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18 Torsors for groups

Suppose that G is a sheaf of groups.

A G-torsor (or principal G-bundle) is traditionally
defined to be a sheaf X with a free G-action such
that X/G∼= ∗ in the sheaf category.

The requirement that the action G×X→ X is free
says that the isotropy subgroups of G for the action
are trivial in all sections, which is equivalent to
requiring that all sheaves of fundamental groups
for the Borel construction EG×G X are trivial.

There is an isomorphism of sheaves

π̃0(EG×G X)∼= X/G.

The simplicial sheaf EG×G X is the nerve of a
sheaf of groupoids, which is given in each section
by the translation category for the action of G(U)

on X(U).

In particular, all sheaves of higher homotopy groups
for EG×G X vanish.
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It follows that a G-sheaf X is a G-torsor if and
only if the map EG×G X → ∗ is a local weak
equivalence.

Example 18.1. The Borel construction

EH×H H = EH

for a group H is the nerve of the translation cate-
gory for the action H×H→ H which is given by
the multiplication of H.

There is a unique map e h−→ h for all h ∈ H, so that
EH×H H is a contractible simplicial set.

If G is a sheaf of groups, then EG×G G is con-
tractible in each section, so that the map

EG×G G→∗

is a local weak equivalence, and G is a G-torsor.

This object is often called the trivial G-torsor.

Example 18.2. Suppose that L/k is a finite Galois
extension with Galois group G.

The étale covering Sp(L)→ Sp(k) has Čech res-
olution C(L) and there is an isomorphism of sim-
plicial schemes

C(L)∼= EG×G Sp(L).
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The simplicial presheaf map

C(L)→∗

on Sch|k is a local weak equivalence for the étale
topology, so that Sp(L) represents a G-torsor for
the étale topology on Sp(k), actually for all of the
standard étale sites associated with k.

The category G− tors of G-torsors is the category
whose objects are all G-torsors and whose maps
are all G-equivariant maps between them.

Remark 18.3. If f : X → Y is a map of G-torsors,
then f is induced as a map of fibres by the com-
parison of local fibrations

EG×G X //

##

EG×G Y

||

BG

It follows that f : X → Y is a weak equivalence
of constant simplicial sheaves, and is therefore an
isomorphism.

The category of G-torsors is therefore a groupoid.
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Remark 18.4. Suppose that X is a G-torsor, and
that the canonical map X → ∗ has a (global) sec-
tion σ : ∗→ X .

Then σ extends, by multiplication, (also uniquely)
to a G-equivariant map

σ∗ : G→ X ,

with σ∗(g) = g ·σU for g ∈ G(U).

This map is an isomorphism of torsors, so that X
is trivial with trivializing isomorphism σ∗.

Conversely, if τ : G→ X is a map of torsors, then
X has a global section τ(e).

Thus a G-torsor X is trivial in the sense that it
is isomorphic to G if and only if it has a global
section.

The map τ : G→X is often called a trivialization.

Example 18.5. Suppose that X is a topological
space.

The category of sheaves on op|X can be identified
up to equivalence with a category Top/X of spaces
Y → X fibred over X .

If G is a topological group, then G represents the
sheaf G×X → X given by projection.
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A sheaf with G-action consists of a map Y → X
together with a G-action G×Y → Y such that the
map Y→X is G-equivariant for the trivial G-action
on X .

Such a thing is a G-torsor if the action G×Y → Y
is free and the map Y/G→ X is an isomorphism.

The latter implies that X has an open covering i :
U ⊂ X such that there are liftings (trivializations)

Y

��

U

σ
??

i
//X

over each member of the cover.

The class of torsors is stable under pullback along
continuous maps (exercise), so U ×X Y →U is a
G-torsor over U .

The map σ induces a global section σ∗ of this map,
so that the pulled back torsor is trivial, and there is
a commutative diagram

G×U
∼= //

pr
&&

U×X Y

��

U
where the displayed isomorphism is G-equivariant.
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It follows that a G-torsor over X is a principal G-
bundle over X , and conversely.

Example 18.6. Suppose that U is an object of a
small site C .

