
22 Localization for simplicial presheaves

Suppose that C is a small Grothendieck site, and
S is a set of cofibrations A→ B in sPre(C ).

Assume throughout this section that I is a simpli-
cial presheaf on C with disjoint global sections
0,1 : ∗→ I.

The object I will be called an interval, whether it
looks like one or not.

S will be a fixed set of cofibrations of sPre(C ).

Examples include the following:

1) the simplicial set ∆1 with the two vertices 0,1 :
∗→ ∆1,

2) Bπ(∆1) with the two vertices 0,1 : ∗→ π(∆1).
π(∆1) is the fundamental groupoid of ∆1,

3) the affine line A1 over a scheme T with the
rational points 0,1 : T → A1.

The idea of localization theory is to construct, in a
minimal way, a homotopy theory on sPre(C ) for
which the cofibrations are the monomorphisms, all
maps in S become weak equivalences, and the in-
terval I describes homotopies.
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Write
�n = I×n.

There are face inclusions

di,ε : �n−1→�n, 1≤ i≤ n, ε = 0,1,

with

di,ε(x1, . . . ,xn−1) = (x1, . . . ,xi−1,ε,xi, . . . ,xn−1).

Then there are subobjects ∂�n andun
i,ε of �n which

are defined, respectively, by

∂�n = ∪i,ε di,ε(�n−1),

and
un

i,ε = ∪( j,γ)6=(i,ε) d j,γ(�n−1).

A naive homotopy between maps f ,g : X → Y is
a commutative diagram

X
0
��

f

##
X× I h //Y

X
1
OO

g

;;

Naive homotopies generate an equivalence rela-
tion: write

π(X ,Y ) = πI(X ,Y )
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for the naive homotopy classes of maps X → Y .

The class of anodyne cofibrations (or anodyne
extensions) is the saturation of the set of inclusions
Λ(S) specified by

(C×�n)∪ (D×un
(i,ε))⊂ D×�n (22.1)

where C→ D is a member of a set of generating
cofibrations for sPre(C ), and

(A×�n)∪ (B×∂�n)⊂ B×�n (22.2)

with A→ B in the set S.

An injective morphism is a simplicial presheaf
map p : X→Y which has the right lifting property
with respect to all anodyne extensions.

A simplicial presheaf X is injective if the map
X →∗ is an injective morphism.

A weak equivalence is a map f : X → Y which
induces a bijection π(Y,Z)→ π(X ,Z) for all in-
jective Z.

A cofibration is a monomorphism.

A fibration is a map which has the right lifting
property with respect to all trivial cofibrations.

3



Exercises:
1) Show that naive homotopy of maps X→ Z is an
equivalence relation if Z is injective.
2) Show that a map f : Z→W of injective objects
is a weak equivalence if and only if it is a naive
homotopy equivalence.

This means that there is a map g :W→ Z and naive
homotopies f ·g' 1W and g · f ' 1Z.

Lemma 22.1. 1) Suppose that C→ D is an ano-
dyne cofibration. Then the induced map

(C×�1)∪ (D×∂�1)⊂ D×�1 (22.3)

is anodyne.

2) All anodyne cofibrations are weak equivalences.

Proof. Show that that if C→D is in Λ(S), then the
induced map (22.3) is in Λ(S).

Then the proof of statement 1) is finished with a
colimit argument.

For 2), suppose that i : C→ D is an anodyne cofi-
bration and that Z is an injective object.

Then the lifting exists in any diagram

C //

i
��

Z

D

??
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so that the map

i∗ : π(D,Z)→ π(C,Z)

is surjective. If f ,g : D→ Z are morphisms such
that there is a homotopy h : C× I→ Z between f i
and gi, then the lifting exists in the diagram

(C×�1)∪ (D×∂�1)
(h,( f ,g))

//

��

Z

D×�1
H

66

(by part 1)) and the map H is a homotopy between
f and g. It follows that the function

i∗ : π(D,Z)→ π(C,Z)

is injective.

We shall sketch the proof of the following:

Theorem 22.2 (Cisinski). With the definitions given
above, the simplicial presheaf category sPre(C )

has the structure of a left proper cubical model
category.

The cubical model structure involves the cubical
set (the cubical function complex)

hom(X ,Y )

whose n-cells are the maps X×�n→ Y .
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This construction satisfies a cubical version of Quillen’s
simplicial model axiom SM7 — the proof is built
into the proof of Theorem 22.2.

