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UMAP: “Uniform Manifold Approximation and Projection for
Dimension Reduction”

Healy-McInnes, 2018 [4],
Healy-McInnes-Melville, 2020 [5]

Outline

• Fuzzy sets, Fuzzy sets in [0,∞]

• ep-metric spaces, coefficients in [0,∞]

• TDA in [0,∞]

• UMAP complex, excision

• Dimension reduction

• Optimisation: cross entropy
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[0, 1]

[0, 1] is a locale.

A locale L is a poset (≤) with infinite joins (least upper bounds)
and finite meets (greatest lower bounds), in which finite meets
distribute over all joins.

Facts: L has a terminal object (empty meet), an initial object
(empty join), and infinite meets (∨x ≤ all ai x).

Examples: 1) [a, b] and [a, b]op are locales, so [0, 1]op is a locale.

2) [0,∞] and [0,∞]op are locales.

3) opX (open subsets of a space X ) is a locale.

Locales are topos-theoretic abstractions of topological spaces.

4) [0, a) � a defines an isomorphism of poset of half-open
intervals in [0, 1] with elements of [0, 1].
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Fuzzy sets

Classical definition: A fuzzy set is a function p : X → [0, 1],

aka. a “fuzzy subset” of a universal set X .

Barr, 1974 [1]: A fuzzy set with coefficients in a locale L is a
function φ : X → L.

A morphism φ→ ψ of fuzzy sets is a function f : X → Y such
that in the picture

X
f //

φ ��

Y

ψ��
L

φ(x) ≤ ψ(f (x)) for all x ∈ X . i.e. the diagram homotopy
commutes.

There is a category Fuzz(L) of fuzzy sets with coefficients in L.

Cases to care about: L = [0,∞], [0,∞]op, [0, 1], [0, 1]op.
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Fuzzy sets and sheaves (Barr)

Every fuzzy set φ : X → [0,∞] defines a system of subsets
φ−1[0, a] for a ∈ [0,∞].

NB: If a ≤ b then φ−1[0, a]→ φ−1[a, b] is an inclusion.

The assignment

T (φ)(a) =

{
φ−1[0, a] a ∈ [0,∞]

∗ a = +

defines a sheaf T (φ) on [0,∞]op+ , where [0,∞]op+ = [0,∞]op t {+}
and + is new initial object (or new point at infinity for [0,∞]).

Theorem 1 (Barr).

The functor φ 7→ T (φ) determines an equivalence of categories

Fuzz([0,∞]op) ' Mon([0,∞]op+ )

with sheaves of monomorphisms on the locale [0,∞]op+ .
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Classical fuzzy sets

Barr’s theorem: there is an equivalence of categories

Fuzz([0, 1]op) ' Mon([0, 1]op+ ).

Start with a sheaf F of monomorphisms on [0, 1]op+ , F (s) ⊂ F (1)
(“generic fibre”):

Given x ∈ F (1) there is a minimum sx such that x ∈ F (sx).

The assignment x 7→ sx =: φF (x) defines a function (fuzzy set)
φF : F (1)→ [0, 1].

Meets, joins: A,B ⊂ F in the sheaf category. Then A ∪ B and
A ∩ B (sheaf theoretic) are subobjects of F , and

φA∪B(x) = max{φA(x), φB(x)} “t-conorm”

φA∩B(x) = min{φA(x), φB(x)} “t-norm”

We have

φA(x) · φB(x) ≤ φA∩B(x),

φA∪B(x) ≤ φA(x) + φB(x)− φA(x) · φB(x).
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Complement

For s, t ∈ [0, 1],

1− (1− s)(1− t) = s + t − s · t

whereas (Ac ∩ Bc)c = A ∪ B for subobjects A,B ⊂ X .

The function s 7→ 1− s =: e(s) defines a poset isomorphism
(idempotent) e : [0, 1]→ [0, 1]op that I call the dual.

Classical: If p : X → [0, 1] is a fuzzy subset of X , its complement
pc is defined by pc(x) = 1− p(x).