Composition with the canonical functor C /U →
C induces a restriction functor

Shv(C )→ Shv(C /U),

written F 7→ F |U .

The restriction functor is exact and preserves sheaf
epimorphisms, and therefore takes G-torsors to G|U-
torsors.

The global sections of F |U coincide with the ele-
ments of the set F(U), so that a G-torsor X trivi-
alizes over U if and only if X(U) 6= /0, or equiva-
lently if and only if there is a diagram

X

��
U

??

// ∗
The map X→∗ is a local epimorphism, so there is
a covering family Uα→∗ (ie. such that

⊔
Uα→∗

is a local epimorphism) with X(Uα) 6= /0.

In other words, every torsor trivializes over some
covering family of the point ∗.
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Suppose that the picture

∗ '←− Y α−→ BG

is an object of the cocycle category H(∗,BG) in
simplicial presheaves, and form the pullback

pb(Y ) //

��

EG
π
��

Y
α

//BG

where EG = B(G/∗) = EG×G G and π : EG→
BG is the canonical map.

Then pb(Y ) inherits a G-action from the G-action
on EG, and the map

EG×G pb(Y )→ Y (18.1)

is a sectionwise weak equivalence (this is a conse-
quence of Lemma 18.10 below).

Y is locally contractible and the square is homo-
topy cartesian in sections where Y (U) 6= /0, so there
is a local weak equivalence

G|U → pb(Y )|U
over all such U .
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Thus, the canonical map pb(Y )→ π̃0 pb(Y ) is a G-
equivariant local weak equivalence, so the maps

EG×G π̃0 pb(Y )← EG×G pb(Y )→ Y ' ∗
are natural local weak equivalences.

In particular, the G-sheaf π̃0 pb(Y ) is a G-torsor.

We therefore have a functor

H(∗,BG)→ G− tors

defined by sending ∗ '←− Y → BG to the object
π̃0 pb(Y ).

The Borel construction defines a functor

G− tors→ H(∗,BG) :

the G-torsor X is sent to the (canonical) cocycle

∗ '←− EG×G X → BG.

One checks these functors are adjoint — pullback
is left adjoint to canonical cocycle (see also Lemma
19.3 below), and hence induce a bijection

π0H(∗,BG)∼= π0(G− tors).

Since π0(G− tors) is isomorphism classes of G-
torsors, and

π0H(∗,BG)∼= [∗,BG],

we have proved the following:
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Theorem 18.7. Suppose that G is a sheaf of groups
on a small Grothendieck site C .

Then there is a bijection

[∗,BG]∼= {isomorphism classes of G-torsors}
Remark 18.8. 1) Theorem 18.7 was first proved,
by a different method, in [4].

2) The non-abelian invariant H1(C ,G) is tradition-
ally defined to be the collection of isomorphism
classes of G-torsors over the point ∗.
Theorem 18.7 therefore gives an identification

H1(C ,G)∼= [∗,BG].

Example 18.9. Suppose that k is a field, with étale
site et|k.
Identify the orthogonal group On with a sheaf of
groups on this site.

The non-abelian cohomology object H1
et(k,On) is

well known to coincide with the set of isomor-
phism classes of non-degenerate symmetric bilin-
ear forms over k of rank n.

Thus, every such form q determines a morphism
∗ → BOn in the simplicial (pre)sheaf homotopy
category, and this morphism determines the form
q up to isomorphism.
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Suppose that k is a field such that char(k) 6= 2.
There are isomorphisms

H∗et(BOn,Z/2)∼= H∗(BOn,Z/2)
∼= H∗et(k,Z/2)[HW1, . . . ,HWn]

where the polynomial generator HWi has degree i.

The class HWi is characterized by mapping to the
ith elementary symmetric polynomial σi(x1, . . . ,xn)

under the isomorphism

H∗(BOn,Z/2)∼= H∗(Γ∗BZ/2×n,Z/2)Σn

∼= H∗et(k,Z/2)[x1, . . . ,xn]
Σn.

where ( )Σn denotes invariants for the symmetric
group Σn

Every symmetric bilinear form α determines a map
α : ∗ → BOn in the simplicial presheaf homotopy
category, and therefore induces a map

α
∗ : H∗et(BOn,Z/2)→ H∗et(k,Z/2),

and HWi(α)=α∗(HWi) is the ith Hasse-Witt class
of α .