There is a properness assertion as well:

Theorem 22.3. Suppose that all cofibrations in the
set S pull back to weak equivalences along all fi-
brations p : X → Y with Y fibrant.

Then the model structure of Theorem 22.2 on sPre(C )

is proper.

The condition in the statement of Theorem 22.3
means that, in every diagram

A×Y X i∗ //

��

B×Y X //

��

X
p
��

A i
//B //Y

with p a fibration and Y fibrant, if i is a member of
S then i∗ is a weak equivalence.

Theorems 22.2 and 22.3 are special cases of more
general results, which can be found in [5] and (bet-
ter) [6].

Theorem 22.2 was originally proved by Cisinski
[1]. He did not express the result as it appears
here, but the main ideas of the proof are due to
him.
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1) Cardinality tricks
Suppose that T is some set of cofibrations, and
choose a regular cardinal α such that α > |T | and
that α > |D| for all C → D in T . Suppose that
α > |Mor(C )|.
Suppose that λ > 2α is regular.

Every f : X →Y has a functorial system of factor-
izations

X is //

f ""

Es( f )
fs
��

Y
for s < λ defined by the lifting property for maps
in T , and which form the stages of a transfinite
small object argument.

Specifically, given the factorization f = fsis form
the pushout diagram⊔

D C //

��

Es( f )

��⊔
D D //Es+1( f )

where D runs through all diagrams

C //

i
��

Es( f )

��

D //Y
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with i in T .

Then fs+1 : Es+1( f )→ Y is the obvious induced
map.

Set Et( f ) = lim−→s<t
Es( f ) at limit ordinals t < λ .

Then there is a functorial factorization

X
iλ //

f ##

Eλ( f )
fλ
��

Y

with Eλ( f ) = lim−→s<λ
Es( f ).

The map fλ has the right lifting property with re-
spect to all C→ D in T , and iλ is in the saturation
of T .

Write L (X) = Eλ(X →∗).
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Lemma 22.4. 1) Suppose that t 7→Xt is a diagram
of simplicial presheaves, indexed by ω > 2α .

Then the map

lim−→
t<ω

L (Xt)→L (lim−→
t<ω

Xt)

is an isomorphism.

2) The functor X 7→L (X) preserves cofibrations.

3) Suppose that γ is a cardinal with γ > α , and
let Fγ(X) = the subobjects of X having cardi-
nality less than γ .

Then the map

lim−→
Y∈Fγ(X)

L (Y )→L (X)

is an isomorphism.

4) If |X | ≤ 2µ where µ ≥ λ then |L (X)| ≤ 2µ .

5) Suppose that U,V are subobjects of X.

Then the natural map

L (U ∩V )→L (U)∩L (V )

is an isomorphism.

Proof. It suffices to prove all statements with L (X)

replaced by E1(X).
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There is a pushout diagram⊔
T (C×hom(C,X)) //

��

X

��⊔
T (D×hom(C,X)) //E1X

Then, in sections,

E1X(a)=
⊔
T

((D(a)−C(a))×hom(C,X)) t X(a),

so 5) follows.

The remaining statements are exercises.

Corollary 22.5. Every simplicial presheaf map f :
X → Y has a functorial factorization

X j
//

f ��

Z
p
��

Y

where j is anodyne and p is injective.

Suppose that α is a regular cardinal such that α >

|Λ(S)| and that α > |D| for all C → D in Λ(S).
Suppose that α > |Mor(C )|. Suppose that λ > 2α .
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Here is the bounded cofibration condition:

Lemma 22.6. Suppose given a diagram

X
i��

A //Y

of cofibrations such that i is a weak equivalence
and |A| ≤ 2λ .

Then there is a subobject B ⊂ Y with A ⊂ B such
that |B| ≤ 2λ and B∩X → B is an equivalence.

Proof. The proof is due to Cisinski. The innova-
tion is that it uses nothing but naive homotopy.

The map i∗ : L X→LY is a cofibration (by Lemma
22.4) and is a naive homotopy equivalence of in-
jective objects.

There is a map σ : LY →L X such that σ · i∗ ' 1
via a naive homotopy h : L X×�1→L X .

Form the diagram

(LY ×�0)∪ (L X×�1)
(σ ,h)

//

��

L X

LY ×�1
H

55

The other end of the homotopy H gives a map σ ′

such that σ ′ · i∗ = 1, and i∗σ ′ ' i∗σ ' 1.
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We can therefore assume that σ · i∗ = 1.

