25 T-spectra

Suppose that T' is a pointed simplicial presheaf on
a small site C.

A T'-spectrum X is a collection of pointed sim-
plicial presheaves X" n > 0, with pointed maps
o:TANX" = X" Amap f: X =Y of
T-spectra consists of pointed simplicial presheaf
maps f : X" — Y which respect structure in the
sense that the diagrams

T A XnL)Xn—I—l
"
T A Yn?yn—i-l
commute. Write Spt;(C) for the category of T-
spectra.

Say that amap f : X — Y of T-spectra is a strict
weak equivalence (respectively strict fibration) if
all maps f : X" — Y are local weak equiva-
lences (respectively injective fibrations) of pointed
simplicial presheaves on C.

A cofibration of T-spectra is amap ¢ : A — B
such that
oi : AY — B' is a cofibration of simplicial
presheaves, and



e all maps
(T A B") Ugppan) A" — B
are cofibrations of simplicial presheaves.

If K is a pointed simplicial presheaf and X is a T-
spectrum, then X A K has the obvious meaning;:

(XANK)"=X"AK.

The function compler hom(X,Y") for T-spectra
X and Y is the pointed simplicial set with

hom(X,Y),={ X ANA} =Y }.
Lemma 25.1. With these definitions, the cat-
egory of Sptp(C) of T-spectra on C satisfies the
definitions for a proper closed simplicial model
category.
The proof is the usual thing.

Suspensions and shifts work in Spt,(C) just like
for ordinary spectra:

e Given a pointed simplicial presheaf K, the sus-
penston spectrum 27 K is the T-spectrum

KTANKT*NK,...

with 7" =T A --- AT (n-fold smash power).
The functor K +— Y7 K is left adjoint to the
O-level functor X +— X0
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The suspension spectrum %SV is also denoted
by St and is called the T-sphere spectrum.

e Given a T-spectrum X, n € Z,

n+k
X[n]k: X n+k>0
* n+k<O0

Lemma 25.2. Suppose given the diagram

ANX—X

i |

in spectra, where 7 1s a cofibration and i 1S a
levelwise cofibration. Then the induced map j, -
ANX — A s a cofibration.

Proof. The proof is set theoretic. O

What now follows is a general set of tricks that
applies to any set S of cofibrations 7 : A — B of

Sptp(C).

Suppose that « is a cardinal such that a > | Mor(C)].
Suppose also that « > |B| for all morphisms 7
A — B appearing in the set S and that a > |.5].
Choose a cardinal A\ such that A > 2.



Suppose that f : X — Y is a morphism of Spt(C).
Define a functorial system of factorizations

X = E,(f)

T

Y

of the map f indexed on all ordinal numbers s < A
as follows:

1) Given the factorization (fs,is) define the fac-
torization (fsi1,7s11) by requiring that the di-
agram

Vp A“E,(f)

Vi |

\/D B— Es+1(f)
is a pushout, where the wedge is indexed over
all diagrams D of the form

R E,(f)

i\ s

with ¢ : A — B in the set S. Then the map
i1 1S the composite

X5 B () Evn(f)

2) If sis a limit ordinal, set E(f) = ling, _  E(f).
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Set E\(f) = lim E(f). Then there is an in-
duced factorization

X ZAEA(Jf )

N

of the map f. Then 7, is a cofibration. The map
f) has the right lifting property with respect to the
cofibrations ¢ : A — B in .S by a standard argu-
ment, since any map « : A — E)\(f) must factor
through some E,(f) by the choice of cardinal \.

Write L(X) = E)(c) for the result of this construc-
tion when applied to the canonical map ¢ : X — .
Then we have the following:

Lemma 25.3. 1) Suppose that t — X is a di-
agram of level cofibrations indexed by any
cardinal v > 2%. Then the natural map

liny L(X) — L(hg Xi)
t<y t<ry
18 an 1somorphism.
2) The functor X — L(X) preserves level cofi-
brations.