One can show that HW1(α) is the pullback of the
determinant BOn→BZ/2, and HW2(α) is the clas-
sical Hasse-Witt invariant of α .
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The Steenrod algebra is used to calculate the rela-
tion between Hasse-Witt and Stiefel-Whitney classes
for Galois representations.

This calculation uses the Wu formulas for the ac-
tion of the Steenrod algebra on elementary sym-
metric polynomials. See [4], [5].

Here’s the missing lemma:

Lemma 18.10. Suppose that I is a small category
and that p : X → BI is a simplicial set map. Let
the pullback diagrams

pb(X)(i) //

��

X
p
��

B(I/i) //BI

define the I-diagram i 7→ pb(X)(i). Then the re-
sulting map

ω : holim−−−→ i∈I pb(X)(i)→ X

is a weak equivalence.

Proof. The simplicial set

holim−−−→ i∈I pb(X)(i)

is the diagonal of a bisimplicial set whose (n,m)-
bisimplices are pairs

(x, i0→ ··· → in→ j0→ ··· → jm)
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where x ∈ Xn, the morphisms are in I, and p(x) is
the string

i0→ ··· → in.

The map

ω : holim−−−→ i∈I pb(X)(i)→ X

takes such an (n,m)-bisimplex to x ∈ Xn.

The fibre over x can be identified with the simpli-
cial set B(in/I), which is contractible.

19 Torsors for groupoids

What’s a set-valued functor X : I→ Set?
The functor X consists of sets X(i), i ∈ Ob(I) and
functions α∗ : X(i)→ X( j) for α : i→ j in Mor(I)
such that α∗β∗ = (α ·β )∗ for all composable pairs
of morphisms in I and (1i)∗ = 1X(i) for all objects
i of I.

The sets X(i) can be collected together to give a
set

π : X =
⊔

i∈Ob(I)

X(i)→
⊔

i∈Ob(I)

= Ob(I)

and the assignments α 7→ α∗ can be collectively
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rewritten as a commutative diagram

X×π,s Mor(I) m //

pr
��

X
π
��

Mor(I) t
//Ob(I)

(19.1)

where s, t : Mor(I)→Ob(I) are the source and tar-
get maps, respectively, and

X×π,s Mor(I) pr
//

��

Mor(I)
s
��

X
π

//Ob(I)

is a pullback.

The composition laws for the functor X translate
into the commutativity of the diagrams

X×π,s Mor(I)×t,s Mor(I) 1×m //

m×1
��

X×π,s Mor(I)
m
��

X×π,s Mor(I) m
//X

(19.2)
and

X e∗ //

1
''

X×π,s Mor(I)
m
��

X

(19.3)
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Here, mI is the composition law of the category
I, and the map e∗ is uniquely determined by the
commutative diagram

X
1
��

π //Ob(I) e //Mor(I)
s
��

X
π

//Ob(I)

where the map e picks out the identity morphisms
of I.

Thus, a functor X : I→ Set consists of a function
π : X → Ob(I) together with an action

m : X×π,s Mor(I)→ X

making the diagram (19.1) commute, such that the
diagrams (19.2) and (19.3) also commute.

This is the internal description, which can be used
to define functors on category objects within spe-
cific categories.

Suppose that G is a sheaf of groupoids on a site C .

A sheaf-valued functor X on G consists of a sheaf
map π : X →Ob(G), together with an action mor-
phism m : X×π,s Mor(G)→ X in sheaves such that
the diagrams corresponding to (19.1), (19.2) and
(19.3) commute in the sheaf category.

