Contents

11 Injective model structure

11.1 Theexistencetheorem . . . . ... ... .. ... .......... 1
11.2 Injective fibrant models and descent . . . . . . . . ... ... .... 13
12 Other model structures 18
12.1 Injective model structure for simplicial sheaves . . . . . ... .. .. 18
12.2 Intermediate model structures . . . . . . . . . ... ... L. 21

11 Injective model structure

11.1 The existence theorem

We begin with a review of the classical fibration
replacement construction.

1) Suppose that f : X — Y is a map of Kan com-
plexes, and form the diagram

X xy YLyl Ay

dO*l y J/dO

X 7 Y

Then d is a trivial fibration since Y is a Kan com-
plex, so dy, 1s a trivial fibration.

The section s of dj (and d;) induces a section s, of
dp.. Then

(difi)s«=di(sf)=f



Finally, there 1s a pullback diagram

X xy Y/ Lyl
(do*,dlf*)i l(do,dl)
XXY—Y XY
fx1

and the map prg : X XY — Y is a fibration since X
is fibrant, so that prg(do«,d, f.) = dif is a fibra-
tion.

Write Zy = X Xy Y' and 7ty = d, f.. Then we have
functorial replacement

of f by a fibration 7z, where dj. is a trivial fibra-
tion such that dy.s,. = 1.

2) Suppose that f : X — Y is a simplicial set map,
and form the diagram

X I Ex*X

6 *
NS




where the diagram

~

Zy——1y,
ﬁfi i”f*
Y — Ex”Y
is a pullback.

Then 7 is a fibration, and 6y is a weak equiva-
lence.

The construction that takes a map f to the factor-
1zation
0r
X—~Z; (11.1)

N

Y
has the following properties:

a) it is natural in f
b) it preserves filtered colimits in f

c)if X and Y are a-bounded where o is some
infinite cardinal, then so is Z 1

A simplicial set X is a-bounded if |X,| < a for
all n > 0.

A simplicial presheaf Y is a-bounded if all sim-
plicial sets Y(U), U € €, are a-bounded.



This construction (11.1) carries over to simplicial
presheaves, giving a natural factorization

x Lz, (11.2)

N

Y

of a simplicial presheaf map f : X — Y such that
Or is a sectionwise weak equivalence and 7y 1S a
sectionwise fibration. Here are some further prop-
erties of this factorization:

a) it preserves filtered colimits in f

b)if X and Y are a-bounded where o is some
infinite cardinal, then so is Z 1

¢) f is a local weak equivalence if and only if 7,
has the local right lifting property with respect
to all JA™ C A”™.

Suppose that € is a small Grothendieck site.
Suppose that & is a regular cardinal such that oc >
|Mor(%)|.

Remark 11.1. The use of regular cardinals ensures
that the size of filtered colimits works out cor-
rectly, as in the proof of the next result.



Specifically, if o is a regular cardinal and F =
lim _ F;is a filtered colimit of sets F; such that
I| < o and all |F;| < a, then |F| < a.

One could take this condition to be the definition
of a regular cardinal.

If B is an infinite cardinal, then the successor car-
dinal B + 1 is regular (since 8 - B < B), so regular
cardinals abound in nature.

There are well known examples of limit cardinals
that are not regular.

Lemma 11.2. Suppose that i : X — Y is a cofi-
bration and a local weak equivalence of sPre(%).
Suppose A C Y is an a-bounded subobject of Y.

Then there is an o-bounded subobject of Y such
that A C B and the map BN X — B is a local weak
equivalence.

Proof. Write mg : Zg — B for the natural pointwise
Kan fibration replacement for the cofibration

BNX — B.

The map 7y : Zy — Y has the local right lifting
property with respect to all A" C A",



Suppose given a lifting problem

dA"—Z4(U)
l ’ iﬂ'A
A"——A(U)
where A 1s o-bounded.

The lifting problem can be solved locally over Y
along some covering sieve for U having at most &
elements.

Zy = 1;113‘ By<aZB since Y is a filtered colimit of its
a-bounded subobjects.

It follows that there is an a-bounded subobject
A’ C Y with A C A’ such that the original lifting
problem can be solved over A’.

