
Lecture 13 (March 30, 2009)

26 Descent theorems

1) The Brown-Gersten descent theorem

Suppose that S is a Noetherian scheme of finite

dimension. Let Zar|S be the Zariski site of S.

Theorem 26.1. Suppose that X is a simplicial

presheaf on Zar|S such that

1) the space X(∅) is contractible,

2) all stalks of X are contractible in the sense

that the map Xx → ∗ is a weak equivalences

for each x ∈ S, and

3) the diagram

X(U ∪ V ) //

��

X(U)

��

X(V ) //X(U ∩ V )

associated to each pair of open subsets U, V

of S is homotopy cartesian.

Then the map X(U)→ ∗ is a weak equivalence

for each open subset U of S.
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Proof. We show that πqX(U) is trivial for each

q ≥ 0 and each choice of base point x ∈ X(U)

under the assumption that X(U) 6= ∅ and U 6= ∅.

Suppose that α ∈ πqX(U). Pick a maximal open

subset V ⊂ U such that α 7→ 0 in πqX(V ). There

are such subsets since πqXx = 0 for all x ∈ U , and

S is Noetherian.

Say that a closed irreducible subset C ⊂ S is bad

if there is such an α, U, V such that C∩U 6= ∅ and

C ⊂ S−V . If some V 6= U there are bad subsets

C: this would be a closure in S of an irreducible

component of U − V .

Pick a maximal bad subset C, with associated data

α ∈ πqX(U), maximal open V ⊂ U such that

α 7→ 0 in πqX(V ), and such that C intersects U

but misses V .

Take y ∈ C ∩U . There is an open subset W ⊂ U

such that y ∈ W and α 7→ 0 in πqX(W ). A

long exact sequence argument says that there is

an element z ∈ πq+1X(V ∩W ) such that

∂(z) = α|V ∪W ∈ πqX(V ∪W ).

Pick a maximal open subset V ′ ⊂ V ∩ W such

that z 7→ 0 in πq+1X(V ′).
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Then C is a component of S − V ′. In effect, C

is contained in some component D of S − V ′. If

D ∩ V = ∅ then y ∈ C ∩ U ⊂ D ∩ U so that

D is bad (for α) and C = D by the maximality

of C. If D ∩ V is non-empty then D ∩ U 6= ∅ so

that D∩ (U ∩V ) 6= ∅ since D is irreducible, while

D ∩ V ′ = ∅ and D is bad (for z), and C = D by

maximality of C.

Suppose that C,C1, . . . , Ck is a list of the irre-

ducible components of X − V ′, and let F be the

closed subset of X − V ′ defined by the union

F = C1 ∪ · · · ∪ Ck.

Then C − F is a non-trivial open subset of C as

is W ∩ C, and it follows that the intersection

(W−F )∩C = (W ∩C)∩(C−F ) = W ∩(C−F )

is a non-trivial open subset of C (which is outside

V ) since C is irreducible. At the same time,

X − F = V ′ ∪ (C − F ),

so that

W − F = V ′ ∪ (W ∩ (C − F ))

and V ∩ (W − F ) = V ′.
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It follows that, in the diagram

πq+1X(V ∩W ) ∂ //

��

πqX(V ∪W )

��

πq+1X(V ∩ (W − F ))
∂
// πqX(V ∪ (W − F ))

the element z ∈ πq+1X(V ∩W ) maps to zero in

πq+1X(V ∩ (W − F )), so that α ∈ πqX(U) re-

stricts to 0 in πqX(V ∪(W−F )). This contradicts

the maximality of V , and it follows that there are

no bad closed irreducible subsets in X .

We have therefore shown that there is a weak equiv-

alence X(U) → ∗ if X(U) 6= ∅. I claim that

X(S) 6= ∅, and it follows that all X(U) are not

empty.