Alternatively, pc = e · p.

Definition: pc is the dual of p.
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Duality in the large

We have poset isomorphisms

φ : [0, 1]
∼=
� [0,∞]op : ψ

with φ(s) = − log(s) and ψ(t) = e−t (order reversing).

φ is Shannon’s information function [6].

The commutative diagram of poset isomorphisms

[0,∞]
ψ //

e ��

[0, 1]op

e��
[0,∞]op

ψ
// [0, 1]

(1)

defines a duality isomorphism (idempotent) e : [0,∞]→ [0,∞]op.

x∗ := e(x) = − log(1− e−x) = x − log(ex − 1), x ∈ [0,∞].

Facts: x 7→ x∗ is continuous. x and x∗ are close if x is near log(2).
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Duals II

X is a set: there is a poset map s : P(X )→ Fuzz([0, 1]), with

s(A)(x) =

{
1 if x ∈ A,

0 if x /∈ A.

The fuzzy subset s(A) : X → [0, 1] of X is “crisp”.

Any morphism f : L→ L′ of locales induces a functor
Fuzz(L)→ Fuzz(L′), by composition with f .

There is a commutative diagram of poset morphisms

P(X )
s //

c

��

Fuzz([0, 1])

e

��

φ // Fuzz([0,∞]op)

e

��
P(X )op

sop
// Fuzz([0, 1]op)

φ
// Fuzz([0,∞])

where c(A) = X − A is the complement of A in X .
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Cross entropy I

Suppose that u, v : X → [0, 1] are fuzzy sets. The cross entropy
from v to u is defined by

C (u, v) =
∑
x∈X

(u(x) log(
u(x)

v(x)
) + (1− u(x)) log(

1− u(x)

1− v(x)
))

(Bhandari 1993 [2]).

C (u, v) is a sum of elements of the form

F (s, t) = s · log(
s

t
) + (1− s) · log(

1− s

1− t
) ≥ 0.

with s, t ∈ [0, 1] (Kullback-Liebler divergence, 1951).

u (hence s) is fixed. C (u, v) is a (non-symmetric) measure of the
distance of v from u.
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Cross entropy II

Suppose s = e−y and t = e−x . Then

F (s, t) = F (e−y , e−x) = e−y (x − y) + e−y
∗
(x∗ − y∗).

|F (e−y , e−x)| depends on |x − y | in [0,∞].

Given u, v : X → [0,∞]
ψ−→ [0, 1]op, set

C (u, v) = C (ψ · u, ψ · v)

=
∑
x∈X

[e−u(x)(v(x)− u(x)) + e−u(x)∗(v(x)∗ − u(x)∗)].

For u, v : X → [0,∞], C (u, v) is the cross entropy from v to u.
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ep-metric spaces

An extended pseudo-metric space (ep-metric space) (X ,D) is a
set X and a function D : X × X → [0,∞] such that

1) D(x , x) = 0,

2) D(x , y) = D(y , x),

3) D(x , z) ≤ D(x , y) + D(y , z).

• Can have distinct x , y such that D(x , y) = 0 (“pseudo”).
• Can have u, v such that D(u, v) =∞ (“extended”).

Example: Every metric space (Y , d) is an ep-metric space:

Y × Y
d−→ [0,∞) ⊂ [0,∞].

A morphism f : (X , dX )→ (Y , dY ) of ep-metric spaces is a
function f : X → Y such that

dY (f (x), f (y)) ≤ dX (x , y) (compresses distance, “non-expanding”).

ep −Met is the category of ep-metric spaces and their morphisms.
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Cocompleteness (Spivak [7])

(X , d) an ep-metric space and p : X → Y a surjective function.

For x , y ∈ Y set

D(x , y) = inf
P

k∑
i=0

d(xi , yi )

“Polygonal path” P : pairs (xi , yi ), 0 ≤ i ≤ k , in X with
x = p(x0), p(yi ) = p(xi+1), y = p(yk).