The list of all such lifting problems is a-bounded,
so there is an o-bounded subobject By C Y with
A C Bj so that all lifting problems as above over A
can be solved locally over B;.

Repeat this procedure countably many times to pro-
duce an ascending family

A=ByCB, CB,C...

of a-bounded subobjects of Y such that all lifting



local lifting problems

aLA" ——Z.(U)
1 iﬂBi
A"——B;(U)

over B; can be solved over B;. .
Set B = UiBl‘. []

Say that a map p : X — Y is an injective fibration
if p has the right lifting property with respect to
all maps A — B which are cofibrations and local
weak equivalences.

Lemma 11.3. The map p : X — Y is an injective
fibration if and only if it has the right lifting prop-
erty with respect to all a-bounded trivial cofibra-
tions.

Proof. Suppose that p : X — Y has the right lift-
ing property with respect to all oc-bounded trivial
cofibrations, and suppose given a diagram

A—X

i

B—Y

where i 1s a trivial cofibration.



Consider the poset of partial lifts

11\ —X

A’ - p

By
This poset is non-empty: given x € B(U) —A(U)
there is an o-bounded subcomplex C C B with
x € C(U), and there is an a-bounded subcomplex
C'CcBwithCcC(C'andi,:CNA — (' a trivial
cofibration. Then x € C' UA, and there is a dia-
gram

C'NA A X

C——C TA p
B Y
where the indicated lift exists because p has the
right lifting property with respect to the ¢c-bounded
trivial cofibration i..

The poset of partial lifts has maximal elements by
Zorn’s Lemma, which elements have the form

A—X

i, e

B—Y



One defines
LyK =hom(,U) xK

for U € ¥ and simplicial sets K. The functor K >
LyK 1is left adjoint to the U-sections functor X —»

X(U).

Lemma 11.4. Suppose q : Z — W has the right
lifting property with respect to all cofibrations.

Then q is an injective fibration and a local weak
equivalence.

Proof. The map ¢ is obviously an injective fibra-
tion, and it has the right lifting property with re-
spect to all cofibrations Ly d A" — Ly A", so that all
maps ¢ : Z(U) — W(U) are trivial Kan fibrations.
But then ¢ 1s a local weak equivalence (Lemma
10.1). []

Lemma 11.5. A map q : Z — W has the right lift-
ing property with respect to all cofibrations if and
only if it has the right lifting property with respect
to all a.-bounded cofibrations.

Proof. Exercise. []



Lemma 11.6. A map f : X — Y has factorizations

SN
N

X Y

where

1) the map i is a cofibration and a local weak
equivalence, and p is an injective fibration,

2) the map j is a cofibration and p has the right
lifting property with respect to all cofibrations
(and is therefore an injective fibration and a
local weak equivalence)

Proof. For the first factorization, choose a cardinal
A > 2% and do a transfinite small object argument
of size A to solve all lifting problems

A——

B
arising from locally trivial cofibrations i which are
o-bounded.
We need to know that locally trivial cofibrations

are closed under pushout, but we proved this in

10



Lemma 10.14 with a Boolean localization argu-
ment.

The small object argument stops on account of the
condition on the size of the cardinal A.

The second factorization is similar — use Lemma
11.5. L]

Theorem 11.7. Suppose that ¢ is a small Groth-
endieck site.

The category sPre(€) with local weak equivalences,
cofibrations and injective fibrations, satisfies the
axioms for a proper closed simplicial model cate-

gory.
Proof. The simplicial presheaf category sPre(%)
has all small limits and colimits, giving CM1.

The weak equivalence axiom CM2 was proved in
Lemma 10.13 with a Boolean localization argu-
ment.

The retract axiom CM3 is trivial to verify — use
the pullback description of local weak equivalences
to see the weak equivalence part.

The factorization axiom CMS is Lemma 11.6.

For CM4, suppose that 7 : X — Y is an injective
fibration and a local weak equivalence.

11



By the proof of Lemma 11.6, & has a factorization

X-w

PN

Y

where p has the right lifting property with respect
to all cofibrations and is therefore a local weak
equivalence.

Then j is a local weak equivalence, and so 7 is a
retract of p (exercise).

Thus 7 has the right lifting property with respect
to all cofibrations, giving CM4.

