
Contents
13 Chain complexes 1

14 The derived category 12

13 Chain complexes

Suppose that C is a fixed small site.

We suppress C in notation: write sPre for the cat-
egory sPre(C ) of simplicial presheaves on C , etc.

Suppose that R is a presheaf of commutative rings
with unit on C .

Write PreR for the category of R-modules, or abelian
presheaves which have an R-module structure.

Then sPreR is the category of simplicial R-modules,
Ch+(PreR) is the category of positively graded (or-
dinary) chain complexes in PreR, and Ch(PreR) is
the category of unbounded complexes in PreR.

Most of the time in applications, R is a constant
presheaf of rings, like Z or Z/n.

PreZ is the category of presheaves of abelian groups,
sPreZ is presheaves of simplicial abelian groups,
and Ch(Z) and Ch+(Z) are categories of presheaves
of chain complexes.
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The category PreZ/n is the category of n-torsion
abelian presheaves, and so on.

All of these categories have corresponding sheaf
categories, based on the category ShvR of sheaves
of R-modules.

sShvR is the category of simplicial sheaves in R-
modules, Ch+(ShvR) is the category of positively
graded chain complexes in ShvR, and Ch(ShvR) is
the category of unbounded complexes.

There is a free R-module functor

R : sPre→ sPreR,

written X 7→R(X) for simplicial presheaves X , where
R(X)n is the free R-module on the presheaf Xn.
This functor is left adjoint to the forgetful functor

u : sPreR→ sPre .

The sheaf associated to R(X) is denoted by R̃(X).

I also write R(X) for the associated (presheaf of)
Moore chains on X .

In general, each simplicial R-module A has an as-
sociated Moore complex in Ch+(PreR), also de-
noted by A, with n-chains An and boundary maps

∂ =
n

∑
i=0

(−1)idi : An→ An−1.
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The homology sheaf H̃n(X ,R) is the sheaf associ-
ated to the presheaf Hn(R(X)).

If A is an R-module, then H̃n(X ,A) is the sheaf
associated to the presheaf Hn(R(X)⊗A).

The normalized chains functor induces a functor

N : sPreR→ Ch+(PreR),

and there is an equivalence of categories (the Dold-
Kan correspondence)

N : sPreR ' Ch+(PreR) : Γ.

Recall [2] that NA is the chain complex with

NAn = ∩n−1
i=0 ker(di)

and boundary

∂ = (−1)ndn : NAn→ NAn−1.

The natural inclusion NA⊂ A of NA in the Moore
chains is split by collapsing by degeneracies, and
this map induces an isomorphism

H∗(NA)∼= H∗(A),

and hence an isomorphism

H̃∗(NA)∼= H̃∗(A)

of homology sheaves.
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A map f : A→ B of s(PreR) is said to be a local
weak equivalence if the underlying map of sim-
plicial presheaves is a local weak equivalence.

Lemma 13.1. Suppose that f : X → Y is a local
weak equivalence of simplicial presheaves.

Then the induced map f∗ : R(X)→ R(Y ) of sim-
plicial abelian presheaves is a local weak equiva-
lence.

Proof. It’s enough to show that if f : X→Y is a lo-
cal equivalence of locally fibrant simplicial sheaves,
then f∗ : R̃(X)→ R̃(Y ) is a local equivalence of
simplicial abelian sheaves, where R is a sheaf of
rings (exercise).

We can assume that the map f : X → Y is a mor-
phism of locally fibrant simplicial sheaves on a
complete Boolean algebra B, since the inverse im-
age functor p∗ for a Boolean localization p : Shv(B)→
Shv(C ) commutes with the free R-module functor
(p∗ preserves module structures).

In this case, f : X→Y is a sectionwise weak equiv-
alence, so f∗ : R(X)→ R(Y ) is a sectionwise weak
equivalence, and so f∗ : R̃(X)→ R̃(Y ) is a local
weak equivalence.
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[In the above, f∗ : R̃(X)→ R̃(Y ) is a sectionwise
equivalence of simplicial sheaves on B, since the
simplicial sheaves R̃(X) and R̃(Y ) are locally fi-
brant.]

Remark 13.2. At one time, Lemma 13.1 was called
the Illusie conjecture. There are various proofs of
this result in the literature: the earliest, by van Os-
dol [5] in 1977, is one of the first applications of
Boolean localization.

