∈ F(U)

such that f (x) = f (y), then there is a covering
sieve R ⊂ hom( ,U) such that φ ∗(x) = φ ∗(y) for
all φ : V →U in R.

3) A presheaf map f : F→G which is both a local
epi and a local monic is a local isomorphism.

Lemma 6.2. 1) The natural map η : F→ LF is a
local monomorphism and a local epimorphism.

2) Suppose that f : F → G is a presheaf mor-
phism. Then f induces an isomorphism of as-
sociated sheaves if and only if f is both a local
epi and a local monic.

Proof. For 2) observe that, given a commutative
diagram

F g
//

h   

F ′

f
��

F ′′

of presheaf morphisms, if any two of f ,g and h are
local isomorphisms, then so is the third.

A sheaf map g : E → E ′ is a monic (respectively
epi) if and only if it is a local monic (respectively
local epi).
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A Grothendieck topos is a category E which is
equivalent to a sheaf category Shv(C ) on some
Grothendieck site C .

Grothendieck toposes are characterized by exact-
ness properties:

Theorem 6.3 (Giraud). A category E having all
finite limits is a Grothendieck topos if and only if
it has the following properties:

1) E has all small coproducts; they are disjoint
and stable under pullback

2) every epimorphism of E is a coequalizer

3) every equivalence relation R→ E×E in E is
a kernel pair and has a quotient

4) every coequalizer R ⇒ E→ Q is stably exact

5) there is a (small) set of objects which generates
E .

A sketch proof of Giraud’s Theorem appears be-
low, but the result is proved in many places — see,
for example, [2], [3]. See also [1].

Here are the definitions of the terms appearing in
the statement of the Theorem:
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1) The coproduct
⊔

i Ai is disjoint if all diagrams

/0 //

��

A j

��

Ai //
⊔

i Ai

are pullbacks for i 6= j.
⊔

i Ai is stable under
pullback if all diagrams⊔

i B
′×B Ai //

��

⊔
i Ai

��

B′ //B
are pullbacks.

3) An equivalence relation is a monomorphism
m = (m0,m1) : R→ E×E such that

a) the diagonal ∆ : E → E×E factors through m
(ie. a∼ a)

b) the composite R m−→E×E τ−→E×E factors through
m (ie. a∼ b⇒ b∼ a).

c) the map

(m0m0∗,m1m1∗) : R×E R→ R×R

factors through m (this is transitivity) where
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the pullback is defined by

R×E R m1∗ //

m0∗
��

R
m0
��

R m1
//E

The kernel pair of a morphism u : E→ D is a
pullback

R m1 //

m0
��

E
u
��

E u
//D

(Exercise: every kernel pair is an equivalence
relation).
A quotient for an equivalence relation (m0,m1) :
R→ E×E is a coequalizer

R
m0 //

m1
//E //E/R

4) A coequalizer R ⇒ E → Q is stably exact if
the diagram

R×Q Q′⇒ E×Q Q′→ Q′

is a coequalizer for all morphisms Q′→ Q.

5) A generating set is a set {Ai} which detects
non-trivial monomorphisms: if a monomorphism
m : P → Q induces bijections hom(Ai,P) →
hom(Ai,Q) for all i, then m is an isomorphism.
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Exercise: Show that any category Shv(C) on a
site C satisfies the conditions of Giraud’s theorem.
The family L2 hom( ,U), U ∈ C is a set of gener-
ators.

Sketch proof of Giraud’s Theorem. The key is to show
that the category E is cocomplete — see [2].

If A is the set of generators for E prescribed by
Giraud’s theorem, let C be the full subcategory
of E on the set of objects A. A subfunctor R ⊂
hom( ,x) on C is covering if the map⊔

y→x∈R

y→ x

is an epimorphism of E .

Every object E ∈ E represents a sheaf hom( ,E)
on C , and a sheaf F on C determines an object

lim−→
hom( ,y)→F

y

of E .