Suppose that X(S) = ∅. Pick a maximal non-

empty open subset U ⊂ S such that X(U) 6= ∅.
Take x ∈ S − U and pick an open subset V ⊂ S

with y ∈ V and X(V ) 6= ∅. The open subsets U

and V exist because all stalks of X are non-empty.

Then there is a homotopy cartesian diagram

X(U ∪ V ) //

��

X(U)

��

X(V ) //X(U ∩ V )

in which X(U), X(V ) and X(U ∪ V ) are non-
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empty contractible spaces. Then a homotopy lift-

ing argument shows that X(U ∪ V ) is non-empty.

This contradicts the maximality ofU ifU 6= S.

The following result is the Brown-Gersten descent

theorem:

Theorem 26.2. Suppose that X is a simplicial

presheaf on Zar|S such that

1) the map X(∅) → ∗ is a weak equivalence,

and

2) the diagram

X(U ∪ V ) //

��

X(U)

��

X(V ) //X(U ∩ V )

associated to each pair of open subsets U, V

of S is homotopy cartesian.

Let j : X → Z be an injective fibrant model.

Then j is a sectionwise equivalence.

Proof. It suffices to show that the induced map

j : X(S) → Y (S) is a weak equivalence. The

map X(U) → Y (U) is global sections of the re-

striction of j|U to the Zariski site Zar|U , for all

open subschemes U ⊂ S, and the restricted map

j|U is an injective fibrant model by Lemma 17.3.

5



Find a factorization

X
i //

j   A
AA

AA
AA

A Y
p
��

Z

such that i is a sectionwise equivalence and p is

a sectionwise Kan fibration. Then the simplicial

presheaf Y satisfies conditions 1) and 2) of the

statement of the Theorem, and the local weak equiv-

alence p : Y → Z is an injective fibrant model for

Y .

Suppose that x ∈ Z(S) is a vertex of Z(S), and

form the pullback diagram

Fx //

��

Y
p
��

∗ x
//Z

in simplicial presheaves. Then the simplicial presheaf

Fx satisfies the conditions of Theorem 26.1, and is

therefore sectionwise contractible.

In particular, the map Fx(S)→ ∗ is a weak equiv-

alence, so that Fx(S) is non-empty, and the vertex

x lifts to Y (S). This is true for all vertices of

Z(S), so the induced map π0Y (S) → π0Z(S) is

surjective.
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All fibres Fp(y) associated to all vertices y ∈ Y (S)

are sectionwise contractible. It follows that the

map π0Y (S) → π0Z(S) is injective, and that all

homomorphisms

πn(Y (S), y)→ πn(Z(S), p(y))

are isomorphisms.

2) The Nisnevich descent theorem

Following [3], we use the notation (Sm|S)Nis to

denote the category of smooth S-schemes with the

Nisnevich topology.

An elementary distinguished square is a pullback

diagram in (Sm|S)Nis

φ−1(U) //

��

V
φ
��

U j
// T

(26.1)

such that j is an open immersion, φ is étale, and

such that the induced morphism

φ−1(T − U)→ T − U

of closed subschemes (with reduced structure) is

an isomorphism.
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Remark 26.3. An elementary distinguished square

is completely specified by a diagram

Z ×T V
φ∗∼=
��

// V
φ
��

Z i
// T

such that φ is étale and i is a closed immersion. In

effect, if Z is reduced, then Z×T V is reduced since

φ∗ is étale [2], and is therefore the reduced closed

subscheme of V on the closed subset φ−1(Z).

Example 26.4. If U and V are open subschemes

of a smooth S-scheme T , then the diagram of in-

clusions

U ∩ V //

��

V

��

U //U ∪ V
is an elementary distinguished square in Sm|S.

