
21 The Verdier hypercovering theorem

Suppose that C is a small Grothendieck site. As
before, sPre(C ) is the category of simplicial presheaves
on the site C .

The discussion that follows will be confined to
simplicial presheaves. It has an exact analog for
simplicial sheaves.

Let A be a fixed choice of simplicial presheaf.

The slice category A/sPre(C ) has all morphisms
x : A→ X as objects, and all diagrams

A
x
��

y
��

X f
//Y

as morphisms.

The intuition is that x : A→ X is a “base point”
of X (geometric points for the étale topology are
good examples to keep in mind) even though A
could be non-trivial homotopically.
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The category A/sPre(C ) inherits a local model
structure from sPre(C ), in that a morphism

A
x
��

y
��

X f
//Y

is a local weak equivalence (respectively cofibra-
tion, fibration) if and only if the underlying map
f : X → Y is a local weak equivalence (respec-
tively cofibration, injective fibration) of simplicial
presheaves.

Remark 21.1. 1) Not all objects of the slice cate-
gory are cofibrant: the identity morphsm 1 : A→A
is initial, and so an object x : A→ X is cofibrant if
an only if the map x is a cofibration of simplicial
presheaves.

2) The unique map A → ∗ taking values in the
terminal simplicial presheaf ∗ is the terminal ob-
ject of A/sPre(C ), and it follows that an object
x : A→ X is fibrant if and only if X is an injective
fibrant simplicial presheaf.

Say that a map f : x → y in the slice category
A/sPre(C ) is a hypercover if the underlying sim-
plicial presheaf map f : X→Y is a hypercover (or
a local trivial fibration).
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More generally, f : x→ y is a local fibration if
the map f : X→Y is a local fibration of simplicial
presheaves.

In particular, x : A→ X is locally fibrant if X is
locally fibrant.

The theory of cocycle categories of [3] applies with-
out change to the model category A/sPre(C ).

A cocycle (g, f ) from x to y is a diagram

x
g←−
'

z
f−→ y

in the slice category, or a diagram of simplicial
presheaf maps

A
x
��

z
��

y
��

X Zg
'oo

f
//Y

for which the map g is a weak equivalence.

The cocycles are the objects of a category H(x,y)
which has morphisms θ : (g, f )→ (g, f ′) given by
the commutative diagrams

zg
yy

θ
��

f
%%x y

z′g′
dd

f ′
::
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The category H(x,y) is the category of cocycles
from x to y.

The model structure on A/sPre(C ) is right proper,
and weak equivalences in this structure are closed
under finite products, because these properties both
hold for the category of simplicial presheaves.

Thus, Theorem 15.3 (Lecture 07) implies the fol-
lowing:

Lemma 21.2. The function

φ : π0H(x,y)→ [x,y],

which is defined by (g, f ) 7→ f · g−1 for a cocycle
(g, f ) in the slice category A/sPre(C ), is a bijec-
tion.

Suppose that f ,g : x → y are morphisms of the
slice category A/sPre(C ).

A (naive) pointed homotopy from f to g is a com-
mutative diagram

A×∆1

x×∆1
��

pr
//A

y
��

X×∆1
h
//Y

such that h is a simplicial homotopy from f to g in
the usual sense.
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The projection map pr : A×∆1→A onto A defines
the constant homotopy on A.

Equivalently, such a pointed homotopy is a map

h : (X×∆
1)∪A×∆1 A→ Y.

In the pushout diagram

A×∆1 pr
//

x×∆1
��

A

��

X×∆1
pr∗
// (X×∆1)∪A×∆1 A

the map pr∗ is a weak equivalence if the map x :
A→ X is a cofibration, or if x is a cofibrant object
of A/sPre(C ).

In that case, the pushout object is a cylinder for x
in the slice category.

Every object x : A→X has a cofibrant model, mean-
ing a diagram

A v //

x ��

Z
p
��

X
such that v is a cofibration and p is a weak equiv-
alence.
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If the maps f ,g : x → y are pointed homotopic
and p : v→ x is a cofibrant model of x, then the
composites f p and gp are pointed homotopic, and
therefore represent the same map in the homotopy
category since v is cofibrant.

But then p is an isomorphism in that category, so
that f = g in the homotopy category.

The objects of the category Triv/x are the pointed
homotopy classes of maps [p] : z→ x which are
represented by hypercovers p : z→ x.

The morphisms of this category are commutative
triangles of pointed homotopy classes of maps, in
the obvious sense.

There is a contravariant set-valued functor which
takes an object [p] : z → x of Triv/x to the set
π(z,y) of pointed homotopy classes.

There is a function

φh : lim−→
[p]:z→x

π(z,y)→ [x,y]

which is defined by sending the diagram

x
[p]←− z

[ f ]−→ y

to the morphism f · p−1 in the homotopy category.
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The colimit
lim−→

[p]:z→x

π(z,y)

is the set of path components of a category Hh(x,y)
whose objects are the pictures of pointed homo-
topy classes

x
[p]←− z

[ f ]−→ y,

such that p : z→ x is a hypercover, and whose mor-
phisms are the commutative diagrams

z[p]
yy

[ f ]
%%

[θ ]
��

x y

z′[p′]

dd

[ f ′]

::

(21.1)

in pointed homotopy classes of maps. The map φh

therefore has the form

φh : π0Hh(x,y)→ [x,y]

The following result is a generalized Verdier hy-
percovering theorem:

Theorem 21.3. The function

φh : π0Hh(x,y)→ [x,y]

is a bijection if y is locally fibrant.

