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13 Chain complexes

Suppose that % is a fixed small site.

We suppress % in notation: write s Pre for the cat-
egory sPre(%’) of simplicial presheaves on %, etc.

Suppose that R is a presheaf of commutative rings
with unit on %'.

Write Prey for the category of R-modules, or abelian
presheaves which have an R-module structure.

Then s Preg, is the category of simplicial R-modules,
Ch, (Preg) is the category of positively graded (or-
dinary) chain complexes in Preg, and Ch(Preg) is
the category of unbounded complexes in Preg.

Most of the time in applications, R is a constant
presheaf of rings, like Z or Z /n.

Prey is the category of presheaves of abelian groups,
s Prey 1s presheaves of simplicial abelian groups,
and Ch(Z) and Ch, (Z) are categories of presheaves
of chain complexes.



The category Prez, is the category of n-torsion
abelian presheaves, and so on.

All of these categories have corresponding sheaf
categories, based on the category Shvg of sheaves
of R-modules.

sShvy 1s the category of simplicial sheaves in R-
modules, Ch, (Shvg) is the category of positively
graded chain complexes in Shvg, and Ch(Shvg) is
the category of unbounded complexes.

There is a free R-module functor
R : sPre — sPreg,

written X — R(X) for simplicial presheaves X, where
R(X), is the free R-module on the presheaf X,.
This functor is left adjoint to the forgetful functor

u: sPrep — sPre.

The sheaf associated to R(X) is denoted by R(X).

[ also write R(X) for the associated (presheaf of)
Moore chains on X.

In general, each simplicial R-module A has an as-
sociated Moore complex in Ch (Preg), also de-
noted by A, with n-chains A, and boundary maps

d = Z (—1)idl‘ IAn %An—l-
i=0
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The homology sheaf A, (X, R) is the sheaf associ-
ated to the presheaf H,(R(X)).

If A is an R-module, then H,(X,A) is the sheaf
associated to the presheaf H,(R(X) ® A).

The normalized chains functor induces a functor
N : sPreg — Ch, (Preg),

and there is an equivalence of categories (the Dold-
Kan correspondence)

N : sPreg ~ Ch (Preg) : T
Recall [2] that NA is the chain complex with
NA, = Ny ker(d;)
and boundary
d=(—1)"d,: NA, — NA,_;.

The natural inclusion NA C A of NA in the Moore
chains is split by collapsing by degeneracies, and
this map induces an isomorphism

H.(NA) = H,(A),
and hence an isomorphism
H.(NA) = H,(A)

of homology sheaves.



A map f: A — B of s(Preg) is said to be a local
weak equivalence if the underlying map of sim-
plicial presheaves is a local weak equivalence.

Lemma 13.1. Suppose that f : X — Y is a local
weak equivalence of simplicial presheaves.

Then the induced map f. : R(X) — R(Y) of sim-
plicial abelian presheaves is a local weak equiva-
lence.

Proof. It’s enough to show thatif f: X — Y isalo-
cal equivalence of locally fibrant simplicial sheaves,
then f, : R(X) — R(Y) is a local equivalence of
simplicial abelian sheaves, where R is a sheaf of
rings (exercise).

We can assume that the map f: X — Y is a mor-
phism of locally fibrant simplicial sheaves on a
complete Boolean algebra 4, since the inverse im-

age functor p* for a Boolean localization p : Shv(%#) —
Shv(%’) commutes with the free R-module functor

(p« preserves module structures).

In this case, f: X — Y is a sectionwise weak equiv-
alence, so f; : R(X) — R(Y) is a sectionwise weak
equivalence, and so f, : R(X) — R(Y) is a local
weak equivalence. []



[In the above, f, : R(X) — R(Y) is a sectionwise
equivalence of simplicial sheaves on %4, since the
simplicial sheaves R(X) and R(Y) are locally fi-
brant.]

Remark 13.2. At one time, Lemma 13.1 was called
the Illusie conjecture. There are various proofs of

this result in the literature: the earliest, by van Os-

dol [5] in 1977, 1s one of the first applications of

Boolean localization.