Example 26.5. Suppose that x ∈ S is a closed

point of S, and suppose that φ : U → S is an étale

morphism such that there is a section

U
φ
��

Sp(k(x)) x
//

y
::tttttttttt

S

over the residue field k(x) of x. If φ(z) = x, then

z and x have the same (maximal) dimension [2,
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I.3.16], so that z is closed in U . The set-theoretic

fibre φ−1(x) is therefore a finite set of closed points,

of the form

φ−1(x) = {y, y1, . . . , yk}.

Let V be the open subset U − {y1, . . . , yk} of U ,

and let φ|V be the restiction of φ to V . Then there

is a diagram

V
φ|V
��

Sp(k(x)) x
//

y
::tttttttttt

S

Then φ|V induces an isomorphism

Sp(k(y)) ∼= Sp(k(x)),

and Sp(k(y)) is the reduced closed fibre of φ|V over

the closed subscheme Sp(k(x)) of S. Let U be

the open subscheme S − {x} of S, with inclusion

j : U ⊂ S. Then the pullback diagram

φ|−1
V (U) //

��

V
φV
��

U j
//S

is an elementary distinguished square.

Every elementary distinguished square defines a

Nisnevich cover {j : U ⊂ T, φ : V → T} of
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X , because every map Sp(k) → X with k a field

factors through one of the two maps.

Following [3], say that a simplicial presheaf X has

the BG-property if

1) the space X(∅) is contractible, and

2) X takes elementary distinguished squares (26.1)

to homotopy cartesian diagrams

X(T )
j∗ //

φ∗
��

X(V )

��

X(U) //X(φ−1(U))

(26.2)

If X has the BG-property and U, V are open sub-

schemes of a smooth S-scheme T , then the dia-

gram

X(U ∪ V ) //

��

X(V )

��

X(U) //X(U ∩ V )

is homotopy cartesian, so that the restriction of X

to the Zariski site Zar|T satisfies the conditions

of Theorem 26.2. It follows in particular that the

canonical map

X(U t V )→ X(U)×X(V )
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is a weak equivalence for all smooth S-schemes

U, V , which means precisely that the simplicial

presheaf X is additive — see [1].

Lemma 26.6. Suppose that Z is an injective

fibrant simplicial presheaf on the smooth Nis-

nevich site (Sm|S)Nis. Then Z has the BG-

property.

Proof. Every open immersion j : U → T is a

cofibration of simplicial presheaves, and all induced

inclusions

(U ×∆n) ∪ (T × Λn
k) ⊂ T ×∆n

are trivial cofibrations. It follows that the map

j∗ : Z(T )→ Z(U) is a Kan fibration.

The square (26.1) is a pushout in the category of

sheaves (and simplicial sheaves) for the Nisnevich

topology on the smooth site Sm|S. Thus, if Z ′ is

an injective fibrant simplicial sheaf, then the dia-

gram of simplicial set maps

Z ′(T )
j∗ //

φ∗
��

Z ′(V )

��

Z ′(U) //Z ′(φ−1(U))

is a pullback in which both vertical maps are Kan

fibrations, and is therefore homotopy cartesian.
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If Z is an injective fibrant simplicial presheaf, there

is a local weak equivalence η : Z → Z ′ such that

Z ′ is an injective fibrant simplicial sheaf. The map

η is a sectionwise weak equivalence, and the prop-

erty of taking elementary distinguished squares to

homotopy cartesian diagrams is an invariant of sec-

tionwise equivalence.

The map η induces a weak equivalence

Z(∅)→ Z ′(∅) ∼= ∗

of simplicial sets.

It makes perfect sense to talk about simplicial pre-

sheaves X on the small Nisnevich site (et|S)Nis
which have the BG-property: one restricts the dis-

cussion to S-schemes T → S which are étale over

S. Then a simplicial presheaf Y on the smooth

site (Sm|S)Nis has the BG-property if and only if

the restrictions to the small sites (et|T )Nis have the

BG-property, for all smooth S-schemes T → S.