Suppose that As ⊂ Y and |As| ≤ 2λ .

Then |L As×�1| ≤ 2λ .

Also, there is a subobject As+1 such that As ⊂ As+1

with |As+1| ≤ 2λ , and there is a diagram

L As×�1 //

��

L As+1

��

LY ×�1
K
//LY

where K is the homotopy i∗σ ' 1.

This is the successor ordinal step in the construc-
tion of a system s 7→ As with s < λ (recall that
λ > 2α) and A = A0.

Let B = lim−→s
As.

Then, by construction, |B| ≤ 2λ , and the restriction
of the homotopy K to L B×�1 factors through the
inclusion j∗ : L B→LY .

There is a pullback

L (B∩X)
j̃
//

ĩ ��

L X
i∗��

L B j∗
//LY

and i∗σ(L B)⊂L B.
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It follows that there is a map

σ
′ : L B→L (B∩X)

such that σ ′ · ĩ = 1.

The map K factors through a homotopy ĩσ ′ ' 1.

2) Trivial cofibrations are preserved by pushout

The class of anodyne extensions is closed under
pushout, by definition.

Lemma 22.7. Suppose given a diagram

C f ,g
//

i ��

E

D
where i is a cofibration, and suppose that there is
a naive homotopy h : C×�1→ E from f to g.

Then g∗ : D→D∪g E is a weak equivalence if and
only if f∗ : D→ D∪ f E is a weak equivalence.

Proof. There are pushout diagrams

C d0 //

i
��

C×�1 h //

i∗��

E
i∗��

D d0∗
//D∪C (C×�1)

h′
//

j ��

D∪ f E
j∗��

D×�1
h∗

// (D×�1)∪h E
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where the top composite is f .

The maps d0∗, j and j∗ are anodyne cofibrations.

Thus f∗= h′ ·d0∗ is a weak equivalence if and only
if h′ is a weak equivalence, and h′ is a weak equiv-
alence if and only if h∗ is a weak equivalence.

Thus, f∗ is a weak equivalence if and only if h∗ is
a weak equivalence.

Similarly, g∗ is a weak equivalence if and only if
h∗ is a weak equivalence.

Lemma 22.8. Suppose that i : C→ D is a trivial
cofibration.

Then the cofibration

(C×�1)∪ (D×∂�1)→ D×�1

is a weak equivalence.

Proof. The diagram

C×∂�1 //

��

D×∂�1 //

��

L D×∂�1

��

C×�1 //D×�1 //L D×�1

induces a diagram

(C×�1)∪ (D×∂�1) //

��

(C×�1)∪ (L D×∂�1)
��

D×�1 //L D×�1
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in which the horizontal maps are anodyne exten-
sions, and hence weak equivalences.

There is a factorization

C i′ //

i   

D′
p��

D

where i′ is anodyne and p is both injective and a
weak equivalence.

In the induced diagram

(C×�1)∪ (L D′×∂�1) //

��

(C×�1)∪ (L D×∂�1)
��

L D′×�1 //L D×�1

the top horizontal map is induced by the homotopy
equivalence

L D′×∂�1→L D×∂�1,

and is therefore an equivalence by Lemma 22.7.

The bottom horizontal map is also a homotopy
equivalence.

The left hand vertical map is an equivalence by
comparison with the map

(C×�1)∪ (D′×∂�1)→ D′×�1

which is an anodyne extension.
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Lemma 22.9. The class of trivial cofibrations is
closed under pushout.

Proof. If j : C → D is a cofibration and a weak
equivalence, then every map α : C→ Z with Z in-
jective extends to a map D→ Z.

In effect, there is a homotopy h : C×�1→ Z from
α to a map β · j for some map β : D→ Z, and then
the homotopy extends:

(C×�1)∪ (D×{1}) (h,β )//

��

Z

D×�1
H

66

Note that the vertical map is an anodyne extension.

Now suppose given a pushout diagram

C //

j
��

C′

j′
��

D //D′

Then the diagram

(C×�1)∪ (D×∂�1) //

��

(C′×�1)∪ (D′×∂�1)
��

D×�1 //D′×�1

is a pushout.
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The left vertical map is a trivial cofibration by Lemma
22.8, and therefore has the left lifting property with
respect to the map Z→∗.
Thus, if two maps f ,g : D′→ Z restrict to homo-
topic maps on C′, then f ' g.

3) Many injective maps are fibrations

Lemma 22.10. Suppose that the map p : X →Y is
injective and that Y is injective.

