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11 Injective model structure

11.1 The existence theorem

We begin with a review of the classical fibration
replacement construction.

1) Suppose that f : X → Y is a map of Kan com-
plexes, and form the diagram

X×Y Y I f∗ //

d0∗
��

Y I d1 //

d0
��

Y

X f
//

s f
::

Y

Then d0 is a trivial fibration since Y is a Kan com-
plex, so d0∗ is a trivial fibration.

The section s of d0 (and d1) induces a section s∗ of
d0∗. Then

(d1 f∗)s∗ = d1(s f ) = f

1



Finally, there is a pullback diagram

X×Y Y I f∗ //

(d0∗,d1 f∗)
��

Y I

(d0,d1)
��

X×Y f×1
//Y ×Y

and the map prR : X×Y →Y is a fibration since X
is fibrant, so that prR(d0∗,d1 f∗) = d1 f∗ is a fibra-
tion.

Write Z f = X ×Y Y I and π f = d1 f∗. Then we have
functorial replacement

X s∗ //

f ��

Z f
π f
��

d0∗ //X

Y

of f by a fibration π f , where d0∗ is a trivial fibra-
tion such that d0∗s∗ = 1.

2) Suppose that f : X → Y is a simplicial set map,
and form the diagram

X j
//

f

��

θ f

��

Ex∞ X

f∗

��

s∗
##

Z̃ f //

��

Z f∗

π f∗{{

Y j
//Ex∞Y
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where the diagram

Z̃ f //

π̃ f
��

Z f∗
π f∗
��

Y j
//Ex∞Y

is a pullback.

Then π̃ f is a fibration, and θ f is a weak equiva-
lence.

The construction that takes a map f to the factor-
ization

X
θ f //

f ��

Z̃ f
π f
��

Y

(11.1)

has the following properties:

a) it is natural in f

b) it preserves filtered colimits in f

c) if X and Y are α-bounded where α is some
infinite cardinal, then so is Z̃ f

A simplicial set X is α-bounded if |Xn| < α for
all n≥ 0.

A simplicial presheaf Y is α-bounded if all sim-
plicial sets Y (U), U ∈ C , are α-bounded.
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This construction (11.1) carries over to simplicial
presheaves, giving a natural factorization

X
θ f //

f ��

Z̃ f
π f
��

Y

(11.2)

of a simplicial presheaf map f : X → Y such that
θ f is a sectionwise weak equivalence and π f is a
sectionwise fibration. Here are some further prop-
erties of this factorization:

a) it preserves filtered colimits in f

b) if X and Y are α-bounded where α is some
infinite cardinal, then so is Z̃ f

c) f is a local weak equivalence if and only if π f

has the local right lifting property with respect
to all ∂∆n ⊂ ∆n.

Suppose that C is a small Grothendieck site.

Suppose that α is a regular cardinal such that α >

|Mor(C )|.

Remark 11.1. The use of regular cardinals ensures
that the size of filtered colimits works out cor-
rectly, as in the proof of the next result.
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Specifically, if α is a regular cardinal and F =

lim−→i∈I
Fi is a filtered colimit of sets Fi such that

|I|< α and all |Fi|< α , then |F |< α .

One could take this condition to be the definition
of a regular cardinal.

If β is an infinite cardinal, then the successor car-
dinal β +1 is regular (since β ·β ≤ β ), so regular
cardinals abound in nature.

There are well known examples of limit cardinals
that are not regular.

Lemma 11.2. Suppose that i : X → Y is a cofi-
bration and a local weak equivalence of sPre(C ).
Suppose A⊂ Y is an α-bounded subobject of Y .

Then there is an α-bounded subobject of Y such
that A⊂ B and the map B∩X→ B is a local weak
equivalence.

Proof. Write πB : ZB→ B for the natural pointwise
Kan fibration replacement for the cofibration

B∩X → B.

The map πY : ZY → Y has the local right lifting
property with respect to all ∂∆n ⊂ ∆n.
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Suppose given a lifting problem

∂∆n //

��

ZA(U)
πA
��

∆n //

::

A(U)

where A is α-bounded.

The lifting problem can be solved locally over Y
along some covering sieve for U having at most α

elements.

ZY = lim−→|B|<α
ZB since Y is a filtered colimit of its

α-bounded subobjects.

It follows that there is an α-bounded subobject
A′ ⊂ Y with A ⊂ A′ such that the original lifting
problem can be solved over A′.