14



Alternatively, X consists of set-valued functors

X(U) : G(U)→ Sets

with x 7→ X(U)x for x ∈ Ob(G(U)), together with
functions

φ
∗ : X(U)x→ X(V )φ∗(x)

for each φ : V →U in C , such that the assignment

U 7→ X(U) =
⊔

x∈Ob(G(U))

X(U)x, U ∈ C ,

defines a sheaf and the diagrams

X(U)x
α∗ //

φ∗
��

X(U)y

φ∗
��

X(V )φ∗(x)(φ∗(α))∗
//X(V )φ∗(y)

commute for each α : x→ y of Mor(G) and all
φ : V →U of C .

From this alternative point of view, it’s easy to see
that a sheaf-valued functor X on G defines a natu-
ral simplicial (pre)sheaf homomorphism

p : holim−−−→G X → BG.

One makes the construction sectionwise.
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Example: This story is a direct generalization of
what we saw for sheaves Y with actions by sheaves
of groups H.

The Borel construction EH×H Y is the homotopy
colimit holim−−−→HY .

A sheaf-valued functor X on a sheaf of groupoids
G is a G-torsor if the canonical map

holim−−−→G X →∗
is a local weak equivalence.

A morphism f : X → Y of G-torsors is a natural
transformation of G-functors, namely a sheaf mor-
phism

X f
//

��

Y

��

Ob(G)

fibred over Ob(G) which respects the multiplica-
tion maps.

The diagram

X //

π
��

holim−−−→G X
p
��

Ob(G) //BG

is homotopy cartesian in each section by Quillen’s
Theorem B [2, IV.5.2] (more specifically, Lemma
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IV.5.7), since G is a (pre)sheaf of groupoids, and is
therefore homotopy cartesian in simplicial sheaves.

A morphism f : X → Y of G-torsors therefore de-
fines a weak equivalence X → Y of constant sim-
plicial sheaves, which is therefore an isomorphism.

It follows that the category

G− tors

of G-torsors is a groupoid.

Clearly, every G-torsor X has an associated canon-
ical cocycle

∗ '←− holim−−−→G X
p−→ BG,

and this association defines a functor

φ : G− tors→ H(∗,BG)

taking values in the simplicial sheaf cocycle cate-
gory.

Suppose given a cocycle

∗ '←− Y
g−→ BG

in simplicial sheaves and form the pullback dia-
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grams
pb(Y )(U)x //

��

Y (U)
g
��

B(G(U)/x) //BG(U)

of simplicial sets for each x ∈ Ob(G(U)),U ∈ C ,
and set

pb(Y )(U) =
⊔

x∈Ob(G(U))

pb(Y )(U)x.

The resulting simplicial presheaf map

pb(Y )→ Ob(G)

defines a simplicial presheaf-valued functor on G.

There is a sectionwise weak equivalence

holim−−−→G pb(Y )→ Y ' ∗

by Lemma 18.10, and the diagram

pb(Y ) //

��

holim−−−→G pb(Y )

��

Ob(G) //BG

is sectionwise homotopy cartesian.

It follows that the natural transformation

pb(Y )→ π̃0(pb(Y ))
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of simplicial presheaf-valued functors on G is a
local weak equivalence.

Thus, there are local weak equivalences

holim−−−→G π̃0 pb(Y )' holim−−−→G pb(Y )' Y ' ∗,

and the sheaf-valued functor π̃0 pb(Y ) on G is a
G-torsor. These constructions are functorial on
H(∗,BG) and so there is a functor

ψ : H(∗,BG)→ G− tors.

Theorem 19.1. The functors φ and ψ induce a ho-
motopy equivalence

B(G− tors)' BH(∗,BG).

Corollary 19.2. The functors φ and ψ induce a
bijection

π0(G− tors)∼= [∗,BG].

There are multiple possible proofs of Corollary
19.2 (see also [7]), but it is convenient here to use
a trick for diagrams of simplicial sets which are
indexed by groupoids.

Suppose that Γ is a small groupoid, and let sSetΓ

be the category of Γ-diagrams in simplicial sets.
Let sSet/BΓ be the category of simplicial set mor-
phisms Y → BΓ. The homotopy colimit defines a
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functor

holim−−−→Γ : sSetΓ→ sSet/BΓ.