Then p is a fibration.

Proof. Suppose given a diagram

A α //

i ��

X
p��

B
β

//Y

(22.4)

where i is a trivial cofibration.

There is a map θ : B→ X such that θ · i = α since
X is injective.

The constant homotopy A×�1 pr−→ A α−→ X extends
to a homotopy h : B×�1→ Y as in the diagram

(A×�1)∪ (B×∂�1)
(pα prA,(β ,pθ))

//

��

Y

B×�1
h

33
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since the vertical map is a trivial cofibration (Lemma
22.8) and Y is injective.

It follows that there is a homotopy

A×�1 α prA//

i×i ��

X
p
��

B×�1
h
//Y

from the original diagram to a diagram

A α //

i ��

X
p��

B pθ

//

θ
??

Y

Find the indicated lifting in the diagram

(A×�1)∪B
(α prA,θ)//

��

X
p
��

B×�1
h

//

55

Y

to show that the required lifting exists for the orig-
inal diagram (22.4).

Corollary 22.11. Every injective object is fibrant.
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4) Final approach

Lemma 22.12 (CM4). Suppose that p : X → Y is
a fibration and a weak equivalence.

Then p has the right lifting property with respect
to all cofibrations.

Proof. Suppose first that Y is injective.
Then p is a naive homotopy equivalence, and has
a section σ : Y → X (exercise).
The map σ is a trivial cofibration so the lift exists
in the diagram

(Y ×�1)∪ (X×∂�1)
(σ ·pr,(1X ,σ ·p)) //

��

X
p
��

X×�1

H
33

p×1
//Y ×�1

pr
//Y

since the left vertical map is a weak equivalence
by Lemma 22.8.
It follows that the identity diagram on p : X → Y
is naively homotopic to the diagram

X σ ·p
//

p ��

X
p��

Y 1
//

σ
??

Y

Thus, any diagram

A //

j ��

X
p��

B //Y
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is naively homotopic to a diagram which admits a
lifting.

It follows that p has the right lifting property with
respect to all cofibrations.

If Y is not injective, form the diagram

X j
//

p
��

Z
q��

Y jY
//L (Y )

where j is an anodyne cofibration, q is injective,
and j is an injective model for X .

Then q is a fibration by Lemma 22.10 and is a
weak equivalence, so that q has the right lifting
property with respect to all cofibrations, by the
previous paragraphs.

Factorize the map X → Y ×L (Y ) Z as

X i //

&&

W
π��

Y ×L (Y ) Z

where π has the right lifting property with respect
to all cofibrations and i is a cofibration.

Write q∗ for the induced map Y ×L (Y ) Z→ Y .

Then the composite q∗π has the right lifting prop-
erty with respect to all cofibrations and is therefore
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a homotopy equivalence.

The cofibration i is also a weak equivalence, so the
lifting exists in the diagram

X 1X //

i ��

X
p��

Z q∗π
//

??

Y

and p is a retract of a map which has the right lift-
ing property with respect to all cofibrations.

Corollary 22.13. A map p : X → Y is a fibration
and a weak equivalence if and only if it has the
right lifting property with respect to all cofibra-
tions.

Proof. If p has the right lifting property with re-
spect to all cofibrations, then p is a homotopy equiv-
alence (exercise).

The converse is Lemma 22.12.
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Proof of Theorem 22.2. The cofibration/trivial fibra-
tion factorization statement of CM5 and CM4 are
consequences of Corollary 22.13: every map f :
X → Y has a factorization

X f
//

i ��

Y

W
p
CC

where i is a cofibration and p has the right lifting
property with respect to all cofibrations.

The trivial cofibration/fibration factorization state-
ment follows from the bounded cofibration condi-
tion: every f : X → Y has a factorization

X f
//

j ��

Y

Z
q
DD

where j is a cofibration and a weak equivalence
and q is a fibration.

In order to conclude that j is a weak equivalence,
we need to know that trivial cofibrations are closed
under pushout, but this is Lemma 22.9.

All simplicial presheaves are cofibrant for the present
model structure.

Left properness follows from general nonsense about
categories of cofibrant objects — see [2, II.8.5].
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Examples:
1) Homotopy theory of simplicial presheaves

Suppose that S is a generating set of trivial cofi-
brations A→ B for the injective model structure
on sPre(C ), and that I = ∆1 is the standard inter-
val.

An injective model j : X →L (X) is an injective
fibrant model since all anodyne extensions are triv-
ial cofibrations for the injective structure and all
injective objects are injective fibrant.