Quotient map p : (X , d)→ (Y ,D) satisfies universal property.

Lemma 2.

ep −Met is cocomplete (has all small colimits).

Underlying set is colimit in sets: ti (Xi , di ) has D(x , y) = di (x , y)
if x , y in some Xi , D(x , y) =∞ otherwise.

Coequalizers (or pushouts) given by quotient construction.
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Vietoris-Rips complex

(X , dX ) a finite ep-metric space, dX : X × X → [0,∞].

s ∈ [0,∞]:

1) If X totally ordered (has a listing), then Vs(X ) has n-simplices
x0 ≤ x1 ≤ · · · ≤ xn with dX (xi , xj) ≤ s for all i , j .

V (X ) : s 7→ Vs(X ), s ∈ [0,∞] is Vietoris-Rips system for X .

Simplicial fuzzy set: V∗(X ) is a simplicial sheaf of monomorphisms
on [0,∞]op+ .

2) Ps(X ) is the poset of all subsets σ ⊂ X such that dX (x , y) ≤ s
for all x , y ∈ σ.

Ps(X ) is the poset of non-degenerate simplices of Vs(X ).

Nerve BPs(X ) is the barycentric subdivision of Vs(X ). There is

a natural weak equivalence γ : BPs(X )
'−→ Vs(X ), s ∈ [0,∞].

NB: Poset const. BPs(X ) does not use a total ordering on X .
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The nerve construction

The nerve BC of a category C is a simplicial set with n-simplices
BCn given by the set of strings of arrows

a0 → a1 → · · · → an

of length n in C , equivalently functors n→ C , where

n = {0, 1, . . . , n},

with the obvious poset structure.

Composition with the functors θ : m→ n defines the simplicial set
structure of BC .

Examples: 1) Bn = ∆n, the standard n-simplex in simplicial sets.

2) BG = K (G , 1) for a group G , classifies principal G -bundles in
the homotopy category.

BC is also called the classifying space of C .
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Comments

1) The systems s 7→ HpBPs(X ) ∼= HpVs(X ) (coefficients in a field)
define persistent homology for (X , d).

2) The sets π0BPs(X ) ∼= π0Vs(X ) are clusters for (X , d).

Hierarchy Γ(X , d): a tree with vertices (s, [x ]), [x ] ∈ π0BPs(X ),
and edges (s, [x ])→ (t, [x ]) with s ≤ t. Typical source of
hierarchical clustering algorithms.

3) πBPsX is fundamental groupoid of BPs(X ).

There are isomorphisms π0BPs(X ) ∼= π0πBPs(X ) so the system
s 7→ π0πBPs(X ) “computes” clusters and hierarchies of clusters.

4) One cares most about lim−→s<∞ BPs(X ), which is a disjoint
union of global components, each of which consists of simplices
having edges of finite length.

Each global component is contractible, and has a Vietoris-Rips
filtration in the usual sense.
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Stability

Theorem 3 (Rips stability).

Suppose i : X ⊂ Y are finite ep-metric spaces such that
dH(X ,Y ) < r . There is a homotopy commutative diagram

Ps(X )
σ //

i ��

Ps+2r (X )
i��

Ps(Y ) σ
//

θ
77

Ps+2r (Y )

Corollary 4 (Stability for persistence invariants).

Same assumptions as Theorem 1. There are commutative diagrams

Hk(Vs(X ))
σ //

i ��

Hk(Vs+2r (X ))
i��

Hk(Vs(Y )) σ
//

θ
55

Hk(Vs+2r (Y ))

There is a corresponding statement for π0 (clusters).
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Stability: sketch proof

y ∈ Y : there is θ(y) ∈ X st. d(y , θ(y)) < r (from dH(X ,Y ) < r).
x ∈ X : θ(x) = x .

