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15 Cocycles

Let M be a closed model category such that

1) M is right proper

2) the class of weak equivalences is closed under
products: if f : X → Y is a weak equivalence,
so is any map f ×1 : X×Z→ Y ×Z

Examples include any of the model structures on
sPre, sShv, sPreR or sShvR that we’ve seen, where
the weak equivalences are local weak equivalences.
Use Boolean localization arguments.

Suppose that X ,Y are objects of M, and write H(X ,Y )
for the category whose objects are all pairs of maps
( f ,g)

X
f←− Z

g−→ Y

where f is a weak equivalence.

A morphism

α : ( f ,g)→ ( f ′,g′)
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of H(X ,Y ) is a commutative diagram

Zf
ww

g
''

α
��

X Y
Z′f ′

ff

g′
88

H(X ,Y ) is the category of cocycles, or cocycle
category from X to Y .

Example: Every set X has an associated (homo-
topically) trivial groupoid C(X) whose objects are
the elements of X and whose morphisms are pairs
of elements of X .

Suppose that a presheaf map U →∗ is a local epi-
morphism. Then the canonical simplicial presheaf
map BC(U)→ ∗ is a local weak equivalence (it’s
a local trivial fibration).

BC(U) is called the Čech resolution associated to
the covering U →∗.
Given a covering U → ∗ and a sheaf of groups G,
a normalized cocycle on U with values in G is a
groupoid morphism C(U)→ G, or (equivalently)
a simplicial presheaf map BC(U)→ BG.

Such a map defines a cocycle

∗ '←− BC(U)→ BG

as defined above.
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Normalized cocycles were the original examples.

Write π0H(X ,Y ) for the class of path components
of H(X ,Y ).

There is a function

φ : π0H(X ,Y )→ [X ,Y ]

defined by ( f ,g) 7→ g · f−1.

Lemma 15.1. Suppose that α : X → X ′ and β :
Y → Y ′ are weak equivalences. Then the function

(α,β )∗ : π0H(X ,Y )→ π0H(X ′,Y ′)

is a bijection.

Proof. An object ( f ,g) of H(X ′,Y ′) is a map ( f ,g) :
Z→ X ′×Y ′ such that f is a weak equivalence.

There is a factorization (map of cocycles)

Z j
//

( f ,g) $$

W
(pX ′,pY ′)��

X ′×Y ′

such that j is a trivial cofibration and (pX ′, pY ′) is
a fibration. The map pX ′ is a weak equivalence.
Form the pullback

W∗
(α×β )∗ //

(p∗X ,p
∗
Y )
��

W
(pX ′,pY ′)��

X×Y
α×β

//X ′×Y ′
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Then the map (p∗X , p∗Y ) is a fibration and (α×β )∗
is a local weak equivalence (since α×β is a weak
equivalence, with right properness). The map p∗X
is also a weak equivalence.

The assignment ( f ,g) 7→ (p∗X , p∗Y ) defines a func-
tion

π0H(X ′,Y ′)→ π0H(X ,Y )

which is inverse to (α,β )∗.

Lemma 15.2. Suppose that Y is fibrant and X is
cofibrant.

Then the canonical map

φ : π0H(X ,Y )→ [X ,Y ]

is a bijection.

Proof. The function π(X ,Y )→ [X ,Y ] relating naive
homotopy classes to morphisms in the homotopy
category is a bijection since X is cofibrant and Y
is fibrant.

If f ,g : X → Y are homotopic, there is a diagram

X
f

##

1
{{

d0
��

X X⊗ Isoo h //Y

X
1

cc

g

;;

d1

OO
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where h is the homotopy. Thus, sending f : X→Y
to the class of (1X , f ) defines a function

ψ : π(X ,Y )→ π0H(X ,Y )

and there is a diagram

π(X ,Y ) ψ
//

∼= ''

π0H(X ,Y )
φ
��

[X ,Y ]

It suffices to show that ψ is surjective, or that any
object X

f←− Z
g−→ Y is in the path component of

some a pair X 1←− X k−→ Y for some map k.