Now here is the analogue of Theorem 26.1 for the

Nisnevich topology:

Theorem 26.7. Suppose that X is a simplicial

presheaf on the small Nisnevich site (et|S)Nis
such that
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1) X has the BG-property, and

2) the map X → ∗ is a local weak equivalence

for the Nisnevich topology.

Then X is sectionwise contractible in the sense

that the map X(U)→ ∗ is a weak equivalence of

simplicial sets for each étale S-scheme U → S.

Proof. It suffices to show that the global sections

mapX(S)→ ∗ is a weak equivalence. The restric-

tion of X to the site (et|T ) for each étale S-scheme

T → S also satisfies conditions 1) and 2), and the

map Z(T ) → ∗ would be a weak equivalence for

each T .

Write Ox for the local ring Ox,S of x ∈ S, and let

x : Sp(Ox)→ S be the canonical map.

Suppose that φ : T → S is an S-scheme, and write

Tx = Sp(Ox)×S T.

Let xp be the left adjoint of the direct image func-

tor

x∗ : Pre(et|Sp(Ox))Nis → Pre(et|S)Nis,

where

x∗(Y )(T ) = Y (Tx).
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The global sections simplicial set xpX(Ox) is the

Zariski stalk of X at the point x. The functor xp

preserves local weak equivalences for the Nisnevich

topology, since it is defined by a site morphism.

It is a consequence of Lemma 26.8 below that xpX

satisfies the BG-property on Sm|Sp(Ox).

Suppose that Ox has dimension 0, so that Ox is an

Artinian local ring. It well known that the functor

U 7→ U ×Sp(Ox) Sp(k(x))

defines an equivalence of categories

et|Sp(Ox) → et|Sp(k).

Every diagram

U

��

Sp(k(x)) //

77ppppppppppppp

Sp(Ox)

with φ étale therefore determines a section σ :

Sp(Ox) → U of the map φ. It follows that the

global sections functor takes sheaf epimorphisms

on the Nisnevich site (Sm|Sp(Ox))Nis to surjections.

In effect, if p : F → F ′ is a sheaf epi and α ∈
F ′(Ox) there is an étale map φ : U → Sp(Ox) hav-

ing a section σ such that φ∗(α) lifts to F (U), and
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then α = σ∗φ∗(α) lifts to F (Ox). It follows that

the global sections functorX 7→ X(Ox) takes local

weak equivalences to weak equivalences of simpli-

cial sets.

Thus, if x ∈ S has dimension 0, and the simplicial

presheaf X satisfies the conditions of the Theo-

rem, then X(Ox) is contractible. This is true for

all schemes S which are Noetherian and of finite

dimension.

We show by induction on the dimension of x ∈ S
that X(Ox) is contractible. Take an element x ∈
S and assume that X(Oy) is contractible for all

points y (in “all” schemes S) of smaller dimension.

Write x for the closed point of Sp(Ox), and sup-

pose given an element α ∈ πkxpX(Ox). Then α is

0 locally for the Nisnevich topology, so that, follow-

ing the prescription of Example 26.5, there is an

étale morphism φ : V → Sp(Ox) with a diagram

V ×Sp(Ox) Sp(k(x)) //

∼=
��

V
φ
��

Sp(k(x)) x
// Sp(Ox)

such that φ∗(α) = 0 in πkx
pX(V ). Write U =

Sp(Ox)−{x}. Then all points of U and all points
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of φ−1(U) have dimension smaller than that of

x, and xpX satisfies the assumption of the Theo-

rem. It follows from Theorem 26.1 that the spaces

xpX(U) and xpX(φ−1(U)) are contractible. Then

xpX satisfies the BG-property, and it follows that

the map

φ∗ : xpX(Ox)→ xpX(V )

is a weak equivalence. But then α = 0 in πkx
pX(Ox).

All homotopy groups and the set of path compo-

nents of xpX(Ox) are therefore trivial if the space

xpX(Ox) is non-empty.