The list of all such lifting problems is α-bounded,
so there is an α-bounded subobject B1 ⊂ Y with
A⊂ B1 so that all lifting problems as above over A
can be solved locally over B1.

Repeat this procedure countably many times to pro-
duce an ascending family

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .

of α-bounded subobjects of Y such that all lifting
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local lifting problems

∂∆n //

��

ZBi(U)
πBi
��

∆n //

::

Bi(U)

over Bi can be solved over Bi+1.

Set B = ∪iBi.

Say that a map p : X →Y is an injective fibration
if p has the right lifting property with respect to
all maps A→ B which are cofibrations and local
weak equivalences.

Lemma 11.3. The map p : X → Y is an injective
fibration if and only if it has the right lifting prop-
erty with respect to all α-bounded trivial cofibra-
tions.

Proof. Suppose that p : X → Y has the right lift-
ing property with respect to all α-bounded trivial
cofibrations, and suppose given a diagram

A //

i
��

X
p
��

B //Y
where i is a trivial cofibration.
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Consider the poset of partial lifts

A //

��
X

p
��

A′
99

��

B //Y

This poset is non-empty: given x ∈ B(U)−A(U)

there is an α-bounded subcomplex C ⊂ B with
x ∈C(U), and there is an α-bounded subcomplex
C′ ⊂ B with C ⊂ C′ and i∗ : C′∩A→ C′ a trivial
cofibration. Then x ∈ C′ ∪A, and there is a dia-
gram

C′∩A //

i∗ ��

A //

��

X

p

��

C′ //C′∪A

��

;;

B //Y
where the indicated lift exists because p has the
right lifting property with respect to the α-bounded
trivial cofibration i∗.

The poset of partial lifts has maximal elements by
Zorn’s Lemma, which elements have the form

A
i
��

//X
p
��

B //

??

Y
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One defines

LUK = hom( ,U)×K

for U ∈ C and simplicial sets K. The functor K 7→
LUK is left adjoint to the U-sections functor X 7→
X(U).

Lemma 11.4. Suppose q : Z → W has the right
lifting property with respect to all cofibrations.

Then q is an injective fibration and a local weak
equivalence.

Proof. The map q is obviously an injective fibra-
tion, and it has the right lifting property with re-
spect to all cofibrations LU∂∆n→ LU∆n, so that all
maps q : Z(U)→W (U) are trivial Kan fibrations.
But then q is a local weak equivalence (Lemma
10.1).

Lemma 11.5. A map q : Z→W has the right lift-
ing property with respect to all cofibrations if and
only if it has the right lifting property with respect
to all α-bounded cofibrations.

Proof. Exercise.
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Lemma 11.6. A map f : X →Y has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

where

1) the map i is a cofibration and a local weak
equivalence, and p is an injective fibration,

2) the map j is a cofibration and p has the right
lifting property with respect to all cofibrations
(and is therefore an injective fibration and a
local weak equivalence)

Proof. For the first factorization, choose a cardinal
λ > 2α and do a transfinite small object argument
of size λ to solve all lifting problems

A //

i
��

X
f
��

B //

??

Y
arising from locally trivial cofibrations i which are
α-bounded.

We need to know that locally trivial cofibrations
are closed under pushout, but we proved this in
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Lemma 10.14 with a Boolean localization argu-
ment.

The small object argument stops on account of the
condition on the size of the cardinal λ .

The second factorization is similar — use Lemma
11.5.

Theorem 11.7. Suppose that C is a small Groth-
endieck site.

The category sPre(C ) with local weak equivalences,
cofibrations and injective fibrations, satisfies the
axioms for a proper closed simplicial model cate-
gory.

Proof. The simplicial presheaf category sPre(C )

has all small limits and colimits, giving CM1.

The weak equivalence axiom CM2 was proved in
Lemma 10.13 with a Boolean localization argu-
ment.

The retract axiom CM3 is trivial to verify — use
the pullback description of local weak equivalences
to see the weak equivalence part.

The factorization axiom CM5 is Lemma 11.6.

For CM4, suppose that π : X → Y is an injective
fibration and a local weak equivalence.
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By the proof of Lemma 11.6, π has a factorization

X j
//

π   

W
p
��

Y
where p has the right lifting property with respect
to all cofibrations and is therefore a local weak
equivalence.

Then j is a local weak equivalence, and so π is a
retract of p (exercise).

Thus π has the right lifting property with respect
to all cofibrations, giving CM4.