The weak equivalence f has a factorization

Z j
//

f ��

V
p
��

X
where j is a trivial cofibration and p is a trivial
fibration. The object Y is fibrant, so the dotted
arrow θ exists in the diagram

Zf
ww

g
&&

j
��

X Y
Vp

ff

θ

88

Since X is cofibrant, the trivial fibration p has a
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section σ , and so there is a commutative diagram

X1
ww

θσ
&&

σ
��

X Y
Vp

gg

θ

88

Then the composite θσ is the required map k.

Theorem 15.3. Suppose that the model category
M has the properties 1) and 2) listed above.

Then the canonical map

φ : π0H(X ,Y )→ [X ,Y ]

is a bijection for all objects X and Y of M.

Proof. There are weak equivalences π : X ′ → X
and j : Y → Y ′ such that X ′ and Y ′ are cofibrant
and fibrant, respectively, and there is a commuta-
tive diagram

π0H(X ,Y ) φ
//

(1, j)∗ ∼=
��

[X ,Y ]
j∗∼=
��

π0H(X ,Y ′) φ
// [X ,Y ′]

π∗∼=
��

π0H(X ′,Y ′)
(π,1)∗ ∼=

OO

φ

∼= // [X ′,Y ′]

The functions (1, j)∗ and (π,1)∗ are bijections by
Lemma 15.1, and the bottom map φ is a bijection
by Lemma 15.2.
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Remark 15.4. Cocycle categories have appeared
before, in the context of Dwyer-Kan hammock lo-
calizations [3], [2].

One of the main results in the area, which holds for
arbitrary model categories M, says roughly that
the nerve BH(X ,Y ) is a model for the function
space of maps from X to Y if Y is fibrant. This
result implies Theorem 15.3 if the target object Y
is fibrant.

On the other hand (see below), the most powerful
applications of Theorem 15.3 in local homotopy
theory involve target objects Y which are not fi-
brant in general.

16 Sheaf cohomology

Suppose that A is a sheaf of abelian groups, and
let A→ J be an injective resolution of A, thought
of as a Z-graded chain complex, concentrated in
negative degrees.

Write A[−n] for the chain complex consisting of
A concentrated in degree n, and consider the chain
map A[−n]→ J[−n].

K(A,n)=ΓA[−n] defines the Eilenberg-Mac Lane
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simplicial sheaf associated to A. Let

K(J,n) = ΓTr0(J[−n])

where Tr0(J[−n]) is the good truncation of J[−n]
in non-negative degrees.

Suppose that C is an ordinary chain complex and
that I is an unbounded chain complex which is 0
in non-negative degrees. Form the bicomplex

hom(C, I)p,q = hom(C−p, Iq)

with the obvious induced differentials:

∂
′ = ∂

∗
C : hom(C−p, Iq)→ hom(C−p−1, Iq)

∂
′′ = (−1)p

∂I∗ : hom(C−p, Iq)→ hom(C−p, Iq−1).

Then hom(C, I) is a third quadrant bicomplex with
associated total complex

Tot−n hom(C, I) =
⊕

p+q=−n

hom(C−p, Iq)

=
⊕

0≤p≤n

hom(Cp, I−n+p),

for n≥ 0, concentrated in negative degrees.

Exercise: Show that there are natural isomorphisms

H−n(Tothom(C, I))∼= π(C(0), I[−n])
∼= π(C,Tr0 I[−n]),
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where π(C(0), I[−n]) denotes chain homotopy classes
of maps from the unbounded complex C(0) canon-
ically associated to C to the shifted complex I[−n],
and π(C,Tr0 I[−n]) is chain homotopy classes of
maps in the bounded complex category.

Example: If A→ J is an injective resolution of
an abelian sheaf A, then the bicomplex hom(C,J)
determines a spectral sequence with

E p,q
2 = Extq(Hp(C),A)⇒ π(C,Tr0 J[−p−q]).