The adjunction

hom( lim−→
hom( ,y)→F

y,E)∼= hom(F,hom( ,E))

determines an adjoint equivalence between E and
Shv(C ).
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The proof of Giraud’s Theorem is arguably more
important than the statement of the theorem itself.
Here are some examples of the use of the basic
ideas:

1) Suppose that G is a sheaf of groups, and let G−
Shv(C ) denote the category of all sheaves X ad-
mitting G-action, with equivariant maps between
them.

G− Shv(C ) is a Grothendieck topos, called the
classifying topos for G, by Giraud’s theorem. The
objects G×hom( ,U) form a generating set.

2) If G = {Gi} is a profinite group with all transi-
tion maps Gi→G j epi, then the category G−Setd

of discrete G-sets is a Grothendieck topos. The fi-
nite discrete G-sets form a generating set for this
topos, and the site of finite discrete G-sets is “the”
site prescribed by Giraud’s theorem.

7 Geometric morphisms

Suppose that C and D are Grothendieck sites. A
geometric morphism f : Shv(C )→ Shv(D) con-
sists of functors f∗ : Shv(C )→ Shv(D) and f ∗ :
Shv(D)→ Shv(C ) such that
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1) f ∗ is left adjoint to f∗, and

2) f ∗ preserves finite limits.

The left adjoint f ∗ is called the inverse image
functor, while f∗ is called the direct image.

The inverse image f ∗ is left and right exact in the
sense that it preserves all finite limits and colimits.

The direct image f∗ is usually not left exact (does
not preserve finite colimits), and hence has higher
derived functors.

Examples
1) Suppose f : X→Y is a continuous map of topo-
logical spaces. Pullback along f induces a functor
op |Y → op |X : U ⊂ Y 7→ f−1(U).

Open covers pull back to open covers, so if F is
a sheaf on X then composition with the pullback
gives a sheaf f∗F on Y with f∗F(U) =F( f−1(U)).

The resulting functor f∗ : Shv(op |X)→ Shv(op |Y )
is the direct image

The left Kan extension f p : Pre(op |Y )→Pre(op |X)
is defined by

f pG(V ) = lim−→ G(U)
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where the colimit is indexed over all diagrams

V //

��

U

��

X f
//Y

The category op |Y has all products (ie. intersec-
tions), so the colimit is filtered. The functor G 7→
f pG therefore commutes with finite limits. The
inverse image functor

f ∗ : Shv(op |Y )→ Shv(op |X)

is defined by f ∗(G) = L2 f p(G).

The resulting pair of functors f∗, f ∗ forms a geo-
metric morphism f : Shv(op |X)→ Shv(op |Y ).
2) Suppose f : X → Y is a morphism of schemes.

Etale maps (resp. covers) are stable under pull-
back, and so there is a functor et |Y → et |X defined
by pullback, and if F is a sheaf on et |X then there
is a sheaf f∗F on et |Y defined by

f∗F(V → Y ) = F(X×Y V → X).

The restriction functor f∗ : Pre(et |X)→ Pre(et |Y )
has a left adjoint f p defined by

f pG(U → X) = lim−→ G(V → Y )
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where the colimit is indexed over all diagrams

U //

��

V

��

X f
//Y

where both vertical maps are étale. The colimit is
filtered, because étale maps are stable under pull-
back and composition. The inverse image functor

f ∗ : Shv(et |Y )→ Shv(et|X)

is defined by f ∗F = L2 f pF , and so f induces a
geometric morphism f : Shv(et |X)→ Shv(et |Y ).
A morphism of schemes f : X →Y induces a geo-
metric morphism f : Shv(?|X)→ Shv(?|Y ) and/or
f : (Sch|X)? → (Sch|Y )? for all of the geometric
topologies (eg. Zariski, flat, Nisnevich, qfh, ...),
by similar arguments.