For this, we can find a diagram

V
φ
��

Sp(k(x)) x
//

::tttttttttt

S

with φ étale and such that X(V ) 6= ∅, since all

Nisnevich stalks of X are non-empty. Pull back

the map φ over Sp(Ox) to create a picture

Vx
φx
��

Sp(k(x)) x
//

y
88pppppppppppp

Sp(Ox)
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with xpX(Vx) 6= ∅. Now cut out all closed points

of Vx in the fibre over x except for y to construct

a picture

V ′ ⊗Ox k(x) //

∼=
��

V ′

φ′
��

Sp(k(x)) x
// Sp(Ox)

just as before, but with xpX(V ′) 6= ∅. The in-

duced map

φ′∗ : xpX(Ox)→ xpX(V ′)

is a weak equivalence once again, so that xpX(Ox)
is non-empty.

Lemma 26.8. Suppose that the simplicial pre-

sheaf X on (Sm|S)Nis has the BG-property, and

let Ox be the local ring of x ∈ S with canonical

map x : Sp(Ox) → S. Then the inverse image

xpX on (Sm|Sp(Ox))Nis has the BG-property.

Proof. Suppose that f : T → Sp(Ox) is a Ox-
scheme which is locally of finite type. Then there

is an open affine neighbourhood U of x in S and

a U -scheme f ′ : T ′ → U which is locally of finite

type, with an isomorphism of Ox-schemes

T ∼= Sp(Ox)×U T ′
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If f is an open immersion, respectively closed im-

mersion, or étale, then the “thickening” f ′ can be

chosen to have the same property. In particular, if

φ : V → Sp(Ox) is étale and has étale thickening

φ′ : V ′ → U over an open neighbourhood U , then

there is an isomorphism

xpX(V ) = lim−→
x∈W⊂U

X(W ×U V ′),

where W varies over the open neighbourhoods of

x which are contained in U .

It follows that if j : Z → V is a closed immer-

sion in an étale Ox-scheme φ : V → Sp(Ox), and

ψ : Ṽ → V is an étale morphism with pullback

diagram

Z ×V Ṽ //

∼=
��

Ṽ
ψ
��

Z j
// V

then there is a thickened diagram

Z ′ ×V ′ Ṽ ′ //

∼=
��

Ṽ ′

ψ′
��

Z ′
j′

// V ′
φ′

  A
AA

AA
AA

A

U
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over some open neighbourhood U of x. The cor-

responding elementary distinguished square

ψ−1(V − Z) //

��

Ṽ
ψ
��

V − Z j
// V

therefore has a thickening

ψ′−1(V ′ − Z ′) //

��

Ṽ ′

ψ′
��

V ′ − Z ′
j′

// V ′

over U , and the diagram

xpX(V ) //

��

xpX(V − Z)

��

xpX(Ṽ ) // xpX(ψ−1(V − Z))

(26.3)

is a filtered colimit of homotopy cartesian squares

X(W ×U V ′) //

��

X((W ×U V ′)− (W ×U Z ′)

��

X(W ×U Ṽ ) //X(ψ−1((W ×U V ′)− (W ×U Z ′))

The diagram (26.3) is therefore homotopy carte-

sian.

Here is the Morel-Voevodsky statement of the Nis-

nevich descent theorem:
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Theorem 26.9. Suppose that f : X → Y is a

local weak equivalence of simplicial presheaves

on (Sm|S)Nis, and suppose that both X and Y

satisfy the BG-property. Then all maps X(T )→
Y (T ) in sections are weak equivalences of sim-

plicial sets.

Proof. Suppose that x ∈ Y (S) is a global section,

and let Fx be the sectionwise homotopy fibre of the

map f . Then the restriction of Fx to the small site

(et|S)Nis satisfies the hypotheses of Theorem 26.7,

and so the map Fx(T )→ ∗ is a weak equivalence

for all étale S-schemes T . It follows that the map

f : X(S)→ Y (S)

in global sections is a weak equivalence.