(16.1)

Lemma 16.1. Every local weak equivalence f :
X → Y induces an isomorphism

πch(NZ̃Y,Tr0 J[−n])
∼=−→ πch(NZ̃X ,Tr0 J[−n])

in chain homotopy classes for all n≥ 0.

Proof. The map f induces a homology sheaf iso-
morphism NZ̃X → NZ̃Y , and then a comparison
of spectral sequences

E p,q
2 =Extq(H̃p(X),A)⇒ πch(NZ̃X ,Tr0 J[−p−q])

(16.2)
gives the desired result.

If two chain maps f ,g : NZ̃X→Tr0 J[−n] are chain
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homotopic, then there is a right homotopy

Z
p
��

X

77

( f∗,g∗)
//K(J,n)×K(J,n)

for some path object Z over K(J,n) in the projec-
tive model structure for C op-diagrams of simpli-
cial sets.

Choose a sectionwise trivial fibration π : W → X
such that W is projective cofibrant.

Then f∗π is left homotopic to g∗π for some choice
of cylinder object W ⊗ I for W , again in the pro-
jective structure.

This means that there is a diagram

W π //

1
{{

i0
��

X
f∗
##

X Wπoo W ⊗ I h //soo K(J,n)

W
π

//
1

cc

i1

OO

X
g∗

;;

where the maps s, i0, i1 are all part of the cylin-
der object structure for W ⊗ I, and are sectionwise
weak equivalences.

Thus,

(1, f∗)∼ (π, f∗π)∼ (πs,h)∼ (π,g∗π)∼ (1,g∗)
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in π0H(X ,K(J,n)).

It follows that there is a well defined abelian group
homomorphism

φ : πch(NZ̃X ,Tr0 J[−n])→ π0H(X ,K(J,n)).

This map is natural in X .

Lemma 16.2. The map

φ : πch(NZ̃X ,Tr0 J[−n])→ π0H(X ,K(J,n)).

is an isomorphism.

Proof. Suppose that

X
f←− Z

g−→ K(J,n)

is an object of H(X ,K(J,n)).

Then there is a unique chain homotopy class [v] :
NZ̃X → J[−n] such that [v∗ f ] = [g] since f is a
local weak equivalence.

This chain homotopy class [v] is also independent
of choice of representative for the component of
( f ,g).

We therefore have a well defined function

ψ : π0H(X ,K(J,n))→ πch(NZ̃X ,Tr0 J[−n]).

The composites ψ · φ and φ ·ψ are identity mor-
phisms.
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We have proved

Theorem 16.3. Suppose that A is a sheaf of abelian
groups on C , and let A→ J be an injective reso-
lution of A in the category of abelian sheaves. Let
X be a simplicial presheaf on C .

Then there is an isomorphism

πch(NZ̃X ,Tr0 J[−n])∼= [X ,K(A,n)].

This isomorphism is natural in X.

Suppose that A is an abelian (pre)sheaf on C and
that X is a simplicial presheaf.

Set
Hn(X ,A) := [X ,K(A,n)],

and say that this group is the nth cohomology group
of X with coeffients in A.

The following is an immediate consequence of The-
orem 16.3 (but it’s easier than that — exercise):

Corollary 16.4. Suppose that f : X→Y induces a
homology sheaf isomorphism

H̃∗(X)∼= H̃∗(Y ).

Then the induced map in cohomology

H∗(Y,A)→ H∗(X ,A)

is an isomorphism for all coefficient presheaves A.

12



Proof. The induced map Z(X)→ Z(Y ) is a local
weak equivalence.

There is also a torsion coeffients version:

Corollary 16.5. If f : X → Y induces a homology
sheaf isomorphism

H̃∗(X ,Z/n)∼= H̃∗(Y,Z/n)

then f induces an isomorphism

H∗(Y,A)→ H∗(X ,A)

for all n-torsion presheaves A.

Remark 16.6. 1) The associated sheaf map

K(A,n)→ K(Ã,n)

is a local weak equivalence, so that

Hn(X ,A)∼= Hn(X , Ã).