Remark 21.4. Theorem 21.3 specializes to a gen-
eralization of the standard form of the Verdier hy-
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percovering theorem [1, p.425], [2] if A = /0, for
the unique map x : /0→ X .

The object X is not required to be locally fibrant.

There are multiple variations of the category Hh(x,y):

1) Write H ′h(x,y) for the category whose objects
are pictures

x
p←− z

[ f ]−→ y

where p is a hypercover and [ f ] is a pointed ho-
motopy class of maps.

The morphisms of H ′h(x,y) are diagrams

zp
yy

[ f ]
%%

[θ ]
��

x y

z′p′
dd

[ f ′]

::

(21.2)

such that [θ ] is a fibrewise pointed homotopy class
of maps over x, and [ f ′][θ ] = [ f ] as pointed homo-
topy classes.

There is a functor

ω : H ′h(x,y)→ Hh(x,y),

which is defined by the assignment (p, [ f ]) 7→ ([p], [ f ]),
and which sends the morphism (21.2) to the mor-
phism (21.1).
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2) Write H ′′h (x,y) for the category whose objects
are the pictures

x
p←− z

[ f ]−→ y

where p is a hypercover and [ f ] is a pointed sim-
plicial homotopy class of maps.

The morphisms of H ′′h (X ,Z) are commutative dia-
grams

zp
xx

θ
��

x
z′p′

ee

such that [ f ′ ·θ ] = [ f ].

There is a canonical functor

H ′′h (x,y)
ω ′−→ H ′h(x,y)

which is the identity on objects, and takes mor-
phisms θ to their associated fibrewise pointed ho-
motopy classes.

3) Let Hhyp(x,y) be the full subcategory of H(x,y)
whose objects are the cocycles

x
p←− z

f−→ y

with p a hypercover.

There is a functor

ω
′′ : Hhyp(x,y)→ H ′′h (x,y)
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which takes a cocycle (p, f ) to the object (p, [ f ]).

Lemma 21.5. Suppose that y is locally fibrant.

Then the inclusion functor i : Hhyp(x,y) ⊂ H(x,y)
is a homotopy equivalence.

Proof. Objects of the cocycle category H(x,y) can
be identified with maps (g, f ) : z→ x×y such that
the morphism g is a weak equivalence, and mor-
phisms of H(x,y) are commutative triangles in the
obvious way.

Maps of the form (g, f ) have functorial factoriza-
tions

z j
//

(g, f ) ""

v
(p,g′)
��

x× y

(21.3)

such that j is a pointwise trivial cofibration and
(p,g′) is a pointwise Kan fibration.

It follows that (p,g′) is a local fibration and the
map p, or rather the composite

z
(p,g′)−−−→ x× y

pr−→ x,

is a local weak equivalence.

The projection map pr is a local fibration since
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y is locally fibrant, so the map p is also a local
fibration, and hence a hypercover.

It follows that the assignment (u,g) 7→ (p,g′) de-
fines a functor

ψ
′ : H(x,y)→ Hh(x,y).

The weak equivalences j of the diagram (21.3) de-
fine homotopies p′ · i' 1 and i ·ψ ′ ' 1.

Proof of Theorem 21.3. The composite

H(x,y)
ψ ′−→Hhyp(x,y)

ω ′′−→H ′′h (x,y)
ω ′−→H ′h(x,y)

ω−→Hh(x,y)

is the functor ψ , and the composite

π0H(x,y)
ψ ′∗−→ π0Hhyp(x,y)

ω ′′∗−→ π0H ′′h (x,y)
ω ′∗−→ π0H ′h(x,y)

ω∗−→ π0Hh(x,y)
φh−→ [x,y]

(21.4)
is the bijection φ of Lemma 21.2.

The function ψ ′∗ is a bijection by Lemma 21.5, and
the functions ω ′′∗ , ω ′∗ and ω∗ are surjective, as is the
function φh.

The functions which make up the string (21.4) are
therefore all bijections.
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The following corollary of the proof of Theorem
21.3 deserves independent mention:

Corollary 21.6. Suppose that the object y : A→Y
of A/sPre(C ) is locally fibrant. Then the induced
functions

π0Hhyp(x,y)
ω ′′∗−→ π0H ′′h (x,y)

ω ′∗−→ π0H ′h(x,y)
ω∗−→ π0Hh(x,y)

are bijections, and all of these sets are isomorphic
to the set [x,y] of morphisms x→ y in the homo-
topy category Ho(s/Pre(C )).

The bijections of the path component objects in
the statement of Corollary 21.6 with the set [x,y]
all represent specific variants of the Verdier hyper-
covering theorem.
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