3) Suppose that  is a cardinal with { > «,
and let F¢(X) denote the filtered system of
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subobjects of X having cardinality less than
(. Then the natural map

lig  L(Y) = L(X)
YeF:(X)

18 an 1somorphism.
4) If | X| < 2 where w > « then |L(X)| < 2%,

5) Suppose that U,V are subobjects of a presheaf
of T'-spectra X. Then the natural map

LUNV)—= LU)NLV)
18 an 1somorphism.

Proof. The argument is the same as for Lemma
22.4. O

Basic Assumptions: Suppose that .S is a set of
cofibrations such that

1) A is cofibrant for alli: A — Bin S,
2) S includes the set I of generating maps

Y7 Cl—n| = XFD|—n], n >0,

for the strict trivial cofibrations of Spt(C),
which are induced by the a-bounded trivial
cofibrations C' — D of pointed simplicial pre-
sheaves, and



3) S includes all cofibrations
(AND)U(BAC)— BAD, m >0,

for A — B in S and all a-bounded pointed
cofibrations C' — D of simplicial presheaves.

A map p: X — Y is said to be injective if it has
the right lifting property with respect to all maps
of §. An object X is injective if the map X — x
is injective. By construction, LX is injective for
every object X. Every injective object is strictly
fibrant.

Say that a map f : X — Y of Spt(C) is an L-
equivalence if it induces a bijection

f Yzl = [X, 7]

I

in morphisms in the strict homotopy category for
every injective object Z.

Every strict equivalence X — Y is an L-equivalence.

Lemma 25.4. Suppose that 1 : A — B is a
cofibration with A cofibrant. Then v is an L-
equivalence if

1) i induces a trivial fibration
i* -hom(B, Z) — hom(A, Z)
for all injective Z, or
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2) all injective Z have the right lifting prop-
erty with respect to i and with respect to the
cofibration

(ANADYU(BAOAL) — BAAL

Proof. The first claim is trivial.

The second claim is almost as easy: we must show
that the induced function

i m(B,Z) — w(A,Z)

in naive homotopy classes is a bijection for all in-
jective Z. This suffices, because A and B are cofi-
brant and Z is strictly fibrant.

Every morphism A — Z extends to a morphism
B — Z because Z — * has the right lifting prop-
erty with respect to 2. It follows that ¢* is surjec-
tive.

Given f,qg : B — Z, if there is a homotopy h :
ANAL — Z from f|a to g|a, then there is a
diagram

(BAOAL) U (AN AL D 7

|

BAAL



where the indicated lifting exists because Z is in-
jective and the vertical map is a member of §.
But then f and g are homotopic, so that ¢* is in-
jective. []

Corollary 25.5. All cofibrations appearing in
the set S are L-equivalences.

Proof. Every cofibration ¢ : A — B appearing in
the set S induces a trivial fibration

i :hom(B, Z) — hom(A, Z)
by construction. ]

Note that a map f : Z — W between injective
objects is an L-equivalence if and only if it is a
strict equivalence. In effect, the requirement that f
is an L-equivalence forces f to be an isomorphism
in the strict homotopy category, and hence a strict
equivalence.

A cofibrant replacement foramap f: X — Y is
a commutative diagram

in which the maps mx and 7y are trivial strict fi-
brations, X is cofibrant and j is a cofibration. Any
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two cofibrant replacements for a fixed map f are
strictly equivalent, by a standard argument. The
map f is an L-equivalence if and only if it has a
cofibrant replacement j which is an L-equivalence.

Note that if some cofibrant replacement j for f
induces a trivial fibration

7* :hom(Y,Z) — hom(X, Z)

for all injective objects Z, then all cofibrant re-
placements for f have this property.

Lemma 25.6. All cofibrations in the saturation
of the set S are L-equivalences.

Proof. The saturation of the set S is the family
of cofibrations which has the left lifting property
with respect to all injective maps X — Y.

If the cofibration j : C' — D is coproduct of mem-
bers of S' (hence with C' and D cofibrant), then

7* +hom(D, Z) — hom(C, Z)

is a product of trivial fibrations and is therefore a
trivial fibration.
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Suppose given a pushout diagram

C—C'

il |7

D—=D

where j is a coproduct of members of S and C”’ is
cofibrant. Then from the pullback diagram

hom(D', Z)—hom(D, Z)

r ;

hom(C’, Z) —hom(C, Z)
we see that 7™ is a trivial fibration for all injective

Z.