2) One can (and does) define sheaf cohomology
Hn(C ,A) for an abelian sheaf A on a site C by

Hn(C ,A) = H−n(Γ∗J)

where A→ J is an injective resolution of A con-
centrated in negative degrees and Γ∗ is global sec-
tions (ie. inverse limit).
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But Γ∗Y = hom(∗,Y ) for any Y , and so

Hn(C ,A)∼= πch(Z̃∗,Tr0 J[−n])∼= [∗,K(A,n)]

by Theorem 16.3.

3) Putting together (16.2) and Theorem 16.3 gives
a universal coefficients spectral sequence

E p,q
2 = Extq(H̃p(X), Ã)⇒ H p+q(X ,A) (16.3)

for abelian presheaves A and simplicial presheaves
X .

The n-torsion analog is a corresponding spectral
sequence

E p,q
2 = Extq(H̃p(X ,Z/n), Ã)⇒ H p+q(X ,A)

(16.4)
for n-torsion presheaves A.

Cup products
Suppose that

X '←− X ′→ K(A,n), Y '←− Y ′→ K(B,m)

are cocycles. Then the adjoint simplicial abelian
presheaf maps

ZX ′→ K(A,n), ZY ′→ K(B,n)

have a (simplicial abelian group) tensor product

Z(X ′×Y ′)∼= ZX ′⊗ZY ′→ K(A,n)⊗K(B,n)
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and there is a natural weak equivalence

K(A,n)⊗K(B,m)' K(A⊗B,n+m).

in simplicial abelian groups, hence in simplicial
abelian presheaves (Exercise: suppose first that
A = B = Z).

The adjoint

X×Y '←− X ′×Y ′→ K(A⊗B,n+m)

represents the external cup product of the classes
represented by the two cocycles.

We have defined an external cup product

Hn(X ,A)×Hm(Y,B)→ Hn+m(X×Y,A⊗B).

If A happens to be a presheaf of rings this con-
struction specializes to the cup product pairing

Hn(X ,A)×Hm(X ,A)→ Hn+m(X×X ,A)
∆∗−→ Hn+m(X ,A).

where ∆ : X → X×X is the diagonal map.

Cohomology operations
A cohomology operation is a map

K(A,n)→ K(B,m)

in the homotopy category.
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The Steenrod operation Sqi is a morphism

K(Z/2,n)→ K(Z/2,n+ i)

in the ordinary homotopy category. The constant
presheaf functor preserves weak equivalences, and
so Sqi induces a morphism

K(Γ∗Z/2,n)→ K(Γ∗Z/2,n+ i)

in the homotopy category of simplicial presheaves
on an arbitrary small site C . It therefore induces a
homomorphism

Sqi : Hn(X ,Z/2)→ Hn+i(X ,Z/2)

which is natural in simplicial presheaves X . The
collection of Steenrod operations {Sqi} for simpli-
cial presheaves has the same basic list of proper-
ties as the Steenrod operations for ordinary spaces.

Steenrod operations for mod 2 étale cohomology
were introduced by Breen [1]; the definition given
here for mod 2 cohomology of arbitrary simplicial
presheaves is a vast generalization.

The first calculational application was in questions
concerning Hasse-Witt classes for non-degenerate
symmetric bilinear forms in the mod 2 Galois co-
homology of fields — see [5] and [6].
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The definition of Steenrod operations that is given
here has its uses, but it is relatively naive. Voevod-
sky introduced and made very effective use of a
much more sophisticated construction for motivic
homotopy theory in his proof of the Milnor con-
jecture [10], [11].

17 Descent spectral sequences

Proposition 17.1. Suppose that A is a presheaf of
abelian groups, and that

j : K(A,n)→ GK(A,n)

is an injective fibrant model of K(A,n).

Then there are isomorphisms

π jGK(A,n)(U)∼=

{
Hn− j(C /U, Ã|U) 0≤ j ≤ n

0 j > n.

for all U ∈ C .

Exercise 17.2. Suppose given a diagram

X f
//

p
��

X ′

p′��

Y

where p and p′ are local fibrations and f is a local
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weak equivalence. Suppose that Z → Y is a map
of simplicial presheaves.