This functor sends a diagram X : Γ→ sSet to the
canonical map

holim−−−→ΓX → BΓ.

Given a simplicial set map Y → BΓ, the collection
of pullback diagrams

pb(Y )x //

��

Y

��

B(Γ/x) //BΓ

defines an Γ-diagram pb(Y ) : Γ→ sSet which is
functorial in Y → BΓ.

Lemma 19.3. Suppose that Γ is a groupoid.

Then the functors

pb : sSet/BΓ � sSetΓ : holim−−−→Γ

form an adjoint pair: pb is left adjoint to holim−−−→Γ.

Proof. Suppose that X is a Γ-diagram and that p :
Y → BΓ is a simplicial set over BΓ.

Suppose given a natural transformation

f : pb(Y )n→ Xn.
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and let x be an object of Γ.

An element of (pb(Y )x)n can be identified with a
pair

(y,a0→ ··· → an
α−→ x)

where the string of arrows is in Γ and p(y) is the
string a0→ ··· → an.

Then f is uniquely determined by the images of
the elements

f (y,a0→ ··· → an
1−→ an)

in Xn(an).

Since Γ is a groupoid, an element z∈Xn(an) uniquely
determines an element

(z0,a0)→ (z1,a1)→ ··· → (zn,an)

with zn = z.

It follows that there is a natural bijection

homΓ(pb(Y )n,Xn)∼= homBΓn(Yn,(holim−−−→ΓX)n).

Varying n gives an adjunction isomorphism

homΓ(pb(Y ),X)∼= homBΓ(Y,holim−−−→ΓX).

Proof of Theorem 19.1. It follows from Lemma 19.3
that the functor ψ is left adjoint to the functor
φ .
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Example: Suppose that H is a groupoid and that
x ∈ Ob(H).

The groupoid H/x has a terminal object and hence
determines a cocycle

∗ '←− B(H/x)→ BH.

If a ∈ Ob(H) then in the pullback diagram

pb(B(H/x))(a) //

��

B(H/x)

��

B(H/a) //BH

the object pb(B(H/x))(a) is the nerve of a groupoid
whose objects are the diagrams

a α←− b
β−→ x

in H, and whose morphisms are the diagrams

bα
xx

β

&&

��
a x

b′ β ′
88

α ′
ff

In the presence of such a picture,

β ·α−1 = β
′ · (α ′)−1.

There are uniquely determined diagrams

bα
xx

β

&&

��
a x

a β ·α−1

77

1
gg
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for each object a α←− b
β−→ x.

Thus, there is a natural bijection

π0 pb(B(H/x)(a)∼= homH(a,x)

and

pb(B(H/x))(a)→ π0 pb(B(H/x))(a)

is a natural weak equivalence.

It follows that there are weak equivalences

holim−−−→ a∈H pb(B(H/x))(a) ' //

'
��

B(H/x)' ∗

holim−−−→ a∈H homH(a,x)

so that the functor a 7→ homH(a,x) defines an H-
torsor.

Here, the function

β∗ : homH(a,x)→ homH(b,x)

induced by β : a→ b is precomposition with β−1.

To put it a different way, each x ∈ H determines a
H-torsor a 7→ homH(a,x), which we’ll call homH( ,x)
and there is a functor

H→ H− tors
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which is defined by x 7→ homH( ,x).

Observe that the maps homH( ,x)→Y classify el-
ements of Y (x) for all functors Y : H→ Set.
In general, every global section x of a sheaf of
groupoids G determines a G-torsor homG( ,x) which
is constructed sectionwise according to the recipe
above.

In particular, this is the torsor associated by the
pullback construction to the cocycle

∗ '←− B(G/x)→ BG.

The torsors homG( ,x) are the trivial torsors for the
sheaf of groupoids G.

There is a functor

j : Γ∗G→ G− tors

which is defined by j(x) = homG( ,x).

Torsor (iso)morphisms

homG( ,x) //

%%

X

��

Ob(G)

are in bijective correspondence with global sec-
tions of X which map to x∈Ob(G) under the struc-
ture map X → Ob(G).
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Such maps are trivializations of the torsor X .