All restrictions

j|T : X|T → Y |T
to (Sm|T )Nis for smooth S-schemes T satisfy the

same assumptions, so that all mapsX(T )→ Y (T )

are weak equivalences.

The following result is the analogue, for the Nis-

nevich topology, of Theorem 26.2. The statement

is equivalent to Theorem 26.9.
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Theorem 26.10. Suppose that X is a simpli-

cial presheaf on (Sm|S)Nis which satisfies the

BG-property, and let j : X → Z be an injective

fibrant model for the Nisnevich topology. Then

all maps X(T ) → Z(T ) in sections are weak

equivalences of simplicial sets.

3) Motivic descent

In all that follows, given simplicial presheavesX, Y ,

the internal function complex Hom(X, Y ) is the

simplicial presheaf with

Hom(X, Y )(U) = hom(X|U , Y |U)

for U in the underlying site C. The natural iso-

morphism

hom(X × A, Y ) ∼= hom(A,Hom(X, Y ))

is the exponential law for simplicial presheavesA,X

and Y . Given an injective fibration p : X → Y

and a cofibration i : A → B, then an adjointness

argument implies that the induced map

Hom(B,X)
(i∗,p∗)−−−→ Hom(A,X)×Hom(A,Y )Hom(B, Y )

is an injective fibration which is trivial if either i

or p is trivial.
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Recall from the examples in Section 22 (Lecture

10) that the motivic model structure on the sim-

plicial presheaf category

sPre(Sm|S)Nis

can be constructed by specializing Theorem 22.2

to the case where S is the generating set of trivial

cofibrations for the injective model structure on

sPre(Sm|S)Nis

and the interval I is the affine line A1.

In particular, injective (equivalently fibrant) ob-

jects for the theory are defined by having the right

lifting property with respect to the maps

(C ×�n) ∪ (D × un(i,ε)) ⊂ D ×�n (26.4)

where C → D is a member of the set of generating

cofibrations for sPre(C), and the maps

(A×�n) ∪ (B × ∂�n) ⊂ B ×�n (26.5)

with A → B in the generating set S of trivial

cofibrations.

Recall the notation: �n = I×n, (which in the

present case is the affine plane An), and there are

face inclusions

di,ε : �n−1 → �n, 1 ≤ i ≤ n, ε = 0, 1,
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with

di,ε(x1, . . . , xn−1) = (x1, . . . , xi−1, ε, xi, . . . , xn−1).

Then there are subobjects ∂�n and uni,ε of �n

which are defined, respectively, by

∂�n = ∪i,ε di,ε(�n−1),

and

uni,ε = ∪(j,γ)6=(i,ε) d
j,γ(�n−1).

Observe that

�m ×�n = �m+n,

and that there are induced relations

(∂�m ×�n) ∪ (�m × ∂�n) = ∂�m+n

(umi,ε ×�n) ∪ (�m × ∂�n) = um+n
i,ε

(∂�m ×�n) ∪ (�m × unj,ε) = um+n
m+j,ε

(26.6)

Lemma 26.11. A simplicial presheaf X is in-

jective for the motivic model structure if and

only if X is an injective fibrant simplicial pre-

sheaf (for the Nisnevich topology) and the in-

jective fibration

0∗ : Hom(A1, X)→ Hom(∗, X)

is trivial.
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Proof. IfX is injective, thenX has the right lifting

property with respect to all generating trivial cofi-

brations ((26.5), n = 0), and is therefore injective

fibrant.

The object X also has the right lifting property

with respect to the maps

(C × A1) ∪ (D × ∗)→ D × A1

defined by the set of generating cofibrations C →
D ((26.4), n = 1). It follows that the map

0∗ : Hom(A1, X)→ Hom(∗, X)

has the right lifting property with respect to all

C → D, and is therefore a trivial injective fibra-

tion.