The simplicial model structure comes from the func-
tion complex

hom(X,Y)n = homspre(cg) (X X An,Y).

Quillen’s axiom SM7 is a consequence of the fact
that local weak equivalences are closed under fi-
nite products: if f: X — Y and f': X' — Y’ are
local weak equivalences, then the map

fxf:XxX —-YxY

is a local weak equivalence. The proof of this
statement is a Boolean localization argument (ex-
ercise).

12



Properness is also proved with a Boolean localiza-
tion argument (exercise). []

Remark 11.8. Every injective fibration (respec-
tively trivial injective fibration) p : X — Y is a sec-
tionwise Kan fibration (respectively sectionwise
trivial Kan fibration).

In effect, if p : X — Y is an injective fibration then
it has the right lifting property with respect to the
trivial cofibrations Ly A} — Ly A", and if p 1s a triv-
ial injective fibration then it has the right lifting
property with respect to the cofibrations Ly dA" —
LUAn.

It follows, in particular, that every injective fibra-
tion is a local fibration.

11.2 Injective fibrant models and descent

We start with an example.
Suppose that A is a sheaf, and let K(A,0) be the

constant simplicial object associated to A. There
is a bijection
hom(X,K(A,0)) = hom(7(X),A)

It follows that the simplicial sheaf K(A,0) is in-
jective fibrant.

13



Suppose that X is a simplicial presheaf such that
all higher local homotopy groups vanish in the sense
that 7,(X) — Xy is an isomorphism for n > 1.

Then the map X — K(my(X),0) is a local weak
equivalence. It follows that the composite

X — K(m(X),0) — K(7(X),0)

is a local weak equivalence, and therefore gives an
“injective fibrant model” for X.

All higher homotopy groups
70, (K (7% (X),0)(U),x), n > 1,
vanish in all sections.

Remark 11.9. This observation is a special case
of (and the starting point for) a result which asserts
that if X is a simplicial presheaf such that 7, (X ) —
X, is an isomorphism for n > k, then any injective
fibrant model X — Y has the same property in all
sections: 7,(Y(U),x) = 0 for n > k, for all x €
Y(U)andallU € € — see [7, Prop. 6.11].

This result is particular to the local homotopy the-
ory of simplicial presheaves. It does not hold in
motivic homotopy theory, where every motivic ho-
motopy type is representable by a presheaf (see the
appendix of [8]).

14



An injective fibrant model for a simplicial presheaf
X is a local weak equivalence f : X — Z such that
Z is injective fibrant.

Any two injective fibrant models for a simplicial
presheaf X are equivalent in a rather strong sense.

Given models f: X —+Zand f': X — Z/, f has a
factorization f = p- j where p is a injective fibra-
tion and j is a cofibration and both are local weak
equivalences, and there is a commutative diagram

X1 .7
N
f! _ w
e

where the dotted arrow exists since j is a trivial
cofibration and Z’ is injective fibrant.

All morphisms in the picture are local weak equiv-
alences, and we have the following:

Lemma 11.10. Suppose that f : Z — W is a weak
equivalence of injective fibrant objects.

Then all maps f: Z(U) — W(U) are weak equiv-
alences of simplicial sets.

15



Proof. The map f is a simplicial homotopy equiv-
alence since Z and W are cofibrant and injective
fibrant.

In other words, there is a map g : W — Z and ho-
motopies Z x Al — Z from gf to 1z and W x Al —
W from fg to ly.

The map g restricts to g : W(U) — Z(U) in each
section, and the homotopies restrict to simplicial
set maps Z(U) x Al — Z(U) and W(U) x A! —
W(U).

In particular f: Z(U) — W (U ) is a homotopy equiv-
alence with homotopy inverse g : W(U) — Z(U),
foreach U € . []

Corollary 11.11. Any two injective fibrant models
for a simplicial presheaf X are sectionwise homo-
topy equivalent.

Here’s the idea that pervades most applications of
local homotopy theory:

A simplicial presheaf X satisfies descent if some
(hence any) injective fibrant model j: X — Zis a
sectionwise weak equivalence.

Injective fibrant objects satisfy descent, in view of
Lemma 11.10.

16



1) The question of whether or not a fixed simpli-
cial presheaf (or later, presheaf of spectra) satisfies
descent is called a descent problem, and the asser-
tion that it does is usually a serious result which is
often called a descent theorem.