These constructions restrict nicely. If φ : V →U
is a morphism of the underlying site C then com-
position with φ defines a functor

φ∗ : C /V → C /U,

and composition with φ∗ determines a restriction
functor

φ
∗ : Pre(C /U)→ Pre(C /V )

which takes F |U to F |V for any presheaf F on C .

All restriction functors take sheaves to sheaves and
are exact. Thus, φ ∗ takes a G|U-torsor to a G|V tor-
sor.

In particular,

φ
∗homG|U( ,x) = homG|V ( ,xV )

for all x ∈ G(U). The functor φ ∗ also preserves
cocycles.

The upshot is that there is a presheaf of groupoids
G−Tors on the site C with

G−Tors(U) = G|U− tors

and a presheaf of categories H(∗,BG) with

H(∗,BG)(U) = H(∗,BG|U).
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and there are functors

G j
//

%%

G−Tors
φ
��

H(∗,BG)

where φ induces a sectionwise weak equivalence

φ∗ : B(G−Tors) '−→ BH(∗,BG)

by Theorem 19.1, and the displayed map is de-
fined by sending an object x∈G(U) to the cocycle
B(G|U/x)→ BG|U .

The images hom( ,x) of the functor j : G→ G−
Tors are the trivial torsors, and maps (isomor-
phisms) hom( ,x)→X of G-torsors are global sec-
tions of X .

Every G-torsor X has sections along some cover,
since holim−−−→GX → ∗ is a local weak equivalence,
so every G-torsor is locally trivial.

Proposition 19.4. Suppose that G is a sheaf of
groupoids on a small site C .

Then the induced maps

BG j∗ //

&&

B(G−Tors)
φ∗
��

BH(∗,BG)
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are local weak equivalences of simplicial sheaves.

Proof. The functor j is fully faithful in all sections
(exercise), and the map

j∗ : π̃0BG→ π̃0B(G−Tors)

is a sheaf epimorphism. But the fact that j is fully
faithful in all sections means that the presheaf map

j∗ : π0BG→ π0B(G−Tors)

is a monomorphism in all sections.

20 Stacks and homotopy theory

Write Pre(Gpd(C )) for the category of presheaves
of groupoids on a small site C .

Say that a morphism f : G→ H of presheaves of
groupoids is a weak equivalence (respectively fi-
bration) if and only if the induced map f∗ : BG→
BH is a local weak equivalence (respectively in-
jective fibration).

A morphism i : A→ B is a cofibration if it has
the left lifting property with respect to all trivial
fibrations.

The fundamental groupoid functor X 7→ π(X) is
left adjoint to the nerve functor.
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It follows that every cofibration A→ B of simpli-
cial presheaves induces a cofibration π(A)→ π(B)
of presheaves of groupoids.

The class of cofibrations A→ B is closed under
pushout along arbitrary morphisms A → G, be-
cause cofibrations are defined by a left lifting prop-
erty.

There is a function complex construction for pre-
sheaves of groupoids: the simplicial set hom(G,H)

has for n-simplices all morphisms

φ : G×π(∆n)→ H.

There is a natural isomorphism

hom(G,H)∼= hom(BG,BH),

which sends the simplex φ to the composite

BG×∆
n 1×η−−→BG×Bπ(∆n)∼=B(G×π(∆n))

φ∗−→BH.

The following result appears in [3]:

Proposition 20.1. With these definitions, the cate-
gory Pre(Gpd(C )) satisfies the axioms for a right
proper closed simplicial model category.

Proof. The inductive model structure for the cate-
gory sPre(C ) is cofibrantly generated.
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It follows that every morphism f : G→ H has a
factorization

G j
//

f   

Z
p
��

H
such that j is a cofibration and p is a trivial fibra-
tion.

The other factorization axiom can be proved the
same way, provided one knows that if i : A→ B
is a trivial cofibration of simplicial presheaves and
the diagram

π(A) //

i∗
��

G
i′
��

π(B) //H

is a pushout, then the map i′ is a local weak equiv-
alence.