Suppose given a pushout diagram

C———F

.

D—DUgs E

with 5 as above and E arbitrary. Then there is a
factorization

C—-E

BN

E

of a with 7 a strictly trivial fibration and 7 a cofi-
bration, and there is an induced commutative di-
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agram
E ~D Uc E

gpe

ETDUCE

The map 7 is a strict equivalence, so that m, is
a strict equivalence by properness. The map j,
induces a trivial fibration

(7.)* +hom(D U¢ E, Z) — hom(E, Z)

for all injective Z, by the previous paragraph. It
follows that some cofibrant replacement of the map

Js  E—=DUc E

induces a corresponding function complex weak
equivalence.

Suppose given a string of morphisms
XO X = XQ — .

such that each f; is an L-equivalence. Take a “cofi-
brant replacement”

Ag—- A -2 A,

”Ol ml lm

Xo bil X1 fo A2
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in which Ay is cofibrant, all ¢, are cofibrations and
all 7; are trivial strict fibrations. Then all maps ¢
induce trivial fibrations

ir. - hom(Ay, Z) - hom(A;_1, Z)

for all injective Z, so the cofibration Ay — hgz A;
induces a trivial fibration

hom(lig A;, Z) — hom(Ay, Z).

for all injective Z. The map

is a (sectionwise) weak equivalence, and it follows
that some cofibrant replacement for the map Xy —
ligi X, induces a trivial fibration in all function
complexes taking values in injective objects Z.

It follows that every member 7 : A — B of the

saturation of .S has a factorization

AL 7

RN

B

such that 7 is injective and 7 is a member of the
saturation of S which is also an L-equivalence.
The map ¢ has the left lifting property with re-
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spect to all injective maps such as 7, so that ¢ is a
retract of j. O

Corollary 25.7. 1) The natural map j : X —
LX 1s an L-equivalence.

2) A map f: X — Y is an L-equivalence if
and only if the induced map Lf : LX — LY

18 a strict equivalence.

Lemma 25.8. Suppose that v > «a. Suppose
further that 1 + X — Y s a level cofibration
and a strict equivalence and that A C'Y s an
v-bounded subobject. Then there is a y-bounded
subobject B C'Y with A C B such that the level
cofibration BN X — B s a strict equivalence.

Proof. First of all, consider the diagram of cofibra-
tions
XO
P
Then by Lemma 11.2 (the bounded cofibration
condition for simplicial presheaves) there is a sub-
object BY C YV such that BY is v-bounded, A C
B%and B'N X" — BYis a local weak equivalence.
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Form the diagram

TANA"——~TAB'—TAY"

| lo

Al Yl
Then the induced map
AU TABY = Y!

factors through a y-bounded subobject C' C Y.
There is a ~-bounded subobject B C Y such

that C!' ¢ B! and B'N X! — B! is a local weak
equivalence. The composite

TAB - A'Up 0T ABY = C'c B!

is the bonding map up to level 1 for the object B.

Construct the remaining objects B", n > 1, in-
ductively according to this recipe. ]

Lemma 25.9. Suppose given a cofibration 1 :
X — Y which s an L-equivalence, and suppose
that A C'Y is a 2*-bounded subobject, where \
is chosen as above. Then there is a 2*-bounded
subobject B C'Y with A C B and such that the
cofibration B N X — B 1s an L-equivalence.