3) A point of Shv(C ) is a geometric morphism
Set→ Shv(C ).

Every point x ∈ X of a topological space X de-
termines a continuous map {x} ⊂ X and hence a
geometric morphism

Set∼= Shv(op |{x})
x−→ Shv(op |X)
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The set
x∗F = lim−→

x∈U
F(U)

is the stalk of F at x.

The object x∗Z associated to a set Z is called a
skyscraper sheaf.
4) Suppose that k is a field. A scheme map x :
Sp(k)→ X induces a geometric morphism

Shv(et|k)→ Shv(et|X)
If k happens to be separably closed, then there is
an equivalence Shv(et|k) ' Set and the resulting
geometric morphism x : Set→ Shv(et |X) is called
a geometric point of X . The inverse image func-
tor

F 7→ f ∗F = lim−→
U

��

Sp(k) x
//

<<

X

F(U)

is the stalk of F at x.

5) Suppose that S and T are topologies on a site C
so that S ⊂ T . In other words, T has more covers
than S and hence refines S. Then every sheaf for T
is a sheaf for S. Write

π∗ : Shv(C ,T )⊂ Shv(C ,S)
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for the corresponding inclusion.

The associated sheaf functor for the topology T
gives a left adjoint π∗ for the inclusion functor π∗,
and π∗ preserves finite limits.

Example: There is a geometric morphism

Shv(C )→ Pre(C )

determined by the inclusion of the sheaf category
in the presheaf category and the associated sheaf
functor.

8 Points and Boolean localization

A Grothendieck topos Shv(C ) has enough points
if there is a set of geometric morphisms xi : Set→
Shv(C ) such that the induced morphism

Shv(C )
(x∗i )−−→∏

i
Set

is faithful.
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Lemma 8.1. Suppose that f : Shv(D)→ Shv(C )

is a geometric morphism. Then the following are
equivalent:

a) f ∗ : Shv(C )→ Shv(D) is faithful.

b) f ∗ reflects isomorphisms

c) f ∗ reflects epimorphisms

d) f ∗ reflects monomorphisms

Proof. Suppose that f ∗ is faithful, ie. that f ∗(g1)=

f ∗(g2) implies that g1 = g2.

Suppose that m : F→G is a morphism of Shv(C )

such that f ∗(m) is monic. If m · f1 = m · f2 then
f ∗( f1) = f ∗( f2) so f1 = f2. The map m is therefore
monic.

Similarly, f ∗ reflects epimorphisms and hence re-
flects isomorphisms.

Suppose that f ∗ reflects epis and suppose given
g1,g2 : F → G such that f ∗(g1) = f ∗(g2).

g1 = g2 if and only if their equalizer e : E → F is
an isomorphism. But f ∗ preserves equalizers and
reflects isomorphisms, so e is an epi and g1 = g2.

The other arguments are similar.
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Here are some basic definitions:

1) A lattice L is a partially ordered set which has
coproducts x∨ y and products x∧ y.

2) A lattice L has 0 and 1 if it has an initial and
terminal object, respectively.

3) A lattice L is said to be distributive if

x∧ (y∨ z) = (x∧ y)∨ (x∧ z)

for all x,y,z.

4) Suppose that L is a lattise with 0 and 1 and that
x ∈ L. A complement for x is an element a such
that x∨a = 1 and x∧a = 0.

If L is also distibutive the complement, if it exists,
is unique: if b is another complement for x, then

b = b∧1 = b∧ (x∨a) = (b∧ x)∨ (b∧a)
= (x∧a)∨ (b∧a) = (x∨b)∧a = a

One usually writes ¬x for the complement of x.

5) A Boolean algebra B is a distributive lattice
with 0 and 1 in which every element has a com-
plement.

6) A lattice L is said to be complete if it has all
small limits and colimits (aka. all small meets and
joins).