One proves the corresponding statement for ordi-
nary groupoids, and the general case follows by a
Boolean localization argument (exercise).

The claim is proved for ordinary groupoids by ob-
serving that in all pushout diagrams

π(Λn
k)

//

i∗
��

G
i′
��

π(∆n) //H
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the map i∗ is an isomorphism for n ≥ 2 and is the
inclusion of a strong deformation retraction if n =

1.
The classes of isomorphisms and strong deforma-
tion retractions are both closed under pushout in
the category of groupoids.
All other closed model axioms are easily verified,
as is right properness.
The simplicial model axiom SM7 has an elemen-
tary argument, which ultimately follows from the
fact that the fundamental groupoid functor preserves
products.

One can make the same definitions for sheaves of
groupoids: say that a map f : G→ H of sheaves
of groupoids is a weak equivalence (respectively
fibration) if the associated simplicial sheaf map
f∗ : BG→ BH is a local weak equivalence (respec-
tively injective fibration).
Cofibrations are defined by a left lifting property,
as before.
Write Shv(Gpd(C )), and observe that the forget-
ful functor i and associated sheaf functor L2 induce
an adjoint pair

L2 : Pre(Gpd(C ))� Shv(Gpd(C )) : i
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According to the definitions, the forgetful functor
i preserves fibrations and trivial fibrations.

The canonical map η : BG→ iL2BG is always a
local weak equivalence.

The method of proof of Proposition 20.1 and for-
mal nonsense now combine to prove the following

Proposition 20.2. 1) With these definitions, the cat-
egory Shv(Gpd(C )) of sheaves of groupoids
satisfies the axioms for a right proper closed
simplicial model category.

2) The adjoint pair

L2 : Pre(Gpd(C ))� Shv(Gpd(C )) : i

forms a Quillen equivalence.

The model structures of Proposition 20.1 and 20.2
are the injective model structures for presheaves
and sheaves of groupoids on a site C , respectively.

Part 1) of Proposition 20.2 was first proved in [11].
This was a breakthrough result, in that it enabled
the following definition:

Definition: A sheaf of groupoids H is said to be a
stack if it satisfies descent for the injective model
structure on Shv(Gpd(C )).
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This means that every injective fibrant model j :
H→H ′ of a stack H should be a sectionwise weak
equivalence.
If j : H → H ′ is a fibrant model in sheaves (or
presheaves) of groupoids, then the induced map
j∗ : BH → BH ′ is a fibrant model in simplicial
presheaves.
Thus, H is a stack if and only if the simplicial
presheaf BH satisfies descent.
Every fibrant object is a stack, because fibrant ob-
jects satisfy descent.
This means that every fibrant model j : G→ H of
a sheaf of groupoids G is a stack completion.
This model j can be constructed functorially, since
the injective model structure on Shv(Gpd(C )) is
cofibrantly generated.
We can therefore speak unambiguously about “the”
stack completion of a sheaf of groupoids G —
the stack completion is also called the associated
stack.
Similar definitions can also be made for presheaves
of groupoids.
This means that stacks can be identified with ho-
motopy types of presheaves or sheaves of groupoids.
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Example: Suppose that G×X→ X is an action of
a sheaf of groups G on a sheaf X .

The Borel construction EG×G X is the nerve of a
sheaf of groupoids EGX .

The stack completion

j : EGX → [X/G]

is called the quotient stack.

Many stacks which arise in nature are quotient stacks.
In particular, G∼=EG∗, so that [∗/G] is sectionwise
equivalent to the stack associated to the group G.

A G-torsor over X is a G-equivariant map P→ X
where P is a G-torsor.

A morphism of G-torsors over X is a commutative
diagram

P θ //

��

P′

��

X
of G-equivariant morphisms, where P and P′ are
G-torsors.

