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UMAP: “Uniform Manifold Approximation and Projection for
Dimension Reduction”

Healy-Mclnnes (2018),
Healy-Mclnnes-Melville (2020) [3]

Outline

e Spivak's extended pseudo-metric spaces (ep-metric spaces)
e TDA constructions in ep-metric spaces

e weighted graphs

e classical dimension reduction (PCA)

e optimisation on low dimensional graph: fuzzy sets, cross entropy
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ep-metric spaces (Spivak, 2009)

An extended pseudo-metric space (ep-metric space) (X, D) is a
set X and a function D : X x X — [0, o0] such that

1) D(x,x) =0,
2) D(x,y) = D(y;x),
3) D(x,z) < D(x,y) + D(y, 2).

e Can have distinct x, y such that D(x,y) =0 (“pseudo”).
e Can have u, v such that D(u,v) = oo (“extended”).

Example: Every metric space (Y, d) is an ep-metric space:
Y x Y % [0,00) C [0,00].

A morphism £ : (X, dx) — (Y, dy) of ep-metric spaces is a
function f : X — Y such that

dy(f(x),f(y)) < dx(x,y) (compresses distance, “non-expanding”).

ep — Met is the category of ep-metric spaces and their morphisms.



Cocompleteness

(X, d) an ep-metric space and p : X — Y a surjective function.

For x,y € Y set
k
D = inf iy Vi
(o) = if 13 s

“Polygonal path” P : pairs (xj,y;), 0 < i < k, in X with
x = p(x0), p(yi) = p(xi+1), ¥ = p(yk)-
Quotient map p : (X, d) — (Y, D) satisfies universal property.

ep — Met is cocomplete (has all small colimits).

Underlying set is colimit in sets: Li; (Xi, d;) has D(x,y) = di(x, y)
if x,y in some Xj, D(x, y) = oo otherwise.
Coequalizers (or pushouts) given by quotient construction.
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Vietoris-Rips complex

(X, d) a finite ep-metric space, d : X x X — [0, o¢].
s € [0, 00]:

Ps(X) is the poset of all subsets o C X such that d(x,y) <s for
all x,y € 0.

Ps(X) defines an abstract simplicial complex Vs(X) — Vietoris-Rips
complex.

Nerve BP,(X) is the barycentric subdivision of V;(X).

There is a natural weak equivalence
v BPS(X) - VS(X)

defined by the last vertex map, subject to a total ordering on X.

NB: Poset const. BP;(X) does not use a total ordering on X.

Rick Jardine UMAP for the working mathematician



Comments

Write Vs(X) = BP4(X), or Vi(X,d) = BPs(X, d).

1) The systems s — H, Vs(X, d) (coefficients in a field) define
persistent homology for (X, d).

2) The sets moVs(X, d) are clusters for (X, d).

Hierarchy I'(X, d): tree with vertices (s, [x]) with s < t,
[x] € mo V5(X). Source of hierarchical clustering algorithms.

3) One cares most about

lim  Vi(X, d),

s<oo

which is a disjoint union of global components, each of which
consists of simplices having edges of finite length.

Each global component is contractible, filtered by distance d.
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UMAP complex

(X, d) = finite data set, or finite ep-metric space ... but very big.

1) Choose neighbourhood set N, for each x € X .

Set Uy = {x} U N, C X.

e.g. Ny = k nearest neighbours (if you can find them — there are
algorithms).

2) Set (Uy, Dy) = Vyen, ({x,y},d,) (wedge of rays) in ep — Met.
dy(x,y) > 0 is a weight — original distance, or adjustment.

3) Extend to an ep-metric Dy on X by setting Dx(y, z) = oo if
either y or z is outside of Uy.

4) We have inclusions X C V(X, D), x € X (X discrete). Form
the iterated pushout
V(X,N) = Vyex V(X,Dy).

V(X,N) is “the” UMAP complex — a diagram of simp. sets
defined on [0, o0]



“Fuzzy graph” for ep-metric space (X, d)

's(X) has elements of X as vertices, and edges {x, y}, 2-elt
subsets of X , with d(x,y) < s.

The functor ['.(X): s+ [s(X) is the “fuzzy graph” for (X, d)
(functor on [0, o0]).

I.(X) is the non-degenerate part of sky BC(X).

C(X) is Cech groupoid: X = objects, and there is a morphism
x — y iff dx(x,y) < oo. BC(X)s: dx(x,y) < s.

Functor C(X)s — mBPs(X) (fund. groupoid) takes a morphism
X — y to the composite {x} — {x,y} < {y}

There are natural bijections

1ol s(X) 2 moBE(X)s — momBPs(X) = moBPs(X).

The fuzzy graph I'.(X) computes clusters for (X, d).
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Excision

Given (X, dx) and (X, Dy) as above, form the wedge sum
(X’ D) = Vxex (X) Dx)

in ep-metric spaces. (X, D) is the “realization” of V(X,N).

Theorem 3 (Excision for ).

V(X,N) =V, V(X, Dx) — V(X, D) induces a bijection

moV(X, N)s = moV(X,D)s,0 < s < cc.

Paths in both are hops through nearest neighbours.

Corollary 4.

There are bijections
mol (X, D)s 2 moV(X,D)s = mpV(X, N)s, 0 <s < oc.




Dimension reduction step (PCA)

We have the weighted graph (X, D), where (X, D) is a finite
ep-metric space, | X| = N.

Assume (X, D) is connected: D(x,y) < oo for all x,y € X.
The elements x; define standard basis vectors e; € RV.