Suppose that A 1s a simplicial abelian group. Then
A is a Kan complex, and there is a natural isomor-
phism

7,(A,0) = H,(NA)

for n > 0. There is a canonical isomorphism
7,(A4,0) = m,(A,a)
which is defined for any a € Ag by o] — [a + 4]
where we have written a for the composite
A" A? 5 A
The collection of these isomorphisms, taken to-
gether, define a natural isomorphism

~

7,(A,0) X Ag——T,A

./
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Lemma 13.3. A map A — B of simplicial R-modules
is a local weak equivalence if and only if the map
NA — NB induces an isomorphism in all homol-
ogy sheaves.

Proof. If NA — NB induces an isomorphism in all
homology sheaves, then the map 7y(A) — 7y(B)
and all maps 7,(A,0) — 7, (B, 0) are isomorphisms
of sheaves.

The diagram of sheaves

ﬁn(A,O) XAOHan(B,O) X Bo

| |

Ao By
is a pullback. []
Lemma 13.4. Suppose given a pushout diagram
|
B—D

where the map i is a monomorphism and a homol-
ogy sheaf isomorphism. Then the induced map i,
is a homology sheaf isomorphism.

Proof. The cokernel of the monomorphism i, is
B/A, which is acyelic: H,(B/A) = 0.



The Moore chains functor 1s exact, and the short
exact sequence

0—-C5D-—B/A—0
of presheaves induces a long exact sequence
. = H,(C) 5 H,(D) — Hy(B/A) S H,_1(A) — ...
% Ay(C) 2 Hy(D) — Hy(B/A) — 0
It follows that all maps
A,(C) % A,(D)
are iIsomorphismes. []

Say that a map f : A — B of simplicial R-modules
is an injective fibration if the simplicial presheaf
map u(A) — u(B) is an injective fibration.

A cofibration of simplicial R-modules is a map
which has the left lifting property with respect to
all trivial injective fibrations.

In view of Lemma 13.3, f: A — B is a local weak
equivalence if and only if the induced maps NA —
NB and A — B of normalized and Moore chains,
respectively, are homology sheaf isomorphisms.

Following Grothendieck and Illusie, homology sheaf
isomorphisms are often called quasi-isomorphisms.



If i : A — B1is a cofibration of simplicial presheaves,
then the induced map i, : R(A) — R(B) is a cofi-
bration of simplicial R-modules.

The map i, is a monomorphism, because the free
R-module functor preserves monomorphisms.

Analogous definitions are available for maps of
simplicial sheaves of R-modules:

Say that amap f : A — B in s Shvy is a local weak
equivalence (respectively injective fibration) if
the underlying simplicial sheaf map u(A) — u(B)
is a local weak equivalence (respectively injective
fibration). Cofibrations are defined by a left lift-
ing property with respect to trivial fibrations.

If i : A — B1is a cofibration of simplicial presheaves,
then the induced map i, : R(A) — R(B) is a cofi-
bration and a monomorphism of s Shv.

Proposition 13.5. 1) With these definitions, the cat-
egory sPreg of simplicial R-modules satisfies
the axioms for a proper closed simplicial model
category.

2) With these definitions, the category sShvg of
simplicial sheaves of R-modules satisfies the
axioms for a proper closed simplicial model
category.



3) The inclusion and associated sheaf functors de-
fine a Quillen equivalence

L?: sPreg < sShvg i

between the (injective) model structures of parts

1) and 2).

Proof. The injective model structure on s Pre is cofi-
brantly generated.

It follows from Corollary 13.4 that every map f :
A — B of sPreg has factorizations

C
i p
/ f\
A——B
~
D
such that p is an injective fibration, i is a triv-
1al cofibration which has the left lifting property
with respect to all fibrations, ¢ is a trivial injec-

tive fibration, j is a cofibration, and both i and j

are monomorphisms. This proves the factorization
axiom CMS.

It follows that every trivial cofibration is a retract
of a map of the form i and therefore has the left

lifting property with respect to all fibrations, giv-
ing CMA4.



The remaining closed model axioms for the cat-
egory sPreg of simplicial R-modules are easy to
verify.

The simplicial structure is given by the function
complexes hom(A, B), where hom(A,B), is the
abelian group of homomorphisms

A®R(A") — B.