Write G− tors/X for the corresponding groupoid.
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If P→ X is a G-torsor over X , then the induced
map of Borel constructions

∗ '←− EG×G P→ EG×G X

is an object of the cocycle category

H(∗,EG×G X),

and the assignment is functorial. Conversely, if the
diagram

∗ '←−U → EG×G X
is a cocycle, then the induced map

π̃0 pb(U)→ π̃0 pb(EG×G X)
ε−→∼= X

is a G-torsor over X . The two functors are adjoint,
and we have proved

Lemma 20.3. There is a weak equivalence

B(G− tors/X)' BH(∗,EG×G X).

In particular, there is an induced bijection

π0(G− tors/X)∼= [∗,EG×G X ].

Lemma 20.3 was proved by a different method in
[6].

There is a generalization of this result, having es-
sentially the same proof, for the homotopy colimit
holim−−−→G X of a diagram X on a sheaf of groupoids
G. See [8].
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Remark 20.4. A diagram

G
p←− H

q−→ G′

of morphisms of sheaves of groupoids such that
the induced maps

BG
p∗←− BH

q∗−→ BG′

are local trivial fibrations is called a Morita mor-
phism, and sheaves of groupoids G, K are said to
be Morita equivalent if there is a string of Morita
morphisms connecting them.

Clearly if G and K are Morita equivalent then they
are weakly equivalent.

Conversely, if f : G→ H is a weak equivalence,
take the cocycle

G
(1, f )−−→ G×H

and find a factorization

G j
//

(1, f ) ##

K
(p1,p2)��

G×H
such that j is a weak equivalence and (p1, p2) is a
fibration.

The induced map

BK
(p1∗,p2∗)−−−−−→ BG×BH
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is an injective hence local fibration, and the pro-
jection maps BG×BH→BG and BG×BH→BH
are local fibrations since BG and BH are locally fi-
brant.

It follows that the maps

G
p1←− K

p2−→ H

define a Morita morphism.

It also follows that sheaves of groupoids G and
H are weakly equivalent if and only if they are
Morita equivalent.

The same holds for presheaves of groupoids with
the obvious expanded definition of Morita equiva-
lence.

Example: A gerbe is traditionally defined to be a
locally connected stack.

Alternatively, a gerbe is a presheaf of groupoids G
such that π̃0BG = ∗.
Weak equivalence classes of gerbes are classified
by path components of a cocycle category taking
values in presheaves of 2-groupoids — see [8],
[9], [10].
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Sets of such weak equivalence classes form the
various flavours of Giraud’s non-abelian H2 func-
tors [1].

Lemma 20.5. Suppose that G is a fibrant sheaf of
groupoids.

Then the morphisms

BG j∗ //

&&

B(G−Tors)
φ∗
��

BH(∗,BG)

are sectionwise weak equivalences of simplicial
sheaves.

Proof. The morphism j is already fully faithful in
all sections.

Thus, it suffices to show that all maps

j∗ : π0BG(U)→ π0B(G−Tors)(U)

is surjective for all U ∈ C .

For this, it suffices to assume that the site C has a
terminal object t and show that the map

π0BG(t)→ π0BH(∗,BG)(t) = π0BH(∗,BG)

is surjective.
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In every cocycle

∗ s←−U
f−→ BG

the map s is a local weak equivalence, so there is
a homotopy commutative diagram

U f
&&

s
��

BG
∗ x

77

since BG is injective fibrant.

Thus, the cocycles (s, f ), (s,xs) and (1,x) are all
in the same path component of H(∗,BG).

Lemma 20.6. Suppose that G is a sheaf of groupoids.

Then the maps j : G→ G−Tors and φ j : G→
H(∗,BG) are models for the stack completion, up
to sectionwise weak equivalence.

Proof. Suppose that i : G→ H is a fibrant model
for G.

Then i∗ : BG→ BH is a local weak equivalence,
so that the induced map

i∗ : BH(∗,BG)→ BH(∗,BH)

is a sectionwise equivalence.
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Thus, it follows from Lemma 20.5 that BH(∗,BG)

is sectionwise equivalent to an injective fibrant ob-
ject, namely BH, and thus satisfies descent.

Remark 20.7. The presheaf of categories H(∗,BG)

is a fine example of what should be meant by a
stack in categories. Such an object should be a
presheaf of categories D such that the nerve BD
satisfies descent.
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