The simplicial model structure comes from the func-
tion complex

hom(X ,Y )n = homsPre(C )(X×∆
n,Y ).

Quillen’s axiom SM7 is a consequence of the fact
that local weak equivalences are closed under fi-
nite products: if f : X → Y and f ′ : X ′ → Y ′ are
local weak equivalences, then the map

f × f ′ : X×X ′→ Y ×Y ′

is a local weak equivalence. The proof of this
statement is a Boolean localization argument (ex-
ercise).
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Properness is also proved with a Boolean localiza-
tion argument (exercise).

Remark 11.8. Every injective fibration (respec-
tively trivial injective fibration) p : X→Y is a sec-
tionwise Kan fibration (respectively sectionwise
trivial Kan fibration).

In effect, if p : X →Y is an injective fibration then
it has the right lifting property with respect to the
trivial cofibrations LUΛn

k→ LU∆n, and if p is a triv-
ial injective fibration then it has the right lifting
property with respect to the cofibrations LU∂∆n→
LU∆n.

It follows, in particular, that every injective fibra-
tion is a local fibration.

11.2 Injective fibrant models and descent

We start with an example.

Suppose that A is a sheaf, and let K(A,0) be the
constant simplicial object associated to A. There
is a bijection

hom(X ,K(A,0))∼= hom(π̃0(X),A)

It follows that the simplicial sheaf K(A,0) is in-
jective fibrant.
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Suppose that X is a simplicial presheaf such that
all higher local homotopy groups vanish in the sense
that π̃n(X)→ X̃0 is an isomorphism for n≥ 1.

Then the map X → K(π0(X),0) is a local weak
equivalence. It follows that the composite

X → K(π0(X),0)→ K(π̃0(X),0)

is a local weak equivalence, and therefore gives an
“injective fibrant model” for X .

All higher homotopy groups

πn(K(π̃0(X),0)(U),x), n≥ 1,

vanish in all sections.

Remark 11.9. This observation is a special case
of (and the starting point for) a result which asserts
that if X is a simplicial presheaf such that π̃n(X)→
X̃0 is an isomorphism for n≥ k, then any injective
fibrant model X → Y has the same property in all
sections: πn(Y (U),x) = 0 for n ≥ k, for all x ∈
Y (U) and all U ∈ C — see [7, Prop. 6.11].

This result is particular to the local homotopy the-
ory of simplicial presheaves. It does not hold in
motivic homotopy theory, where every motivic ho-
motopy type is representable by a presheaf (see the
appendix of [8]).
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An injective fibrant model for a simplicial presheaf
X is a local weak equivalence f : X → Z such that
Z is injective fibrant.

Any two injective fibrant models for a simplicial
presheaf X are equivalent in a rather strong sense.

Given models f : X → Z and f ′ : X → Z′, f has a
factorization f = p · j where p is a injective fibra-
tion and j is a cofibration and both are local weak
equivalences, and there is a commutative diagram

X f
//

j   

f ′

��

Z

W
p

>>

~~

Z′

where the dotted arrow exists since j is a trivial
cofibration and Z′ is injective fibrant.

All morphisms in the picture are local weak equiv-
alences, and we have the following:

Lemma 11.10. Suppose that f : Z→W is a weak
equivalence of injective fibrant objects.

Then all maps f : Z(U)→W (U) are weak equiv-
alences of simplicial sets.
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Proof. The map f is a simplicial homotopy equiv-
alence since Z and W are cofibrant and injective
fibrant.

In other words, there is a map g : W → Z and ho-
motopies Z×∆1→ Z from g f to 1Z and W×∆1→
W from f g to 1W .

The map g restricts to g : W (U)→ Z(U) in each
section, and the homotopies restrict to simplicial
set maps Z(U)×∆1 → Z(U) and W (U)×∆1 →
W (U).

In particular f : Z(U)→W (U) is a homotopy equiv-
alence with homotopy inverse g : W (U)→ Z(U),
for each U ∈ C .

Corollary 11.11. Any two injective fibrant models
for a simplicial presheaf X are sectionwise homo-
topy equivalent.

Here’s the idea that pervades most applications of
local homotopy theory:

A simplicial presheaf X satisfies descent if some
(hence any) injective fibrant model j : X → Z is a
sectionwise weak equivalence.

Injective fibrant objects satisfy descent, in view of
Lemma 11.10.
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1) The question of whether or not a fixed simpli-
cial presheaf (or later, presheaf of spectra) satisfies
descent is called a descent problem, and the asser-
tion that it does is usually a serious result which is
often called a descent theorem.