2) Examples include the Brown-Gersten descent
theorem for the algebraic K-theory presheaf of spec-
tra and the Zariski topology, Thomason’s étale de-
scent theorem for Bott periodic algebraic K-theory
with torsion coefficients, and the Nisnevich de-
scent theorem for torsion K-theory with respect to
the Nisnevich (or cdh) topology.

The Lichtenbaum-Quillen conjecture is a type of
descent problem for algebraic K-theory with tor-
sion coefficients and the étale topology.

These 1ssues are discussed, in these terms, in [7].

3) A stack can be characterized as a sheaf or presheaf
of groupoids which satisfies descent for some am-
bient topology — see Lecture 08, these notes.

4) Generally, one 1s happy to know that a simpli-
cial presheaf or presheaf of spectra satisfies de-
scent, because there are techniques for computing
its homotopy groups in all sections from sheaf co-
homology, with a descent spectral sequence.

17



12 Other model structures

12.1 Injective model structure for simplicial sheaves

Write s Shv(%) for the category of simplicial sheaves
on ¢. Say that amap f: X — Y is a local weak
equivalence of simplicial sheaves if it is a local
weak equivalence of simplicial presheaves. A cofi-
bration of simplicial sheaves is a monomorphism,
and an injective fibration is a map which has the
right lifting property with respect to all trivial cofi-
brations.

Theorem 12.1. Let 6 be a small Grothendieck
site.

1) The category s Shv(%€’) with local weak equiva-
lences, cofibrations and injective fibrations, sat-
isfies the axioms for a proper closed simplicial
model category.

2) The inclusion i of sheaves in presheaves and
the associated sheaf functor L* together induce a
Quillen equivalence of homotopy categories

L? :Ho(sPre(%)) ~ Ho(sShv (%)) : i.

Proof. The associated sheaf functor L? preserves
and reflects local weak equivalences.

18



The inclusion functor i preserves injective fibra-
tions and L? preserves cofibrations.

The associated sheaf map 1 : X — L?X is a local
weak equivalence, while the counit of the adjunc-
tion is an isomorphism. Thus, we get 2) if we can
prove 1).

CM1 follows from completeness and cocomplete-
ness for sShv(%). CM2 follows from the corre-
sponding statement for simplicial presheaves. CM3
is trivial, and CM4 follows from the correspond-
ing statement for simplicial presheaves.

A map p: X — Y is an injective fibration (resp.
trivial injective fibration) of sShv(%’) if and only
if it 1s an injective fibration (resp. trivial injective
fibration) of sPre(%’) (exercise).

Choose an infinite cardinal 8 such that 8 > |B| for
all a-bounded simplicial presheaves B. Then the
B-bounded trivial cofibrations of simplicial sheaves
generate the trivial cofibrations of simplicial sheaves,
and the 3-bounded cofibrations of simplicial sheaves
generate the cofibrations of simplicial sheaves.

The factorization axiom CMS is then proved by

transfinite small object arguments of size A where
A > 26

19



The simplicial model structure (aka. function com-
plexes) is inherited from simplicial presheaves, as
1S properness. []

The injective model structure for simplicial sheaves
(part 1) of Theorem 12.1) first appeared in a letter
of Joyal to Grothendieck [10], while the injective
model structure for simplicial presheaves first ap-
peared (with different names) in [6].

Example: The category s Pre(%’) of simplicial pre-
sheaves is also the category of simplicial sheaves
for the “chaotic” Grothendieck topology on 4 whose
covering sieves contain the representable functors

hom(,U), U € F.

The presheaves coincide with the sheaves for this
topology.

The injective model structures, for simplicial pre-
sheaves or simplicial sheaves, therefore specialize
to injective model structures for categories of dia-
grams of simplicial sets.

The injective model structure for diagrams is the
good setting for describing homotopy inverse lim-
1ts — see [4, VIIL.2]. The existence of this model
structure 1s attributed to Heller [5].

20



12.2 Intermediate model structures

There is a projective model structure on s Pre(%),
for which the fibrations are sectionwise Kan fibra-
tions and the weak equivalences are sectionwise
weak equivalences [3].