24



7) A frame P is a lattice that has all small joins
and satisfies an infinite distributive law

U ∧ (
∨

i

Vi) =
∨

i

(U ∧Vi)

Examples:

1) The poset O(T ) of open subsets of a topologi-
cal space T is a frame.

2) The power set P(I) of a set I is a complete
Boolean algebra.

3) Every complete Boolean algebra B is a frame.
In effect, every join is a filtered colimit of finite
joins.

Every frame A has a canonical Grothendieck topol-
ogy: a family yi ≤ x is covering if

∨
i yi = x. Write

Shv(A) for the corresponding sheaf category.

Every complete Boolean algebra B is a frame, and
has an associated sheaf category Shv(B).
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Example: Suppose that I is a set. Then there is an
equivalence

Shv(P(I))'∏
i∈I

Set

Any set I of points xi : Set→ Shv(C ) assembles
to give a geometric morphism

x : Shv(P(I))→ Shv(C ).

Here
x(Fi) = ∏

i∈I
xi∗(Fi).

Lemma 8.2. Suppose that F is a sheaf of sets on
a complete Boolean algebra B. Then the poset
Sub(F) of subobjects of F is a complete Boolean
algebra.

Proof. Sub(F) is a frame, by an argument on the
presheaf level. It remains to show that every ob-
ject G ∈ Sub(F) is complemented. The obvious
candidate for ¬G is

¬G =
∨

H∧G= /0

H

and we need to show that G
∨
¬G = F .

Every K ≤ hom( ,A) is representable: in effect,

K = lim−→
hom( ,B)→K

hom( ,B) = hom( ,C)
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where
C =

∨
hom( ,B)→K

B ∈B.

It follows that Sub(hom( ,A))∼= Sub(A) is a com-
plete Boolean algebra.

Consider all diagrams

φ−1(G) //

��

G

��

hom( ,A)
φ
//F

There is an induced pullback

φ−1(G)∨¬φ−1(G) //

∼=
��

G∨¬G

��

hom( ,A)
φ

//F

F is a union of its representables (all φ are monic
since all hom( ,A) are subobjects of the terminal
sheaf), so G∨¬G = F .

Lemma 8.3. Suppose that B is a complete Boolean
algebra. Then every epimorphism π : F → G in
Shv(B) has a section.

Remark 8.4. Lemma 8.3 asserts that the sheaf cat-
egory on a complete Boolean algebra satisfies the
Axiom of Choice.
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Proof of Lemma 8.3. Consider the family of lifts

F
π
��

N ≤
//

??

G

This family is non-empty, because every x ∈ G(1)
restricts along some covering B≤ 1 to a family of
elements xB which lift to F(B).

All maps hom( ,B)→G are monic, since all maps
hom( ,B)→ hom( ,1) = ∗ are monic. Thus, all
such morphisms represent objects of Sub(G), which
is a complete Boolean algebra by Lemma 8.2.

Zorn’s Lemma implies that the family of lifts has
maximal elements.

Suppose that N is maximal and that ¬N 6= /0. Then
there is an x ∈ ¬N(C) for some C, and there is a
cover B′ ≤ C such that xB′ ∈ N(B′) lifts to F(B′)
for all B′. Then N ∧ hom( ,B′) = /0 so the lift ex-
tends to a lift on N ∨hom( ,B′), contradicting the
maximality of N.

A Boolean localization for Shv(C ) is a geometric
morphism p : Shv(B)→ Shv(C ) such that B is a
complete Boolean algebra and p∗ is faithful.
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Theorem 8.5 (Barr). Boolean localizations exist
for every Grothendieck topos Shv(C ).

Theorem 8.5 is one of the big results of topos the-
ory, and is proved in multiple places — see [2], for
example. There is a relatively simple description
of the proof in [1].

In general, a Grothendieck topos Shv(C ) does not
have enough points (eg. sheaves on the flat site
for a scheme), but Theorem 8.5 asserts that every
Grothendieck topos has a “fat point” given by a
Boolean localization.
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