θ(y1)
s+2r

θ(y2)

y1

r

s y2

r

σ = {y1, . . . , yk} in Ps(Y ), then

σ ∪ θ(σ) = {y1, . . . , yk , θ(y1), . . . , θ(yk)} ∈ Ps+2r (Y )

and there are homotopies (natural transformations)

σ ⊆ σ ∪ θ(σ) ⊇ θ(σ).

between poset morphisms Ps(Y )→ Ps+2r (Y ).
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“Fuzzy graph” for (X , dX )

Graph Γ∗(X ) has elts of X as vertices, and edges {x , y} with x 6= y
and dX (x , y) <∞. Γs(X ) has edges {x , y} with dX (x , y) ≤ s.

Č (X ) is Čech groupoid: X = objects, and there is a morphism
x → y iff dX (x , y) <∞. BČ (X )s : dX (x , y) ≤ s.

There are bijections

π0Γs(X )
∼=←− π0N sk1 BČ (X )s

∼=−→ π0BČ (X )s ,

natural in s: s ≤ t induces inclusion BČ (X )s ⊂ BČ (X )t .

Functor Č (X )s → πBPs(X ) (fund groupoid) takes a morphism
x → y to the composite {x} → {x , y} ← {y}

Theorem 5.

There are bijections

π0Γs(X )
∼=←− π0N sk1 BČ (X )s

∼=−→ π0BČ (X )s
∼=−→ π0πBPs(X ).

The unoriented fuzzy graph Γ∗(X ) computes clusters for (X , dX ).
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Explanation

Z = simplicial set.

N sk1 Z = sk0 Z ∪ (tσ:∆1→Z , d0σ 6=d1σ ∆1)→ Z , π0-isomorphism.

Boundary of a simplex σ : ∆1 → Z : ∂σ = {d0σ, d1σ}.

Γ(Z ) is unoriented graph with vertices Z0 with edges given by
boundaries {d0σ, d1σ} for σ : ∆1 → Z with d0σ 6= d1σ.

π0Γ(Z ) = Z0/ ∼,

where x ∼ y if {x , y} is an edge, generates an equiv relation ∼.

There are bijections

π0Γ(Z )
∼=←− π0N sk1 Z

∼=−→ π0Z ,

natural wrt inclusions Z ⊂ Z ′ of simplicial sets.
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Singular functor S

Spivak [7]: There is an adjoint pair of functors

Re : sSet[0,∞] � ep −Met : S

S(Y , d)s,n = functions φ : {0, 1, . . . , n} → Y with
d(φ(i), φ(j)) ≤ s, for (Y , d) in ep −Met (“bags of words”).

S(X , d)s = BČ (X )s (!!)

For (X , d) a totally ordered finite ep-metric space, there is a
canonical map of systems (functors)

η : V (X , d)s → S(X , d)s .

η takes the simplex x0 ≤ x1 ≤ · · · ≤ xn to the sequence
(x0, x1, . . . , xn).

Theorem 6 ([3]).

The map η : V (X , d)s → S(X , d)s is a weak equivalence of
simplicial sets, for each s.
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UMAP complex

(X , dX ) = finite data set, or finite ep-metric space ... but very big.

1) Choose neighbourhood set Nx , x ∈ X . Set
Ux = {x} t Nx ⊂ X .

e.g. Nx = k nearest neighbours if X is totally ordered, has metric
(if you can find them — there are algorithms).

2) Set (Ux ,Dx) = ∨y∈Nx ({x , y}, dy ) in ep −Met.

dy (x , y) > 0 is a weight.

3) Extend to an ep-metric Dx on X by setting Dx(y , z) =∞ if
either y or z is outside of Ux .

4) We have inclusions X ⊂ V (X ,Dx), x ∈ X (X discrete). Form
the iterated pushout

V (X ,N) = ∨x∈X V (X ,Dx) ' ∨X S(X ,Dx).

BP(X ,N) = V (X ,N) is “the” UMAP complex — a simplicial
presheaf on [0,∞]op+ , simp. fuzzy set with coefficients in [0,∞]op.
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Excision

Given (X , dX ) and (X ,Dx) as above, form the wedge sum

(X ,D) = ∨x∈X (X ,Dx)

in ep-metric spaces.

