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9 Rigidity

Suppose that k is an algebraically closed field, and
let ` be a prime such that ` 6= char(k).

We will be working with the big étale site (Sch |k)et

over the field k throughout this section.

Note the (standard) abuse: I should have written
(Sch |Sp(k))et .

Fact: Every k-scheme X represents a sheaf on (Sch |k)et ,
by the theorem of faithfully flat descent. See any
étale cohomology textbook, such as [9].

Examples: 1) I use the notation Gln to represent
either the algebraic group

Gln = Sp(k[Xi j]det)

over k, or the sheaf of groups

Gln = hom( ,Gln)

that it represents on the site (Sch |k)et .

2) Gl1 is the multiplicative group Gm. One sees the
notation µ =Gm, and one always sees µ` for its `-
torsion part. µ` is the sheaf of `th roots of unity.
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Since the prime ` 6= char(k), there is an isomor-
phism

µ`
∼= Γ

∗Z/`= Z/`.
Γ∗Z/` is the constant sheaf on the group Z/`, and
the displayed equality is a standard abuse.

Constant sheaves, global sections
The constant sheaf functor A 7→ Γ∗(A) is left ad-
joint to the global sections functor X 7→Γ∗X , where

Γ∗X = X(k),

and there’s a geometric morphism

Γ : Shv((Sch |k)et)→ Set.

This is a special case of a geometric morphism

Γ : Shv(C )→ Set

defined by

Γ∗(X) = lim←−
U∈C

X(U),

which is the global sections functor for an arbi-
trary site C .

The general version of Γ∗ specializes to global sec-
tions for sheaves on (Sch |k)et , because this site has
a terminal object, namely Sp(k).
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Remark 9.1. It’s a special feature of the étale topol-
ogy (and some others) that

Γ
∗A(U) = hom(π0U,A)

where π0(U) is the set of connected components
of the k-scheme U , since Sp(k) is connected.

In effect, the k-scheme
⊔

A Sp(k) represents Γ∗A,
and there is an isomorphism

homk(U,
⊔
A

Sp(k))∼= hom(π0U,A).

Affine schemes and sheaves
The sheaf of groups Gln is defined on affine k-
schemes Sp(R) (ie. k-algebras R) by

Gln(Sp(R)) = Gln(R),

where Gln(R) is the group of invertible n× n ma-
trices with entries in R.

There is a standard way to recover the sheaf Gln
on (Sch |k)et from the matrix group description for
affine schemes, by an equivalence

Shv((Sch |k)et)' Shv((Aff |k)et)

where (Aff |k)et is the étale site of affine k-schemes.
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The homomorphisms Gln(R)→ Gln+1(R) with

A 7→
[

A 0
0 1

]
define a homomorphism Gln → Gln+1 of sheaves
of groups. The colimit presheaf

Gl = lim−→
n

Gln (9.1)

is the traditional infinite general linear group Gl(R)
in affine sections.

Warning: One typically also writes Gl for the as-
sociated sheaf, so that there is a relation of the
form (9.1) in the category of sheaves of groups.

Classifying spaces
A presheaf of groups G has a classifying simpli-
cial presheaf BG, with

BG(U) = B(G(U)), U ∈ Sch |k,

given by the standard simplicial set construction.

The object BG is a simplicial sheaf if G is a sheaf,
because

BGn = G×·· ·×G

(n factors) as a presheaf.
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The classifying space construction commutes with
filtered colimits, so we are entitled to a classifying
simplicial sheaf (or presheaf) BGl with

BGl = lim−→
n

BGln.

Homology sheaves, cohomology groups
Simplicial sheaves (or presheaves) X have coho-
mology groups and homology sheaves.

1) The homology sheaves H̃n(X ,A) are easier to
define: form the presheaf of chain complexes

Z(X)⊗A,

with

(Z(X)⊗A)(U) = Z(X(U))⊗A(U),

where Z(X(U)) is the standard (functorial) Moore
chain complex for the simplicial set X(U). Then
the sheaf H̃n(X ,A) is the sheaf which is associated
to the presheaf Hn(Z(X)⊗A).

Example: The sheaf H̃n(X ,Z/`) is the sheaf asso-
ciated to the presheaf Hn(Z/`(X)).
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2) Cohomology has a more interesting definition:
the nth (étale) cohomology group Hn(X ,A) of the
simplicial presheaf X with coefficients in the abelian
presheaf A is defined by

Hn(X ,A) = [X ,K(A,n)],

where the thing on the right is morphisms in the
local homotopy category of simplicial presheaves
on the étale site.

K(A,n) is the presheaf Γ(A[−n]), where Γ is the
Dold-Kan functor from chain complexes to sim-
plicial abelian groups, and A[−n] is the presheaf
of chain complexes which consists of a copy of A
concentrated in degree n.