Suppose that A is a simplicial abelian group. Then
A is a Kan complex, and there is a natural isomor-
phism

πn(A,0)∼= Hn(NA)

for n≥ 0. There is a canonical isomorphism

πn(A,0)
∼=−→ πn(A,a)

which is defined for any a ∈ A0 by [α] 7→ [α + a]
where we have written a for the composite

∆
n→ ∆

0 a−→ A

The collection of these isomorphisms, taken to-
gether, define a natural isomorphism

πn(A,0)×A0
∼= //

pr
$$

πnA

��

A0
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Lemma 13.3. A map A→B of simplicial R-modules
is a local weak equivalence if and only if the map
NA→ NB induces an isomorphism in all homol-
ogy sheaves.

Proof. If NA→ NB induces an isomorphism in all
homology sheaves, then the map π̃0(A)→ π̃0(B)
and all maps π̃n(A,0)→ π̃n(B,0) are isomorphisms
of sheaves.

The diagram of sheaves

π̃n(A,0)×A0 //

��

π̃n(B,0)×B0

��

A0 //B0

is a pullback.

Lemma 13.4. Suppose given a pushout diagram

A //

i
��

C
i∗
��

B //D

where the map i is a monomorphism and a homol-
ogy sheaf isomorphism. Then the induced map i∗
is a homology sheaf isomorphism.

Proof. The cokernel of the monomorphism i∗ is
B/A, which is acyclic: H̃∗(B/A) = 0.
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The Moore chains functor is exact, and the short
exact sequence

0→C i∗−→ D→ B/A→ 0

of presheaves induces a long exact sequence

. . .→ H̃n(C)
i∗−→ H̃n(D)→ H̃n(B/A) ∂−→ H̃n−1(A)→ . . .

∂−→ H̃0(C)
i∗−→ H̃0(D)→ H̃0(B/A)→ 0

It follows that all maps

H̃n(C)
i∗−→ H̃n(D)

are isomorphisms.

Say that a map f : A→ B of simplicial R-modules
is an injective fibration if the simplicial presheaf
map u(A)→ u(B) is an injective fibration.

A cofibration of simplicial R-modules is a map
which has the left lifting property with respect to
all trivial injective fibrations.

In view of Lemma 13.3, f : A→ B is a local weak
equivalence if and only if the induced maps NA→
NB and A→ B of normalized and Moore chains,
respectively, are homology sheaf isomorphisms.

Following Grothendieck and Illusie, homology sheaf
isomorphisms are often called quasi-isomorphisms.
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If i : A→B is a cofibration of simplicial presheaves,
then the induced map i∗ : R(A)→ R(B) is a cofi-
bration of simplicial R-modules.

The map i∗ is a monomorphism, because the free
R-module functor preserves monomorphisms.

Analogous definitions are available for maps of
simplicial sheaves of R-modules:

Say that a map f : A→ B in sShvR is a local weak
equivalence (respectively injective fibration) if
the underlying simplicial sheaf map u(A)→ u(B)
is a local weak equivalence (respectively injective
fibration). Cofibrations are defined by a left lift-
ing property with respect to trivial fibrations.

If i : A→B is a cofibration of simplicial presheaves,
then the induced map i∗ : R̃(A)→ R̃(B) is a cofi-
bration and a monomorphism of sShvR.

Proposition 13.5. 1) With these definitions, the cat-
egory sPreR of simplicial R-modules satisfies
the axioms for a proper closed simplicial model
category.

2) With these definitions, the category sShvR of
simplicial sheaves of R-modules satisfies the
axioms for a proper closed simplicial model
category.
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3) The inclusion and associated sheaf functors de-
fine a Quillen equivalence

L2 : sPreR � sShvR : i

between the (injective) model structures of parts
1) and 2).

Proof. The injective model structure on sPre is cofi-
brantly generated.

It follows from Corollary 13.4 that every map f :
A→ B of sPreR has factorizations

C
p

��
A

i
??

f
//

j ��

B

D
q

??

such that p is an injective fibration, i is a triv-
ial cofibration which has the left lifting property
with respect to all fibrations, q is a trivial injec-
tive fibration, j is a cofibration, and both i and j
are monomorphisms. This proves the factorization
axiom CM5.

It follows that every trivial cofibration is a retract
of a map of the form i and therefore has the left
lifting property with respect to all fibrations, giv-
ing CM4.
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The remaining closed model axioms for the cat-
egory sPreR of simplicial R-modules are easy to
verify.

The simplicial structure is given by the function
complexes hom(A,B), where hom(A,B)n is the
abelian group of homomorphisms

A⊗R(∆n)→ B.