2) Examples include the Brown-Gersten descent
theorem for the algebraic K-theory presheaf of spec-
tra and the Zariski topology, Thomason’s étale de-
scent theorem for Bott periodic algebraic K-theory
with torsion coefficients, and the Nisnevich de-
scent theorem for torsion K-theory with respect to
the Nisnevich (or cdh) topology.

The Lichtenbaum-Quillen conjecture is a type of
descent problem for algebraic K-theory with tor-
sion coefficients and the étale topology.

These issues are discussed, in these terms, in [7].

3) A stack can be characterized as a sheaf or presheaf
of groupoids which satisfies descent for some am-
bient topology — see Lecture 08, these notes.

4) Generally, one is happy to know that a simpli-
cial presheaf or presheaf of spectra satisfies de-
scent, because there are techniques for computing
its homotopy groups in all sections from sheaf co-
homology, with a descent spectral sequence.
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12 Other model structures

12.1 Injective model structure for simplicial sheaves

Write sShv(C ) for the category of simplicial sheaves
on C . Say that a map f : X → Y is a local weak
equivalence of simplicial sheaves if it is a local
weak equivalence of simplicial presheaves. A cofi-
bration of simplicial sheaves is a monomorphism,
and an injective fibration is a map which has the
right lifting property with respect to all trivial cofi-
brations.

Theorem 12.1. Let C be a small Grothendieck
site.
1) The category sShv(C ) with local weak equiva-
lences, cofibrations and injective fibrations, sat-
isfies the axioms for a proper closed simplicial
model category.
2) The inclusion i of sheaves in presheaves and
the associated sheaf functor L2 together induce a
Quillen equivalence of homotopy categories

L2 : Ho(sPre(C ))' Ho(sShv(C )) : i.

Proof. The associated sheaf functor L2 preserves
and reflects local weak equivalences.
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The inclusion functor i preserves injective fibra-
tions and L2 preserves cofibrations.

The associated sheaf map η : X → L2X is a local
weak equivalence, while the counit of the adjunc-
tion is an isomorphism. Thus, we get 2) if we can
prove 1).

CM1 follows from completeness and cocomplete-
ness for sShv(C ). CM2 follows from the corre-
sponding statement for simplicial presheaves. CM3
is trivial, and CM4 follows from the correspond-
ing statement for simplicial presheaves.

A map p : X → Y is an injective fibration (resp.
trivial injective fibration) of sShv(C ) if and only
if it is an injective fibration (resp. trivial injective
fibration) of sPre(C ) (exercise).

Choose an infinite cardinal β such that β > |B̃| for
all α-bounded simplicial presheaves B. Then the
β -bounded trivial cofibrations of simplicial sheaves
generate the trivial cofibrations of simplicial sheaves,
and the β -bounded cofibrations of simplicial sheaves
generate the cofibrations of simplicial sheaves.

The factorization axiom CM5 is then proved by
transfinite small object arguments of size λ where
λ > 2β .
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The simplicial model structure (aka. function com-
plexes) is inherited from simplicial presheaves, as
is properness.

The injective model structure for simplicial sheaves
(part 1) of Theorem 12.1) first appeared in a letter
of Joyal to Grothendieck [10], while the injective
model structure for simplicial presheaves first ap-
peared (with different names) in [6].

Example: The category sPre(C ) of simplicial pre-
sheaves is also the category of simplicial sheaves
for the “chaotic” Grothendieck topology on C whose
covering sieves contain the representable functors

hom( ,U), U ∈ C .

The presheaves coincide with the sheaves for this
topology.

The injective model structures, for simplicial pre-
sheaves or simplicial sheaves, therefore specialize
to injective model structures for categories of dia-
grams of simplicial sets.

The injective model structure for diagrams is the
good setting for describing homotopy inverse lim-
its — see [4, VIII.2]. The existence of this model
structure is attributed to Heller [5].
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12.2 Intermediate model structures

There is a projective model structure on sPre(C ),
for which the fibrations are sectionwise Kan fibra-
tions and the weak equivalences are sectionwise
weak equivalences [3].

The cofibrations for this theory are the projective
cofibrations. This class of maps has a generating
set S0 of maps LU(∂∆n)→ LU(∆

n).

Write CP for the class of projective cofibrations,
and write C for the full class of cofibrations. Ob-
viously CP ⊂ C.

Let S be any set of cofibrations which contains S0.