Show that the induced map

Z×Y X
f∗−→ Z×Y X ′

is a local weak equivalence — use Boolean local-
ization.

Suppose that U ∈ C and write X |U for the restric-
tion of X along the functor

C /U → C .

Lemma 17.3. The restriction functor X 7→X |U pre-
serves injective fibrations and local weak equiv-
alences, and therefore preserves injective fibrant
models.

Proof. The restriction functor X 7→ X |U has a left
adjoint j∗U where

j∗U(Y )(V ) =
⊔

V→U

Y (V ).

Then j∗U clearly preserves cofibrations and section-
wise weak equivalences.

The functor j∗U also preserves local trivial fibra-
tions (exercise) and therefore preserves local weak
equivalences.
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Restriction preserves sectionwise equivalences and
local trivial fibrations, and therefore preserves lo-
cal weak equivalences.

Proof of Proposition 17.1. There are isomorphisms

π0GK(A,n)(U)∼= [∗,GK(A,n)(U)]
∼= [∗,GK(A|U ,n)]C /U
∼= Hn(C /U, Ã|U).

GK(A,n)|U is an injective fibrant model of K(A|U ,n)
by Lemma 17.3, giving the second and third iso-
morphisms.

The associated sheaf map

η : K(A,0)→ K(Ã,0)

is an injective fibrant model for the constant sim-
plicial presheaf K(A,0) (see Section 11.2) , and

π jK(Ã,0)(U) = 0

for j > 0.

There is a sectionwise fibre sequence

K(A,n−1)→WK(A,n−1)
→WK(A,n−1) = K(A,n)

where WK(A,n−1) is sectionwise contractible.
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Take an injective fibrant model

WK(A,n−1) j
//

��

GWK(A,n−1)
p
��

K(A,n) j
//GK(A,n)

where the maps labelled j are local weak equiv-
alences, GK(A,n) is injective fibrant and p is an
injective fibration.

Let F = p−1(0). Then F is injective fibrant and
the induced map

K(A,n−1)→ F

is a local weak equivalence, by Exercise 17.2. Write
GK(A,n−1) for F .

We have sectionwise fibre sequences

GK(A,n−1)(U)→GWK(A,n−1)(U)

→ GK(A,n)(U)

for all U ∈ C . The map

GWK(A,n−1)→∗

is a trivial injective fibration, and is therefore a
sectionwise trivial fibration.

It follows that

π jGK(A,n)(U)∼= π j−1GK(A,n−1)(U)
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for j ≥ 1, so that

π jGK(A,n)(U)∼= Hn− j(C /U, Ã|U)

for 1≤ j ≤ n by induction on n.

Example: Suppose C is the big site (Sch|S)et for a
scheme S with the étale topology and that U is an
S-scheme in this site.

Then C /U is isomorphic to the site (Sch|U)et .

If A is a sheaf on the big étale site for S, and if
K(A,n)→ GK(A,n) is an injective fibrant model
for K(A,n), then the presheaves of homotopy groups
for GK(A,n) have the form

π jGK(A,n)(U)∼=

{
Hn− j

et (U, Ã|U) 0≤ j ≤ n

0 j > n.

for all U ∈ C .

Similar statements obtain for all other geometric
topologies on categories of S-schemes.

Suppose that X is a presheaf of locally connected
pointed Kan complexes, and form the Postnikov
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tower
...

��

...

��

P2X

��

j
//GP2X

p
��

P1X

��

j
//GP1X

p
��

X //

==

FF

P0X j
//GP0X

where all maps labelled j are injective fibrant mod-
els and the maps p are injective fibrations.

The fibre of GPnX→GPn−1X is sectionwise equiv-
alent to GK(π̃nX ,n), where

π̃nX = π̃n(X ,∗)

is the nth homotopy group sheaf, based at the global
base point.

Now take U ∈ C and consider the tower of fibra-
tions

GP0X(U)← GP1X(U)← GP2X(U)← . . .