Left properness is proved with a comparison of
long exact sequences in homology sheaves. Right
properness follows from the corresponding prop-
erty for simplicial presheaves.

The proof of statement 2), for simplicial sheaves
of R-modules is completely analogous, and the ver-
ification of 3) follows the usual pattern. []

I often write

A®K =A®R(K)

(degreewise tensor product) for a simplicial R-module

A and a simplicial presheaf K.
The Dold-Kan correspondence

N : sPreg ~ Ch(Preg) : T.

induces an injective model structure on the cate-
gory Ch_ (Preg) of presheaves of chain complexes
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from the model structure on the category sPreg of
simplicial modules given by Proposition 13.5.

In particular, a morphism f : C — D of Ch_ (Preg)
is a local weak equivalence if it is a homology
sheaf isomorphism.

The map f is an injective fibration (resp. cofi-
bration) if the induced map f, : I'C —I'Dis an in-
jective fibration (respectively cofibration) of s Preg.

Similar definitions can be made for chain com-
plexes in sheaves of R-modules.

Corollary 13.6. 1) With these definitions, the cat-

egory Ch, (Preg) of chain complexes in R-modules

satisfies the axioms for a proper closed simpli-
cial model category.

2) The category Ch(Shvg) of chain complexes
in sheaves of R-modules satisfies the axioms
for a proper closed simplicial model category.

3) The inclusion and associated sheaf functors de-
fine a Quillen equivalence

L*: Ch, (Preg) < Ch, (Shvg) : i

between the model structures of 1) and 2).
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Remark: An injective fibration p : C — D corre-
sponds to an injective fibration p, : I'C — I'D of
simplicial modules.

The map p, is a Kan fibration in each section, so
that the maps p : C,, — D,, are surjective in all sec-
tions forn > 1.

14 The derived category

An ordinary chain complex C can be identified
with an unbounded complex C(0) by putting O in
negative degrees.

The right adjoint of the functor C +— C(0) is the
good truncation D — Try D at level 0, where

ker(d : Dy — D_1) ifn=0, and
TI'()Dn =
D, if n> 0.

If D is an unbounded complex and n € Z, then the
shifted complex D|n] is defined by

D(n]p = Dpn.

If C is an ordinary chain complex and n € Z, define
the shifted complex C[n| by

C[n] = Tro(C(0)[n]).

12



Example: Suppose that n > 0.

C|—n] is the complex with C[—n|, =C,_, for p >
n and C[—n], =0 for p < n.

C|n] is the complex with Cn|, = C,., for p > 0
and
Clnlo=ker(d : C, — C,_1).

There is an adjunction isomorphism
hom(C|—n],D) = hom(C, D|n])
forall n > 0.

The functor C — C|—1] is a suspension functor
for ordinary chain complexes, while C — C[1] is a
loop functor. The suspension functor is left adjoint
to the loop functor.

A spectrum D in chain complexes consists of
chain complexes D", n > 0, together with chain
complex maps

c:D"[—1] — D""!
called bonding homomorphisms.

A morphism f : D — E of spectra in chain com-
plexes consists of chain complex maps f : D" —
E" which respect structure in the sense that the di-

13



agrams
D'[—1] 2-D!
71| "
En[_ 1] T)E’H—l
commute.

I write Spt(Ch_( )) to denote the corresponding
category of spectra, wherever it occurs.

For example, Spt(Ch, (Preg)) is the category of
spectra in chain complexes of R-modules.

Example: Suppose E is an unbounded complex.

There is a canonical map
o: (TroE)|[—1] — Tro(E[—1])
which is defined by the diagram

Eq E
ker(d) ——E
0 ker(0)

Replacing E by E[—n] gives maps
o : (Tro(E[—n]))[—1] = Tro(E[—n—1]).
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These are the bonding maps for a spectrum Tr(E)
with

Tr(E)" = Tro(E[—n]).
Thus, every unbounded chain complex E defines
a spectrum Tr(E) in chain complexes.

Example: If F' is a spectrum in chain complexes,
the maps

F"(0)[~1] = F"[-1](0) — F"*(0)
have adjoints F"(0) — F"1(0)[1] in the category
of unbounded chain complexes.
Write F(0) for the colimit of the maps
F°(0) — FY(0)[1] = F*(0)[2] — ...
in the unbounded chain complex category.