Let CS be the saturation of the set of all cofibra-
tions of the form

(B×∂∆
n)∪(A×∂∆n) (A×∆

n)⊂ B×∆
n

that are induced by members A→ B of the set S.

“Saturation” means the smallest class of cofibra-
tions containing the list above which is contains
all isomorphisms, and is closed under pushout and
all transfinite compositions.

CS is the class of S-cofibrations.
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An S-fibration is a map which has the right lifting
property with respect to all S-cofibrations which
are local weak equivalences.

Theorem 12.2. The category sPre(C ) and the classes
of S-cofibrations, local weak equivalences, and S-
fibrations, satisfies the axioms for a proper closed
simplicial model category.

Proof. The axioms CM1 – CM3 are trivial to ver-
ify.

Any f : X → Y has a factorization

X j
//

f ��

Z
p
��

Y
where j ∈ CS and p has the right lifting property
with respect to all members of CS.

Then p is an S-fibration and is a sectionwise hence
local weak equivalence.

The map f also has a factorization

X i //

f   

W
q
��

Y
where q is an injective fibration and i is a cofi-
bration and local weak equivalence. Then q is an
S-fibration.
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Factorize i as i = p · j where j ∈ CS and p is an S-
fibration and a local weak equivalence (as above).

Then j is a local weak equivalence, so f = (qp) ·
j factorizes f as an S-fibration following a map
which is an S-cofibration and a local weak equiv-
alence.

Exercise: Prove CM4.

The simplicial model structure is the usual one.

Exercise: Prove that the structure is proper — use
Boolean localization.

The case S = S0 gives the local projective structure
of Blander [2].

The model structure of Theorem 12.2 is cofibrantly
generated.

This was originally proved by Beke [1], by verify-
ing a solution set condition. Beke’s argument was
deconstructed in [9], in the form of a basic and
very useful trick for verifying cofibrant generation
in the presence of some kind of cardinality calcu-
lus, and that trick is reprised here, in the proof of
Lemma 12.3 below.
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Suppose α is a regular cardinal such that

1) |Mor(C )|< α , and

2) |D| < α for all members C→ D of the set of
cofibrations generating CS.

Every α-bounded trivial cofibration i : A→ B has
a factorization

A ji //

i ��

C
pi
��

B
such that ji is an S-cofibration, pi is an S-fibration
and both maps are local weak equivalences.

Write I for the set of all of the trivial S-cofibrations
ji which are constructed in this way.

Lemma 12.3. The set I generates the class of triv-
ial S-cofibrations.

Proof. 1) Suppose given a commutative diagram

A //

i
��

X
f
��

B //Y

such that i is an α-bounded member of CS and f
is a local weak equivalence.
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Since B is α-bounded, this diagram has a factor-
ization

A //

i
��

C
j
��

//X
f
��

B //D //Y
where j is a member of the set of cofibrations I.

In effect, by factorizing f = p ·u where u is a triv-
ial S-cofibration and q is a trivial S-fibration, we
can assume that f is a trivial cofibration.

The bounded cofibration property implies that there
is a factorization

A //

i
��

E
v
��

//X
f
��

B //F //Y
with v an α-bounded trivial cofibration.

Factorize v = pv jv as above, again with pv a trivial
S-fibration and jv a trivial S-cofibration.

Then pv has the right lifting property with respect
to i since it is a trivial S-fibration, and jv is the
desired member of the set I.
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2) Every trivial S-cofibration j : A′→ B′ has a fac-
torization

A′ α //

j   

C′
q
��

B′

such that α is an S-cofibration in the saturation of
the set I and q has the right lifting property with
respect to all members of I.

Then q is also a local weak equivalence, and there-
fore has the right lifting property with respect to
all members i of the class CS of S-cofibrations by
the previous paragraph, since all generators of CS

are α-bounded.

It follows that the lifting problem

A′ α //

j
��

C′
q
��

B′ 1
//

>>

B′

has a solution, so that j is a retract of α .

Corollary 12.4. A map p : X→Y is an S-fibration
if and only if it has the right lifting property with
respect to all members of the set I.
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in Mathematics. Birkhäuser Verlag, Basel, 1997.

[8] J. F. Jardine. Motivic symmetric spectra. Doc. Math., 5:445–553 (electronic),
2000.

[9] J. F. Jardine. Intermediate model structures for simplicial presheaves. Canad.
Math. Bull., 49(3):407–413, 2006.

[10] A. Joyal. Letter to A. Grothendieck, 1984.

27