Proof. Write By = A, and set k = 2.
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Consider the diagram

LX

LBy—=LY
Then the maps are level cofibrations (Lemma 25.3.2)
and LX — LY is a strict equivalence by assump-
tion. The object LBy is k-bounded by Lemma
25.3.4, so there is a k-bounded subobject C7 C LY

with LBy C C] such that C;NLX — (] is a
strict equivalence, by Lemma 25.8. Since C is k-

bounded there is a xk-bounded subobject By C Y

with By C Bj such that C; C LB; (Lemma
25.3.3). Proceeding inductively we find x-bounded
subobjects

CicCyC...
of LY and k-bounded subobjects
Byc BiC By C...

indexed by ¢ < k, such that C and B, are defined
at limit ordinals s by colimits, and

LB; C Ci11 C LBy
and C; N LX — C} is a level weak equivalence.
Write B = ligm{ B;. Then B is k-bounded, and

L(B) = @L(Bz’) - @Cz’

1<K 1<K
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by Lemma 25.3.1 and construction. Also
L(BNX)=LB)NL(X) = @L(BZ-) N L(X)
1<K
= lgg C; N L(X)
1<K
by Lemma 25.3.1 and 25.3.5 and construction. It
follows that the map

BNX — 0B

is an L-equivalence. O

Say that a cofibration is L-trivial if it is an L-
equivalence.

Lemma 25.10. The set of k-bounded L-trivial
cofibrations is a generating set for the class of
L-trivial cofibrations.

Proof. Run the solution set argument of Lemma
23.5 using Lemma 25.9 for the set of k-bounded
cofibrations. Recall that the x-bounded cofibra-
tions generate the class of cofibrations. O

Say that a map p : X — Y is an L-fibration if it
has the right lifting property with respect to all L-
trivial cofibrations. Observe that every L-fibration
is a strict fibration, since S contains a generating
set for the class of strict trivial cofibrations.
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Lemma 25.11. A map p : X — Y 1is an L-
fibration and an L-equivalence if and only if p
15 a trivial strict fibration.

Proof. We need only show that p is a trivial strict
fibration if it is an L-fibration and an L-equivalence,
but this is the usual proof: find a factorization

X-w

N

Y

where j is a cofibration and 7 is a trivial strict
fibration. But then j is an L-equivalence so the
lifting exists in the diagram

XX
j l ip
so that p is a retract of 7. ]

Theorem 25.12. Suppose that S s a set of
cofibrations which satisfies the list of basic as-
sumptions above. Let the L-equivalences and L-
fibrations be defined relative to the set S. Then
with these definitions the category Spty(C) sat-
1sfies the axioms for a closed simplictal model
category.
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Proof. Every map f : X — Y has a factorization
X -Lw

N

Y

such that p is an L-fibration and 7 is a cofibration

and an L-equivalence, by Lemma 25.6 and Lemma
25.10.

Every map f : X — Y has a factorization

X7

N

Y

such that ¢ is a cofibration and ¢ is a strictly trivial
fibration. But then ¢ is an L-fibration and an L-
equivalence.

The rest of the closed model axioms are trivial to
verify.

For the closed simplicial model structure, we need
to show that if © : A — B is a cofibration and an
L-equivalence, then all maps

i NOA" : ANOAT — B AOA"

are L-equivalences. By replacing by a cofibrant
model if necessary, it is enough to assume that

19



A is cofibrant. Then one uses the usual patch-
ing argument for the category of cofibrant objects
in the L-model structure for Spt;(C) to compare
pushouts of the form

ANOAYT —ANAY,

| |

ANANT — ANOAT

to show inductively that the question reduces to
showing that the map

1Vi:AVA—- BVBEB

is an L-equivalence. But ¢ V ¢ has the left lifting
property with respect to all L-fibrations, and must
therefore be an L-trivial cofibration. O

Lemma 25.13. The L-structure on Spty(C) is

left proper: given a pushout diagram

AL ¢

|

wn which i 1s a cofibration, iof f 1s an L-equivalence
then f. is an L-equivalence.

Proof. The original diagram may be replaced up
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to strict weak equivalence by a pushout diagram

AL ¢

I

B—>D
I

in which f’ is a cofibration and an L-equivalence.
But then f! is also an L-trivial cofibration and is
in particular an L-equivalence. ]

Lemma 25.14. Fvery injective object is L-fibrant,
so that the L-fibrant T -spectra coincide with the
injective T'-spectra.

Proof. Suppose that X is injective, and suppose
given a diagram

A—X

|

B

where the morphism ¢ is a cofibration and an L-
equivalence. Then o = o' - j for some map o :
LA — X since X is injective, and so there is a
diagram

AL LAY X

L

B—LB
J
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which factorizes the original. The map Li is a
strict equivalence by Corollary 25.7.