Idea: Find function p : X — RY with d small, such that
d(p(xi), p(x;) is “close” to weight w;j = D(x;, x;) for all i, ;.
e Weight matrix W = (w; ) for i # j,

e Diagonal matrix D = (d; ;) with d;; = Zl-# Wi

e L =D — W is the weighted Laplacian for the graph '(X).

Find orthonormal basis of eigenvectors {w, ..., wy} for L, and
choose eigenvectors {wj, ..., wy} with associated eigenvalues \;
satisfying Ay > Ao > .... Usually, d = 2,3.

e = ajiwi + -+ nwy. Set p(x) = ajiwi + -+ @ gWa.
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What we have, so far

1) Start with a data set X in a metric space.

2) Choose nearest neighbours Ny, x € X, and and use these to
construct an ep-metric space structure (X, D), with corresponding
weighted graph (X, D).

3) Use classical dimension reduction method to find low
dimensional graph Y C R? with vertices y; = p(x;) with actual
distances d(y;, y;) approximating the weights D(x;, x;).

Next step: improve on the choice of points y; € RY to better
approximate the weights.

This is done with fuzzy set methods.
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Classical definition: A fuzzy set is a function p : X — [0, 1],

Barr, 1986 [1]: A fuzzy set with coefficients in a locale L is a
function ¢ : X — L.
Examples: L = [0, 0], [0, o], [0, 1], [0, 1]°P.

A morphism ¢ — ) of fuzzy sets is a function f : X — Y such

that in the picture
f

N

d(x) < P(f(x)) for all x € X. i.e. diagram hypy. commutes.
Fuzz(L) is corr. category.

X Y

Barr: A fuzzy set X — L is a sheaf (of monomorphisms) on L .
(L with new inital element +).

Example: (X, d) finite ep-metric space. V/(X,d) is a simplicial
sheaf on [0, 0], or simplicial fuzzy set.
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Complement (classical)

The function s — 1 — s =: e(s) defines a poset isomorphism
(idempotent) e : [0,1] — [0, 1]°P, called the dual.

Classical: If p: X — [0,1] is a fuzzy subset of X, its complement
p€ is defined by p°(x) =1 — p(x) = e(p(x)).

Example: A C X has a step function pa : X — [0, 1] and

€ - PA = PX-A-
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Complement Il

We have poset isomorphisms

6 [0,1] S [0, 0] :
with ¢(s) = —log(s) and 1(t) = e~ (order reversing).

¢ is Shannon'’s information function (Shannon, 1948)

0.0] =~ [0.1]°* ¢
ev ¢e
op_ o 1
defines a duality isomorphism (idempotent) e : [0, co] — [0, co]°P.

x*:=e(x) = —log(l — e ™) =x —log(eX — 1), x € [0, 00].
Facts: x — x* is continuous. x and x* are close if x is near log(2).
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Cross entropy (standard)

Suppose that u, v : X — [0, 1] are fuzzy sets.
The cross entropy (Bhandari 1993 [2]) from v to u is defined by

B u(x) 1 — u(x)
o) = 3 (o) oal 5) + 1 = ) oa( =y 5)
C(u, v) is a sum of elements of the form
F(s,t)=s- |og(§)+ (1-s)- |og(1:i) > 0.

with s, t € [0,1] (Kullback-Liebler divergence, 1951).

u (hence s) is fixed. C(u,v) is a (non-symmetric) measure of the
distance of v from wu.
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Cross entropy (new)

Suppose s =€ ¥ and t = e™*.

F(s,t)=F(e ™Y, e ) =eY(x—y)+e ¥ (x —y").
|F(e™,e )| depends on |x — y|, |x* — y*| in [0, cc].
Given u,v : X — [0, 00], set

Cluv) = C(o -0, v)
= 3 [ vlx) - u)) + e (v()" — ()]

xeX

For u,v : X — [0,00], C(u, V) is the cross entropy from v to u.

Rick Jardine UMAP for the working mathematician



Optimisation

Start with T'(X), run PCA to get a graph (Y, E) with vertices

yi = p(x;), and edges [y;, y;] with weights d(y;, y;) given by
distance.

Adjust vertices of (Y, E) by minimizing cross entropy:

wy @ X X X = [0,00], (x,y)— D(x,y),
wy : X x X = [0,00], (x,y) = d(p(x),p(y))-

Clwx, wy) =Y [N (wx(x,y) — wy(x,y))

X,y
40D (wx (x, ) — wy(x,y))]

Suggestion: Minimise C(wx, wy)? by moving the y; in directions
of "negative slope” (stochastic gradient descent).
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One finishes with a graph (Y, E), X = Y C RY, which is
“optimally close” to (X, D).

We're not done:

Write (Y, E)s for the subgraph of (Y, E) with vertices
Y = X C R? and edges [x, y] € E with d(x,y) <s.

e We have clusters mo(Y, E)s and a hierarchy (Y, E).

e [(Y,E) is a tree with objects (s, [x]) with [x] € mo(Y, E)s, and
morphisms (s, [x]) — (t,[x]) with s < t.
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Graphs from simplicial sets

Z = simplicial set. There is a mp-isomorphism
Nsky Z = sko Z U (Up.pt 7, doodyo A1) = Z.

(Z) is the unoriented graph with vertices Zy with edges given by
boundaries {dyc, dic} for o : Al — Z with dyo # dyo.

mol(Z2) = Zy/ ~,
where x ~ y if {x,y} is an edge.

There are bijections
ol (Z) & moNsky Z = moZ,

natural wrt inclusions Z C Z’ of simplicial sets.
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