Local homotopy theory
There is a model structure on simplicial presheaves
(respectively, and Quillen equivalently, simplicial
sheaves) on the site (Sch |k)et , for which the weak
equivalences are those maps X → Y which induce
weak equivalences of simplicial sets in all stalks
— I call these local weak equivalences, and for
which the cofibrations are the monomorphisms.

This is a special case of a construction for arbitrary
Grothendieck sites.
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Example: The canonical map η : X → X̃ from
a simplicial presheaf to its associated simplicial
sheaf is a local weak equivalence.

Remark 9.2. 1) If X is represented by a (simpli-
cial) scheme having the same name, and A is a
sheaf of abelian groups, then Hn(X ,A) coincides
up to isomorphism with the étale cohomology group
Hn

et(X ,A) of X , as it is normally defined.

In particular, if X is a k-scheme, and A→ I∗ is
an injective resolution of A in sheaves of abelian
groups, then there is an isomorphism

Hn(X ,A)∼= Hn(I∗(X))∼= Extn(Z̃(X),A).

We have, in effect, generalized the standard defi-
nition of étale cohomology groups of schemes to
cohomology for arbitrary simplicial presheaves.

2) There is a spectral sequence [5] relating homol-
ogy sheaves and cohomology groups, with

E p,q
2 = Extp(H̃q(X),A)⇒ H p+q(X ,A).

There is also an `-torsion version, with

E p,q
2 = Extp(H̃q(X ,Z/`),A)⇒ H p+q(X ,A) (9.2)

if A is an `-torsion sheaf.
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These spectral sequences both come from bicom-
plexes of the form

hom(Xp, Iq),

where A→ I∗ is an injective resolution of A.

Thus, if f : X→Y is a map of simplicial presheaves
which induces homology sheaf isomorphisms

f∗ : H̃n(X ,Z/`)
∼=−→ H̃n(Y,Z/`), n≥ 0,

then f induces isomorphisms

f ∗ : Hn(Y,Z/`)
∼=−→ Hn(X ,Z/`)

in étale cohomology groups for all n≥ 0.

Fact: Local weak equivalences induce isomorphisms
of homology sheaves, hence isomorphisms of co-
homology groups.

Exercise: Show that if p : F → F ′ is a local epi-
morphism of presheaves on (Sch |k)et , then the in-
duced map F(k)→ F ′(k) in global sections is sur-
jective, since k is an algebraically closed field.

It follows that the associated sheaf map η : F→ F̃
induces a bijection F(k)

∼=−→ F̃(k) in global sec-
tions.

It also follows that the global sections functor on
Shv((Sch |k)et) is exact on abelian sheaves.
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Warning: Global sections is usually not exact.

There are isomorphisms

Hn
et(k,A)∼=

{
A(k) if n = 0,

0 if n > 0.

More generally, the map A → I∗ of chain com-
plexes defined by an injective resolution with I∗

in negative degrees induces a natural isomorphism

Hn(X ,A(k))∼= Hn(Γ∗X ,A)

for any simplicial set X and abelian sheaf A.

Rigidity
The canonical map

ε : Γ
∗
Γ∗BGl→ BGl

has the form

ε : Γ
∗BGl(k)→ BGl

up to isomorphism, and that the induced map

ε
∗ : Hn(BGl,Z/`)→ Hn(Γ∗BGl(k),Z/`)

can be written as

ε
∗ : Hn

et(BGl,Z/`)→ Hn(BGl(k),Z/`), (9.3)

where the object on the right is a standard coho-
mology group of the simplicial set BGl(k) with
coefficients in the abelian group Z/`.
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The map (9.3) is a comparison map of étale with
discrete cohomology for the group Gl.

Theorem 9.3. Suppose that k is an algebraically
closed field, and that ` is prime such that ` 6= char(k).
Then the comparison map

ε
∗ : Hn

et(BGl,Z/`)→ Hn(BGl(k),Z/`)

is an isomorphism.

Remark 9.4. This theorem gives a calculation

H∗(BGl(k),Z/`)∼= Z/`[c1,c2, . . . ],

since standard results in étale cohomology theory
imply that H∗et(BGl,Z/`) is a polynomial ring in
Chern classes ci, with deg(ci) = 2i.

Proof of Theorem 9.3. The idea is to show that the
map ε induces isomorphisms

H̃n(Γ
∗BGl(k),Z/`)

∼=−→ H̃n(BGl,Z/`)

in all homology sheaves, and then invoke a com-
parison of spectral sequences (9.2).

The category Shv((Sch |k)et) has a good theory of
stalks, and it’s enough to compare stalks at all closed
points x∈U of all k-schemes U (which are locally
of finite type over k).
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The map ε∗ at the stalk for such a point x is the
map

Hn(BGl(k),Z/`)→ Hn(BGl(Osh
x ),Z/`),

where Osh
x is the strict Henselization of the local

ring Ox of U at x, and the indicated map is induced
by the k-algebra structure map k→ Osh

x .