Left properness is proved with a comparison of
long exact sequences in homology sheaves. Right
properness follows from the corresponding prop-
erty for simplicial presheaves.

The proof of statement 2), for simplicial sheaves
of R-modules is completely analogous, and the ver-
ification of 3) follows the usual pattern.

I often write

A⊗K = A⊗R(K)

(degreewise tensor product) for a simplicial R-module
A and a simplicial presheaf K.
The Dold-Kan correspondence

N : sPreR ' Ch+(PreR) : Γ.

induces an injective model structure on the cate-
gory Ch+(PreR) of presheaves of chain complexes
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from the model structure on the category sPreR of
simplicial modules given by Proposition 13.5.

In particular, a morphism f : C→D of Ch+(PreR)

is a local weak equivalence if it is a homology
sheaf isomorphism.

The map f is an injective fibration (resp. cofi-
bration) if the induced map f∗ : ΓC→ΓD is an in-
jective fibration (respectively cofibration) of sPreR.

Similar definitions can be made for chain com-
plexes in sheaves of R-modules.

Corollary 13.6. 1) With these definitions, the cat-
egory Ch+(PreR) of chain complexes in R-modules
satisfies the axioms for a proper closed simpli-
cial model category.

2) The category Ch+(ShvR) of chain complexes
in sheaves of R-modules satisfies the axioms
for a proper closed simplicial model category.

3) The inclusion and associated sheaf functors de-
fine a Quillen equivalence

L2 : Ch+(PreR)� Ch+(ShvR) : i

between the model structures of 1) and 2).
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Remark: An injective fibration p : C→ D corre-
sponds to an injective fibration p∗ : ΓC→ ΓD of
simplicial modules.

The map p∗ is a Kan fibration in each section, so
that the maps p : Cn→Dn are surjective in all sec-
tions for n≥ 1.

14 The derived category

An ordinary chain complex C can be identified
with an unbounded complex C(0) by putting 0 in
negative degrees.

The right adjoint of the functor C 7→ C(0) is the
good truncation D 7→ Tr0 D at level 0, where

Tr0 Dn =

{
ker(∂ : D0→ D−1) if n = 0, and

Dn if n > 0.

If D is an unbounded complex and n ∈ Z, then the
shifted complex D[n] is defined by

D[n]p = Dp+n.

If C is an ordinary chain complex and n∈Z, define
the shifted complex C[n] by

C[n] = Tr0(C(0)[n]).
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Example: Suppose that n > 0.

C[−n] is the complex with C[−n]p =Cp−n for p≥
n and C[−n]p = 0 for p < n.

C[n] is the complex with C[n]p = Cp+n for p > 0
and

C[n]0 = ker(∂ : Cn→Cn−1).

There is an adjunction isomorphism

hom(C[−n],D)∼= hom(C,D[n])

for all n≥ 0.

The functor C 7→ C[−1] is a suspension functor
for ordinary chain complexes, while C 7→C[1] is a
loop functor. The suspension functor is left adjoint
to the loop functor.

A spectrum D in chain complexes consists of
chain complexes Dn, n ≥ 0, together with chain
complex maps

σ : Dn[−1]→ Dn+1

called bonding homomorphisms.

A morphism f : D→ E of spectra in chain com-
plexes consists of chain complex maps f : Dn →
En which respect structure in the sense that the di-
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agrams
Dn[−1] σ //

f [−1]
��

Dn+1

f
��

En[−1]
σ

//En+1

commute.

I write Spt(Ch+( )) to denote the corresponding
category of spectra, wherever it occurs.

For example, Spt(Ch+(PreR)) is the category of
spectra in chain complexes of R-modules.

Example: Suppose E is an unbounded complex.

There is a canonical map

σ : (Tr0 E)[−1]→ Tr0(E[−1])

which is defined by the diagram
...

��

...

��

E1 //

��

E1

��

ker(∂ )

��

//E0

��

0 // ker(∂ )

Replacing E by E[−n] gives maps

σ : (Tr0(E[−n]))[−1]→ Tr0(E[−n−1]).
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These are the bonding maps for a spectrum Tr(E)
with

Tr(E)n = Tr0(E[−n]).
Thus, every unbounded chain complex E defines
a spectrum Tr(E) in chain complexes.

Example: If F is a spectrum in chain complexes,
the maps

Fn(0)[−1] = Fn[−1](0)→ Fn+1(0)

have adjoints Fn(0)→ Fn+1(0)[1] in the category
of unbounded chain complexes.