One finishes the argument in the usual way: Lz
has a factorization

LA

N/

LB
where ¢’ is a cofibration, p is a strict fibration and
both maps are strict weak equivalences. Then X is
strictly fibrant so there is a map o : W — X such
that o -4 = ¢/, and thereisamap 6 : B — W
such that p-0 =jand 0 -i=14-j. O

Now we can go further, to give a general recogni-
tion principle for L-fibrations. The most complete
statement (Theorem 25.17 below) depends on right
properness for the L-structure, which will be ad-
dressed in a subsequent section.

Lemma 25.15. Suppose that p : X — Y is
a strict fibration between L-fibrant T-spectra.
Then p is an L-fibration.

Proof. Suppose given a diagram

X (25.1)

i

B—Y
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where 7 is a cofibration and an L-equivalence. Then
the induced map i, : LA — LB is a strict equiv-
alence, as are the L-fibrant model maps 5 : X —
LX and j:Y — LY. The induced diagram

LA—LX

4

LB—LY
has a factorization
Lf JA VX PX Lf{
Ty li/ Dx

LB——-Vy =LY

JB

such that j4 and jp are strict trivial cofibrations
and px and py are strict fibrations. In the pullback

diagram
VX XX X—X
x| J/jX
Vy—5 > LX

the map jx. is a strict equivalence. The corre-
sponding map jy, in the diagram

LA /A VX 1% VX XLxX

L i

LB i Vy = VY XLyY
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is also a strict equivalence. It follows that the in-
duced map

VX XLXX—>VY XLyY

is a strict equivalence, and that the diagram (25.1)
has a factorization

AHVX XLX X—X

|ETT

BHVY XLy Y —Y

in which the middle vertical map is a strict equiva-
lence. The result follows by a standard argument:
one factorizes the middle vertical map as a trivial
strict cofibration followed by a trivial strict fibra-
tion. []

Proposition 25.16. Suppose that p : X — Y
18 a strict fibration. Then p 1s an L-fibration if
the diagram

X LX (25.2)

|

Y—LY
18 strictly homotopy cartesian.

Proof. Suppose that the diagram (25.2) is strictly
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homotopy cartesian. There is a factorization

LX) .7

P

LY

of Lp such that j is a stable equivalence and ¢
is an injective fibration. But then Z is injective,
hence L-fibrant, so that j is a strict equivalence.
It also follows from Lemma 25.15 that ¢ is an L-
fibration. By pulling back ¢ along 7, we see from
the hypothesis that the induced map

X%YXL}/Z

is a strict equivalence. Every trivial strict fibration
is an L-fibration, and it follows that p is a retract
of an L-fibration, and hence is itself an L-fibration.

[

Theorem 25.17. Suppose that the L-structure
of Theorem 25.12 1s right proper. Suppose that
p: X — Y is a strict fibration. Then p is an
L-fibration if and only if the diagram

X LX (25.3)

|

Y—LY
18 strictly homotopy cartesian.
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Proof. We already have Proposition 25.16.

Suppose that the map p : X — Y is a stable
fibration, and take a factorization

LX) .7

P

LY

of the map Lp such that ¢ is a stable fibration and
J is a stably trivial cofibration. Then j is an L-
equivalence between L-fibrant T-spectra, so that j
is a strict equivalence on account of Lemma 25.11.

The induced map i, : Y Xy Z — Z is an L-
equivalence by the right properness assumption,
so that the canonical map 60 : X — Y Xy Z is a
stable equivalence, and the map

YXLyZ

\/

is an equivalence of fibrant objects for the model
structure on Spt,(C)/Y which is induced by the
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L-structure on Spty(C). Form the diagram

V—"'—V,
ml i@
Y XLy A

\/

where 71 and my are trivial strict fibrations and V;
and V4 are cofibrant. Then 0 is a weak equiv-
alence between objects of Spty(C)/T which are
both fibrant and cofibrant, and is therefore a (fi-
brewise) homotopy equivalence, and hence a strict
weak equivalence. ]
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