The cofibrations for this theory are the projective

cofibrations. This class of maps has a generating
set So of maps Ly (dA") — Ly (A").

Write Cp for the class of projective cofibrations,
and write C for the full class of cofibrations. Ob-
viously Cp C C.

Let S be any set of cofibrations which contains .

Let Cg be the saturation of the set of all cofibra-
tions of the form

(B X 8A”) Utaxaan) (A X An) C Bx A"
that are induced by members A — B of the set S.

“Saturation” means the smallest class of cofibra-
tions containing the list above which is contains
all isomorphisms, and is closed under pushout and
all transfinite compositions.

Cgs is the class of S-cofibrations.

21



An S-fibration is a map which has the right lifting
property with respect to all S-cofibrations which
are local weak equivalences.

Theorem 12.2. The category sPre(%’) and the classes

of S-cofibrations, local weak equivalences, and S-
fibrations, satisfies the axioms for a proper closed
simplicial model category.

Proof. The axioms CM1 — CM3 are trivial to ver-
ify.
Any f: X — Y has a factorization

X1z

N

Y
where j € Cg and p has the right lifting property
with respect to all members of Cg.

Then p is an S-fibration and is a sectionwise hence
local weak equivalence.

The map f also has a factorization
X--w

N

Y
where ¢ is an injective fibration and i is a cofi-
bration and local weak equivalence. Then ¢ is an
S-fibration.

22



Factorize i asi = p - j where j € Cg and p is an §-
fibration and a local weak equivalence (as above).

Then j is a local weak equivalence, so f = (¢gp) -
j factorizes f as an S-fibration following a map
which is an S-cofibration and a local weak equiv-
alence.

Exercise: Prove CM4.
The simplicial model structure is the usual one.

Exercise: Prove that the structure is proper — use
Boolean localization. []

The case S = Sy gives the local projective structure
of Blander [2].

The model structure of Theorem 12.2 is cofibrantly
generated.

This was originally proved by Beke [1], by verify-
ing a solution set condition. Beke’s argument was
deconstructed in [9], in the form of a basic and
very useful trick for verifying cofibrant generation
in the presence of some kind of cardinality calcu-
lus, and that trick is reprised here, in the proof of
Lemma 12.3 below.
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Suppose « is a regular cardinal such that
1) |Mor(%¢)| < a, and

2) |D| < a for all members C — D of the set of
cofibrations generating Cg.

Every o-bounded trivial cofibration i : A — B has
a factorization

such that j; is an S-cofibration, p; is an S-fibration
and both maps are local weak equivalences.

Write [ for the set of all of the trivial S-cofibrations
Ji which are constructed in this way.

Lemma 12.3. The set I generates the class of triv-
ial S-cofibrations.

Proof. 1) Suppose given a commutative diagram

A—X

I

B—Y
such that i is an o-bounded member of Cg and f
is a local weak equivalence.
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Since B is a-bounded, this diagram has a factor-
1zation

A—C—X

il lj if

B—D—Y
where j is a member of the set of cofibrations /.

In effect, by factorizing f = p-u where u is a triv-
ial S-cofibration and ¢ is a trivial S-fibration, we
can assume that f is a trivial cofibration.

The bounded cofibration property implies that there
1s a factorization

A—F—X

Lo

B—F—Y
with v an a-bounded trivial cofibration.

Factorize v = p, j, as above, again with p, a trivial
S-fibration and j, a trivial S-cofibration.

Then p, has the right lifting property with respect
to i since it is a trivial S-fibration, and j, is the
desired member of the set /.
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2) Every trivial S-cofibration j : A’ — B’ has a fac-
torization
A/ i}c/
\ iq
J P
such that o is an S-cofibration in the saturation of
the set I and g has the right lifting property with
respect to all members of /.

Then ¢ 1s also a local weak equivalence, and there-
fore has the right lifting property with respect to
all members i of the class Cg of S-cofibrations by
the previous paragraph, since all generators of Cg
are o.-bounded.

It follows that the lifting problem
A/ _a C/

J'l _-'wq

/- /
has a solution, so that j is a retract of «. []

Corollary 12.4. Amap p : X — Y is an S-fibration
if and only if it has the right lifting property with
respect to all members of the set I.
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