Write F(0) for the colimit of the maps

F0(0)→ F1(0)[1]→ F2(0)[2]→ . . .

in the unbounded chain complex category.

Then Tr(F(0))n is naturally isomorphic to the col-
imit of the diagram

Fn→ Fn+1[1]→ Fn+2[2]→ . . .

and the adjoint bonding maps

Tr(F(0))n→ Tr(F(0))n+1[1]

are the isomorphisms determined by the diagrams

Fn //

��

Fn+1[1] //

��

Fn+2[2] //

��

. . .

Fn+1[1] //Fn+2[2] //Fn+3[3] // . . .

15



There is a canonical map

η : F → Tr(F(0)),

defined by maps to colimits. Set

QF = Tr(F(0)).

Lemma 14.1. The suspension functor C 7→C[−1]
preserves cofibrations of ordinary chain complexes.

Proof. It’s enough to show that the functor X 7→
NR(X)[−1] takes cofibrations of simplicial presheaves
X to cofibrations of Ch+(PreR).

R(X) = R∗(X+),

where R∗(X+) is the reduced part of the complex
R(X+) associated to X+ = X t{∗}, pointed by ∗.
The functor Y 7→R∗Y is left adjoint to the forgetful
functor from sPreR to pointed simplicial presheaves,
and therefore preserves cofibrations.

Also,
W (R∗Y )∼= R∗(ΣY ),

where ΣY is the Kan suspension of the pointed
simplicial presheaf Y , and the Kan suspension pre-
serves cofibrations of pointed simplicial sets (or
presheaves).
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Finally

N(W (R∗Y ))∼= NR∗Y [−1].

Say that a map f : E→ F of spectra in chain com-
plexes is a strict weak equivalence (respectively
strict fibration) if all maps f : En→ Fn are weak
equivalences (respectively fibrations).

A cofibration is a map i : A→ B of spectrum ob-
jects such that

1) the map A0→ B0 is a cofibration of chain com-
plexes, and

2) all induced maps

Bn[−1]∪An[−1] An+1→ Bn+1

are cofibrations.

It follows from Lemma 14.1 that if i : A→ B is
a cofibration of spectrum objects then all compo-
nent maps i : An → Bn are cofibrations of chain
complexes.

Lemma 14.2. With the definitions of strict equiva-
lence, strict fibration and cofibration given above,
the category Spt(Ch+(PreR)) satisfies the axioms
for a proper closed simplicial model category.
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The proof of Lemma 14.2 is a formality — it’s a
standard exercise from stable homotopy theory.

Say that a map f : A→ B of spectrum objects in
chain complexes is a stable equivalence if the in-
duced map f∗ : QA→ QB is a strict equivalence.

In view of the examples above, this means pre-
cisely that the induced map f∗ : A(0)→ B(0) of
unbounded complexes is a homology isomorphism.

A map g : E → F of unbounded complexes in-
duces a stable equivalence g∗ : Tr(E)→ Tr(F) if
and only if g is a homology sheaf isomorphism.

A map p : C→ D of spectrum objects is a stable
fibration if and only if it has the right lifting prop-
erty with respect to all maps which are cofibrations
and stable equivalences.

Proposition 14.3. The classes of cofibrations, sta-
ble equivalences and stable fibrations give the cat-
egory Spt(Ch+(PreR)) the structure of a proper
closed simplicial model category.

Proof. The proof follows the “Bousfield-Friedlander
script” [1] — see also [2, X.4]. It is a formal con-
sequence of the following assertions:
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A1 The functor Q preserves strict weak equiva-
lences.

A2 The maps ηQC and Q(ηC) are strict equivalences
for all spectrum objects C.

A3 The class of stable equivalences is closed un-
der pullback along all stable fibrations, and is
closed under pushout along all cofibrations.

Only the last of these statements is potentially in-
teresting, but it is a consequence of long exact se-
quence arguments in homology in the unbounded
chain complex category.

One uses Lemma 14.1 to show the cofibration state-
ment.

The fibration statement is proved by showing that
every stable fibration p : C → D is a strict fibra-
tion, and so the induced map C(0)→ D(0) of un-
bounded complexes is a local epimorphism in all
degrees.

The model structure of Proposition 14.3 is the sta-
ble model structure for spectrum objects in chain
complexes of R-modules.

The associated homotopy category

Ho(Spt(Ch+(PreR)))
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is the derived category for the category of R-modules
(presheaves and/or sheaves).
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