Then Tr(F(0))" is naturally isomorphic to the col-
imit of the diagram

F" — F" 1] — F"™2 2] — ...
and the adjoint bonding maps
Tr(F(0))" — Te(F(0))"™'[1]
are the isomorphisms determined by the diagrams
F" Frl] —Fr22] —. ..

| l |

Fn+l [1] *)Fn+2[2] *>F”+3[3] .
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There is a canonical map
n:F — Tr(F(0)),
defined by maps to colimits. Set
QF =Tr(F(0)).

Lemma 14.1. The suspension functor C — C[—1]
preserves cofibrations of ordinary chain complexes.

Proof. It’s enough to show that the functor X —
NR(X)|—1] takes cofibrations of simplicial presheaves
X to cofibrations of Ch, (Preg).

R(X) = R.(X.),

where R, (X, ) is the reduced part of the complex
R(X, ) associated to X, = X L {x}, pointed by .

The functor Y — R.,Y is left adjoint to the forgetful
functor from s Preg to pointed simplicial presheaves,
and therefore preserves cofibrations.

Also,

W(R.Y) =R, (ZY),

where XY is the Kan suspension of the pointed
simplicial presheaf Y, and the Kan suspension pre-
serves cofibrations of pointed simplicial sets (or
presheaves).
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Finally
NW(R.Y)) = NR,Y[-1].
]

Say that amap f : E — F of spectra in chain com-
plexes is a strict weak equivalence (respectively
strict fibration) if all maps f : E" — F" are weak
equivalences (respectively fibrations).

A cofibration is a map i : A — B of spectrum ob-
jects such that

1) the map A — BY is a cofibration of chain com-
plexes, and

2) all induced maps
Bn[—l] UAn[_l]An+1 N Bn+1
are cofibrations.

It follows from Lemma 14.1 that if i : A — B is
a cofibration of spectrum objects then all compo-
nent maps i : A" — B" are cofibrations of chain
complexes.

Lemma 14.2. With the definitions of strict equiva-
lence, strict fibration and cofibration given above,
the category Spt(Ch . (Preg)) satisfies the axioms
for a proper closed simplicial model category.
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The proof of Lemma 14.2 is a formality — it’s a
standard exercise from stable homotopy theory.

Say that a map f : A — B of spectrum objects in
chain complexes is a stable equivalence if the in-
duced map f. : QA — OB is a strict equivalence.

In view of the examples above, this means pre-
cisely that the induced map f. : A(0) — B(0) of
unbounded complexes is a homology isomorphism.

A map g : E — F of unbounded complexes in-
duces a stable equivalence g, : Tr(E) — Tr(F) if
and only if g is a homology sheaf isomorphism.

A map p : C — D of spectrum objects is a stable
fibration if and only if it has the right lifting prop-
erty with respect to all maps which are cofibrations
and stable equivalences.

Proposition 14.3. The classes of cofibrations, sta-
ble equivalences and stable fibrations give the cat-
egory Spt(Ch. (Preg)) the structure of a proper
closed simplicial model category.

Proof. The proof follows the “Bousfield-Friedlander
script” [1] — see also [2, X.4]. It is a formal con-
sequence of the following assertions:
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A1l The functor Q preserves strict weak equiva-
lences.

A2 The maps 1Ngc and Q(n¢) are strict equivalences
for all spectrum objects C.

A3 The class of stable equivalences is closed un-
der pullback along all stable fibrations, and is
closed under pushout along all cofibrations.

Only the last of these statements is potentially in-
teresting, but it is a consequence of long exact se-
quence arguments in homology in the unbounded
chain complex category.

One uses Lemma 14.1 to show the cofibration state-
ment.

The fibration statement is proved by showing that
every stable fibration p : C — D is a strict fibra-
tion, and so the induced map C(0) — D(0) of un-
bounded complexes is a local epimorphism in all
degrees. []

The model structure of Proposition 14.3 is the sta-
ble model structure for spectrum objects in chain
complexes of R-modules.

The associated homotopy category
Ho(Spt(Ch, (Preg)))

19



is the derived category for the category of R-modules
(presheaves and/or sheaves).
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