Thus, every weak equivalence (for the “new” model
structure) is a local weak equivalence.

If f : X → Y is a local weak equivalence, then
L (X)→ L (Y ) is a local weak equivalence be-
tween injective fibrant models, and is therefore a
(standard) homotopy equivalence.

It follows that f is a weak equivalence in the “new”
sense.

2) Motivic homotopy theory

Suppose that S is a scheme of finite dimension
(typically a field), and let (Sm|S)Nis be the category
of smooth schemes of finite type over S, equipped
with the Nisnevich topology.
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Recall (from Lecture 02) that a covering family for
the Nisnevich topology is an étale covering fam-
ily φi : Vi→U in the category of S-schemes such
that every map Sp(K)→U lifts to some Vi, for all
fields K.

Nisnevich originally called this topology the “com-
pletely decomposed topology” or “cd-topology”
[8], because of the way it behaves over fields —
see [3].

The motivic model structure on sPre(Sm|S)Nis can
be constructed in two ways:

a) Let S consist of the generating set of the triv-
ial cofibrations for the injective model structure on
sPre(Sm|S)Nis, plus the 0-section ∗ → A1, and let
I = ∆1.

b) Let S be the generating set of trivial cofibrations
for the injective model structure on sPre(Sm|S)Nis

and let I = A1 with the global sections 0,1 : ∗ →
A1.

It’s an exercise to show that the two model struc-
tures coincide: show that every anodyne cofibra-
tion of one structure is a trivial cofibration of the
other, and so the two structures have same injec-
tive objects.
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It follows that the two classes of weak equiva-
lences coincide.

The motivic model structure is called the A1-model
structure in [7].

Strictly speaking, the Morel-Voevodsky model struc-
ture is on the category of simplicial sheaves on the
smooth Nisnevich site, but the model structures
for simplicial sheaves and simplicial presheaves
are Quillen equivalent by the usual argument (The-
orem 12.1).

There are many other models for motivic homo-
topy theory, including model structures on presheaves
and sheaves (not simplicial!) on the smooth Nis-
nevich site [4], and all the models arising from test
categories [5].

3) Localized model structures

Suppose that f : A→ B is a cofibration of simpli-
cial presheaves on a site C .

Let S consist of the generating set of trivial cofi-
brations for the injective model structure on sPre(C ),
plus the cofibration f . Let I = ∆1.

The resulting model structure is the f -local model
structure on sPre(C ).
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The motivic model structure on sPre(Sm|S)Nis is a
special case of this construction, as are all of the
standard f -local theories for simplicial sets.

4) Quasi-categories

The quasi-category model structure on the cate-
gory sSet of simplicial sets is the model structure
given by the theorem for the set S of inner ano-
dyne extensions

Λ
n
k ⊂ ∆

n, 0 < k < n,

and the interval I = Bπ(∆1).
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Theorem 22.14. Suppose that f : ∗→A is a global
section of a simplicial presheaf A on a small site
C .

Then the f -local model structure on sPre(C ) is
proper.

Proof. We only need to verify right properness.

According to Theorem 22.3, and since the stan-
dard injective model structure on sPre(C ) is proper,
it is enough to show that the map f∗ is a weak
equivalence in all pullback diagrams

F f∗ //

��

A×Y X //

��

X
p
��

∗ f
//A

α
//Y

such that p is a fibration and Y is fibrant.

The map t : A→ ∗ is a weak equivalence and Y is
fibrant, so there is a map v : ∗→Y and a homotopy
h making the diagram

∗ f
//

0 ��

A
0��

α

((
∆1 //A×∆1 h //Y

∗
1

OO

f
//A

1
OO

t
// ∗

v

@@
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commute.

All instances of the maps 0 and 1 pull back to
weak equivalences along p since the standard in-
jective model structure is proper.

It therefore suffices to show that the map f∗ in the
pullback diagram

Fv
f∗ //

��

A×Fv //

��

X
p
��

∗ f
//A vt

//Y

is a weak equivalence, where Fv is the fibre of p
over v, but this is obvious since f∗ is anodyne.

Corollary 22.15. The motivic model structure on
the category sPre(Sm|S)Nis of simplicial presheaves
on the smooth Nisnevich site is proper.
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Astérisque, 308:xxiv+390, 2006.

[2] P. G. Goerss and J. F. Jardine. Simplicial Homotopy Theory, volume 174 of
Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
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