(X ,Dx) is the realization of V (X ,Dx) for each x [3], so (X ,D) is
the realization of the UMAP complex V (X ,N).

Theorem 7 (Excision for π0).

V (X ,N) = ∨x V (X ,Dx)→ V (X ,D) induces a bijection

π0V (X ,N)s
∼=−→ π0V (X ,D)s , 0 ≤ s <∞.

Corollary 8.

There are bijections

π0Γ(X ,D)s ∼= π0V (X ,D)s ∼= π0V (X ,N)s , 0 ≤ s <∞.
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UMAP algorithm: Dimension reduction I

(X , dX ) finite ep-metric space, X totally ordered, |X | = n.

ep-metric space (X ,D) constructed from neighbours Nx as above.

Assume that (X ,D) is connected: D(x , y) <∞ for all x , y ∈ X .

• Unoriented weighted graph: Γ(X ) = Γ∗(X ,D).

Find a node embedding p : X ⊂ Rd with d small:

• Weight matrix W = (ai ,j), with ai ,j = D(xi , xj) for i 6= j ,

• Diagonal matrix D = (di ,i ) with di ,i =
∑

i 6=j D(xi , xj).

• L = W − D is the weighted Laplacian for the graph Γ(X ).

Find orthonormal basis of eigenvectors {w1, . . . ,wN} for L.

Lemma 9.

There is a basis for Rn consisting of vectors e i = ei + δiw1, with all
δi small, such the images p(e i ) are distinct.
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UMAP algorithm: Dimension reduction II

Corollary 10.

Suppose that V = 〈w1, . . . ,wd〉 ⊂ Rn. Then the projection
p : Rn → Rd ∼= V onto V restricts to an injective function
e i 7→ p(e i ).

NB: The number d is usually 2 or 3 in practice, and is bounded
above by the rank of L.

Set yi = p(e i ) ∈ Rd .
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Optimisation

We have a graph (Y ,E ) with vertices yi , and edges [yi , yj ] with
weights d(yi , yj) given by distance.

Adjust vertices of (Y ,E ) by minimizing cross entropy:

wX : X × X → [0,∞], (x , y) 7→ D(x , y),

wY : X × X → [0,∞], (x , y) 7→ d(p(x), p(y)).

C (wX ,wY ) =
∑
x ,y

[e−wX (x ,y)(wX (x , y)− wY (x , y))

+ e−wX (x ,y)∗(wX (x , y)∗ − wY (x , y)∗)]

Suggestion: Minimise

(wX (x , y)− wY (x , y))2, (wX (x , y)∗ − wY (x , y)∗)2

by moving the yi (stochastic gradient descent).
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Endgame

One finishes with a graph (Y ,E ), X = Y ⊂ Rd , which is
“optimally close” to (X ,D).

We’re not done:

Write (Y ,E )s for the subgraph of (Y ,E ) with vertices
Y = X ⊂ Rd and edges [x , y ] ∈ E (in Γ(X )) with d(x , y) ≤ s.

• We have clusters π0(Y ,E )s and a hierarchy Γ(Y ,E ).

• Γ(Y ,E ) is a tree with objects (s, [x ]) with [x ] ∈ π0(Y ,E )s , and
morphisms (s, [x ])→ (t, [x ]) with s ≤ t.
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Homotopies

A natural transformation h between functors f , g : C → D is a
diagram of functors

C
i0 ��

f

&&
C × 1

h // D

C
i1
OO

g

88

f (a)
h //

f (α)
��

g(a)

g(α)
��

f (b)
h
// g(b)

where 1 = {0 ≤ 1}, iε(a) = (a, ε).

B(C × 1) ∼= BC × B1 = BC ×∆1

BC
i0 ��

f

((
BC ×∆1 h // BD

BC

i1

OO
g

66
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