The fibre GK(π̃nX ,n)(U) of the map

GPnX(U)→ GPn−1X(U)
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has homotopy groups

π jGK(π̃nX ,n)(U)

∼=

{
Hn− j(C /U, π̃nX |U) 0≤ j ≤ n

0 j > n.

and so the tower of fibrations spectral sequence
(with the Thomason re-indexing trick [9, 5.54])
determines a spectral sequence with

Es,t
2 (U) = Hs(C /U, π̃sX |U)

This is the (unstable) descent spectral sequence
— it is actually a presheaf of spectral sequences.

This spectral sequence is often called either a co-
homological or topological descent spectral sequence.

There are two issues:

1) the spectral sequence might or might not con-
verge to

πt−s lim←−GPnX(U)

2) it can be a bit of work to show that the map
X → lim←−n

GPnX is a local weak equivalence.

Both issues can be resolved (ie. the spectral se-
quence converges and the map of 2) is a local weak
equivalence) if X is locally connected in the sense
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that π̃0X ∼= ∗ and there is a uniform bound on co-
homological dimension for all sheaves π̃X |U . See
[4].

Why would you care?
By construction, the object lim−→ GPn is injective
fibrant (exercise), so the real question is whether
or not the map X → lim←−n

GPnX is an injective fi-
brant model for X . Is this map a local weak equiv-
alence?
If so, and if the spectral sequence converges, it is
calculating the homotopy groups πn(Z(U)) of an
injective fibrant model X → Z in sections.
If X satisfies descent, then X |U satisfies descent.
In this case, this means that X(U)→ Z(U) is a
weak equivalence for any injective fibrant model
X→Z, and we are computing the homotopy groups
πn(X(U)) in sections, from sheaf cohomological
data.
The possibility of such calculations is the motiva-
tion behind all descent questions, and is the source
of the name for the spectral sequence.
The probability that all these things will work out
at once is akin to that of finding an earthlike exo-
planet orbiting a particular star.
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There are also “finite” descent spectral sequences,
which are Bousfield-Kan spectral sequences aris-
ing from function complexes hom(V,Z), where V→
∗ is a local weak equivalence and Z is injective fi-
brant.

V could be the Čech resolution C(U)→ ∗ which
is associated to a local epimorphism U → ∗ of
sheaves (or presheaves).

Example: Suppose that L/k is a finite Galois ex-
tension of a field k with Galois group G.

Then, by Galois theory, there is an isomorphism

G×Sp(L)
∼=−→ Sp(L)×Sp(L)

of k-schemes which induces an isomorphism

EG×G Sp(L)∼=C(Sp(L))

on simplical sheaves (even simplicial schemes) on
any of the étale sites for the field k.

It follows that the canonical map

EG×G Sp(L)→∗

is a local weak equivalence for the étale topology.

25



If Z is injective fibrant, the map

Z(k)∼= hom(∗,Z)→ hom(EG×G Sp(L),Z)

is a weak equivalence of simplicial sets.

The Bousfield-Kan spectral sequence for the func-
tion complex on the right has the form

Es,t
2 = Hs(G,πtZ(L))⇒ πt−sZ(k).

This is the finite Galois descent spectral sequence
for the homotopy groups of the global section Z(k)
of Z.

The full Galois (or étale) cohomological descent
spectral sequence for Z has the form

Es,t
2 = Hs(Ω, π̃tZ)⇒ πt−sZ(k),

where Ω is the absolute Galois group of k.

One often says that a simplicial presheaf X on an
étale site for k satisfies finite descent if the map

X(k)∼= hom(∗,X)→ hom(EG×G Sp(L),X)

is a weak equivalence for every finite Galois ex-
tension L/k.

The question of whether a given simplicial presheaf
X (like an algebraic K-theory presheaf) satisfies
finite descent is also called the homotopy fixed
points problem.
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Warning: You may be tempted (many were) to
say that finite descent for X implies that X satis-
fies descent for the étale topology on k, but you
would be wrong.

Such claims hold only in very special cases — see
[9], [7], [8].
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