The Gabber Rigidity Theorem [2], [3] asserts that
the residue field homomorphism π : Osh

x → k in-
duces an isomorphism

π∗ : Hn(BGl(Osh
x ),Z/`)

∼=−→ Hn(BGl(k),Z/`).

The desired result follows.

Remarks
1) The Gabber Rigidity Theorem is a consequence
of a mod ` K-theory rigidity statement, namely
that the residue map induces isomorphisms

π∗ : K∗(Osh
x ,Z/`)

∼=−→ K∗(k,Z/`)

As such, it is a stable statement that depends on the
existence of the K-theory transfer, as well as the
homotopy property (K∗(A) ∼= K∗(A[t]) for regular
rings A).
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2) An axiomatic approach to rigidity has evolved
in the intervening years, which first appeared in
[11], and achieved its modern form for torsion presheaves
with transfers satisfying the homotopy property in
[12].

3) Theorem 9.3 implies that an inclusion of alge-
braically closed fields k→ L of characteristic 6= `

induces an isomorphism

i∗ : H∗(BGl(L),Z/`)∼= H∗(BGl(k),Z/`), (9.4)

since there is an isomorphism of the correspond-
ing étale cohomology rings by a smooth base change
argument.

The map i∗ is an isomorphism if and only if the
map

i∗ : K∗(k,Z/`)→ K∗(L,Z/`)
is an isomorphism, by H-space tricks, so that The-
orem 9.3 implies Suslin’s first rigidity theorem [10].

The proof of Suslin’s second rigidity theorem, for
local fields [13], uses Gabber rigidity explicitly.
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3) The outcome of that result, that there are iso-
morphisms

Kn(C,Z/`)∼= πnKU/`

for n≥ 0, is also a consequence of Theorem 9.3.

4) The comparison map

ε
∗ : Hn

et(BGl,Z/`)→ Hn(BGl(k),Z/`)

is a special case of a natural comparison map

ε
∗ : Hn(X ,Z/`)→ Hn(X(k),Z/`)

which one can can construct for an arbitrary sim-
plicial presheaf X on the big site (Sch |k)et .

There are versions of Theorem 9.3 for all of the
classical infinite families of algebraic groups. In
particular, there are comparison isomorphisms

ε
∗ : H∗et(BSl,Z/`)

∼=−→ H∗(BSl(k),Z/`),

ε
∗ : H∗et(BSp,Z/`)

∼=−→ H∗(BSp(k),Z/`),

ε
∗ : H∗et(BO,Z/`)

∼=−→ H∗(BO(k),Z/`),

for the infinite special linear, symplectic and or-
thogonal groups, respectively.

The special linear case follows from Theorem 9.3,
by a fibre sequence argument.
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The symplectic and orthogonal group statements
follow from a rigidity statement for Karoubi L-
theory which is deduced from Gabber rigidity with
a Karoubi peridicity argument [7].

4) There is also a comparison map

ε
∗ : Hn

et(BG,Z/`)→ Hn(BG(k),Z/`) (9.5)

for an arbitrary algebraic group G over k.

The Friedlander-Milnor conjecture (aka. the iso-
morphism conjecture) asserts that this compari-
son map is an isomorphism if G is reductive.

This conjecture specializes to a conjecture of Mil-
nor when the underlying field is the complex num-
bers, in which case the étale cohomology groups
Hn(BG,Z/`) correspond with the ordinary singu-
lar cohomology groups of the (simplicial analytic)
classifying space BG(C).
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Remarks:

a) The isomorphism conjecture holds when k = Fp

is the algebraic closure of the finite field Fp with
p 6= `. This is a result of Friedlander and Mislin [1]
which depends strongly on the Lang isomorphism
for algebraic groups defined over Fp.

b) The isomorphism conjecture is not known to
hold, in general, for any other algebraically closed
field. It is not even known to hold for any of the
general linear groups Gln outside of a stable range
in homology. See Kevin Knudson’s book [8].

c) This conjecture is perhaps the most important
unsolved classical problem of algebraic K-theory.

It was known since the 1970s that a calculation of
the form

H∗(BGln(k),Z/`)∼= Z/`[c1, . . . ,cn]

would imply the Lichtenbaum conjecture that

K∗(k,Z/`)∼= Z/`[β ]

where β ∈ K2(k,Z/`) is the Bott element.

The Lichtenbaum conjecture was proved by Suslin
(the rigidity theorems).
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The Lichtenbaum conjecture is part of the Lichtenbaum-
Quillen complex of conjectures that relate the tor-
sion part of algebraic K-theory to étale cohomol-
ogy.

The Lichtenbaum-Quillen conjectures are conse-
quences of the Bloch-Kato conjecture, which has
been proved by Rost and Voevodsky [14].
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