For the converse, the map 0∗ has the right lifting

property with respect to all cofibrations

(C ×�k) ∪ (D × ∂�k) ⊂ D ×�k,

and so the relations (26.6) can be used to show

that X has the right lifting property with respect

to all inclusions (26.4). The simplicial presheaf X

also has the right lifting property with respect to

all trivial cofibrations

(A×�n) ∪ (B × ∂�n) ⊂ B ×�n
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which are induced by trivial cofibrations A → B.

It follows that X is an injective object.

Remark 26.12. Suppose that S consists of all

generating trivial cofibrations A → B for the in-

jective structure plus the map 0 : ∗ → A1 and the

interval I is ∆1.

If Z is injective (ie. fibrant) for this structure,

then Z is injective fibrant, and ∗ → A1 is a weak

equivalence, so that all maps

(C × A1) ∪ (D × ∗) ⊂ D × A1

induced by cofibrations C → D are weak equiva-

lences. It follows that the map

0∗ : Hom(A1, Z)→ Hom(∗, Z)

is a trivial injective fibration.

Conversely, if Z is injective fibrant and 0∗ is triv-

ial, then Z has the right lifting property with re-

spect to all (local) trivial cofibrations (26.5), and

the map 0∗ has the right lifting property with re-

spect to all cofibrations

(C ×�k) ∪ (D × ∂�k) ⊂ D ×�k.

It follows that Z has the right lifting property with

respect to the cofibrations (26.5) (use the relations

(26.6)).
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Suppose that the simplicial presheaf X is injective

for the Nisnevich topology. The injective fibration

0∗ : Hom(A1, X)→ Hom(∗, X)

is given in sections corresponding to smooth S-

schemes T → S by the map

X(A1 × T )→ X(T )

associated to the 0-sections map T → A1×T . The

injective fibration 0∗ is a local weak equivalence if

and only if it is a sectionwise weak equivalence.

The latter is equivalent to the assertion that all

projections A1×T → T induce weak equivalences

X(T )→ X(A1 × T ). (26.7)

Remark 26.13. In general, if the map (26.7) is

a weak equivalence for all smooth S-schemes T ,

we say that X has or satisfies the homotopy prop-

erty. The term comes from algebraic K-theory: it

is a central result of the subject (and a theorem

of Quillen [4]) that the algebraic K-theory func-

tor satisfies the homotopy property for all regular

Noetherian schemes T . Explicitly, this means that

the projection A1×T → T induces a weak equiv-

alence

K(T ) '−→ K(A1 × T )
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of spaces or spectra for all such T .

The homotopy property is also a central concept

for other geometric cohomology theories: the asser-

tion that étale cohomology with torsion coefficients

satisfies the homotopy property is a consequence of

the smooth base change theorem [2].

The following “motivic descent theorem” is a corol-

lary of the Nisnevich descent theorem (Theorem

26.10):

Theorem 26.14. Suppose that X is a simpli-

cial presheaf on (Sm|S)Nis such that

1) X satisfies the BG-property, and

2) every projection A1×T → T induces a weak

equivalence

X(T )→ X(A1 × T ).

Let j : X → Z be a motivic fibrant model.

Then j is a sectionwise weak equivalence. Con-

versely, if a motivic fibrant model j : X → Z is

a sectionwise weak equivalence, then X satisfies

conditions 1) and 2).

Proof. Suppose that X satisfies conditions 1) and

2), and let j : X → Z be an injective fibrant model
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for the Nisnevich topology. Then j is a sectionwise

equivalence by Theorem 26.10. All 0-section maps

T → A1 × T (these are sections of projections)

induce weak equivalences

Z(A1 × T )→ Z(T ).

It follows that the injective fibration

0∗ : Hom(A1, Z)→ Hom(∗, Z)

is trivial, so that Z is motivic fibrant.

The converse is a consequence of Lemma 26.11.
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