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Finding star clusters

William and Caroline Herschel (late 1700s): count stars in regions
of space.

Still how it’s done today: sophisticated cameras/instruments (eg.
ESA spacecraft Gaia, at L2 Lagrange point, online in 2013), with
computers doing the star counts from images or data sets.

First data had evidence of a new cluster (Gaia 1) near Sirius.

Detection method finds regions with high densities of stars (“stellar
over-densities”). Primitive method of topological data analysis.

Relative to the “big picture”, these are small, very dense
collections of stars — anomalies.

Big picture item: structure of cosmic background microwave
radiation.
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Bank data

Record of transactions processed by a major bank (eg. Scotiabank,
RBC, ...) over some time frame is a vast trove of data.

There are big pictures and small pictures associated with this data:

Big: Large scale market fluctuations, relations to world events,
possible basis for predictions.

Small: Dense patterns of small transactions (≤ $10,000) in an
account or between a small group of accounts could indicate
money laundering.

The idea, at both a macro and micro level, is to find “clusters” in
the data.

Finding clusters is a form of “unsupervised machine learning”.
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Topological Data Analysis

Clusters are collections of data points in relative close proximity,
according to some finite list of parameters.

In practice, the parameters are real variables.

A data cloud is a finite set of points X ⊂ RN .

Basic idea: Analyze regions of the data cloud X , by density.

Various ways of saying what a cluster is:

K -means clustering: Find centres of regions (Voronoi cells) of
nearest neighbours to a given set of points. Use these centres
to recalculate, repeatedly. Initial points chosen by eyeballing
the data. Algorithm partitions the data set.

Clusters are subsets of the data set that are relatively close
together (distance < s apart, for some variation of s), eg.
DBSCAN, heirarchical clustering, HDBSCAN. Unsupervised.
Isolates regions of interest.
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Movie time

Video displays a run of a DBSCAN algorithm.

We have a data set X ⊂ R2 (a list). Start with first point x0 ∈ X ,
a distance s, and number of vertices k = 4.

If x0 has at least 4 other points in a disc of radius s centred at x0,
then x0 is in a cluster. Perform same analysis for all new points in
the disc to make the cluster grow, if possible.

If x0 has less than 4 other points in the disc, move on to next
point in the list X .

Tunable parameters: the choice of distance s and the number of
other points k required in a disc. One-point clusters are noise.

This algorithm splits up (partitions) the points of X into
“connected components”.

https://towardsdatascience.com/the-5-clustering-algorithms-data-
scientists-need-to-know-a36d136ef68
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Graphs

A graph Γ consists of a set Γ0 of vertices, a set Γ1 of edges, and
two functions s, t : Γ1 → Γ0, called source and target.

Examples:

N = {1, . . . ,N}. The complete graph K (N) has vertices all
1 ≤ i ≤ N, ie, K (N)0 = N. The edges of this graph are the pairs
of numbers 1 ≤ i < j ≤ N.

K (1) is the vertex 1 with no edges.

K (2): 1→ 2.

K (3):
1

����
2 // 3
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Example: Vietoris-Rips graphs

Start with a data cloud (a list) X ⊂ RN . Suppose that s > 0.

Rips graph: Vs(X ) has vertices Vs(X )0 = X and edges Vs(X )1

consisting of elements x , y ∈ X with x < y in the list and
d(x , y) < s.

If s < t, then Vs(X ) ⊂ Vt(X )

Vs(X ) = X is discrete for s small, and is the complete graph
K (|X |) for for s big.

X ⊂ RN is finite, so

there is an s (small) so that every ball of radius s centred at
x ∈ X contains only x , ie. Vs(X ) has no edges.

there is an R (big) such that every ball of radius R centred at
x ∈ X contains all elements of X , ie. VR(X ) = K (|X |).

Any sequence 0 < s1 < s2 < · · · < sr with s1 sufficiently small and
sr sufficiently large determines a family of graphs (a “filtration”)

X = Vs1(X ) ⊂ Vs2(X ) ⊂ · · · ⊂ Vsr (X ) = K (|X |).
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Path components

Say that points x , y are in the same path component of a graph
Γ (write x ∼ y) if they can be joined by a string of edges

x1 ``

  

x3 ``

  

. . . ^^

��
x0
~~

>>

x2
~~

>>

x4
��

@@

. . . xn

Picture is a path of edges of Γ between x = x0 and y = xn.

The path component relation ∼ splits up the vertices Γ0 into a
collection π0(Γ) of subsets.

NB: [x ] is an element of π0(Γ) and the component containing x .

X0 =
⊔

[x]∈π0(Γ)

[x ].

π0(Γ) is the set of path components of Γ.
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Examples

1) Any two vertices of the complete graph K (N) are in the same
path component: [i ] = [j ] if i < j .

K (N) is connected. π0(K (N)) = ∗.

2) Here’s K (2) t K (3):

3

�� ��
1 // 2 4 // 5

This graph has two path components: {1, 2}, {3, 4, 5}. Otherwise
there would be an edge between the two pieces.

3) X ⊂ RN : x , y ∈ X are in the same path component of Vs(X ) if
there is a series of short hops (of length < s) through points of X .

π0Vs(X ) = X for s sufficiently small and π0VR(X ) = ∗ for R
sufficiently large.
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Varying the parameter s

For x , y ∈ X , write x ∼s y if x , y are in the same path component
[x ]s of Vs(X ).

If s < t and x ∼s y , then x ∼t y :

Hops of length < s are of length < t.

There is a function of equivalence classes (path components)

π0Vs(X )→ π0Vt(X ),

which is induced by the inclusion of graphs Vs(X ) ⊂ Vt(X ).

• • • • · · ·

• • • •
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What’s going on?

Given X ⊂ RN , and 0 < s, π0Vs(X ) defines a partition

X =
⊔

[x]∈π0(Vs(X ))

[x ]

This partition is an “old style” clustering of X .

If s < t, every path component [x ]s of Vs(X ) is contained in a
path component of Vt(X ), namely [x ]t , which could be a bigger
subset of X . [x ]s ⊂ [x ]t as subsets of X .

Every path component of Vt(X ) is a union of path components of
Vs(X ). The partition given by π0Vs(X ) is a refinement of that
given by π0Vt(X ).

For 0 < s1 < s2 < . . . sr the string of functions

π0Vs1(X )→ π0Vs2(X )→ · · · → π0Vsk (X )

defines a heirarchical clustering of X , with progressively coarser
partitions.
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New cluster definition — first steps

In the general setup of Rips graphs Vs(X ) associated to a data
cloud X ⊂ RN , we have:

all Vs(X ) have the same set of vertices, namely X .

each set of path components π0Vs(X ) defines a partition of X

for s < t, the function π0Vs(X )→ π0Vt(X ) is defined by
[x ]s 7→ [x ]t , with

[x ]s ⊂ [x ]t ⊂ X .

A cluster for X ⊂ Rn is defined by a path component [x ]s such
that [x ]s = [x ]t for some t > s.
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The graph Γ(F )

X ⊂ RN . Choose 0 < s1 < s2 < · · · < sr . Set Vi (X ) = Vsi (X ).

We have a sequence of functions between path component sets

π0V1(X )→ π0V2(X )→ · · · → π0Vk(X )

Abstractly: F : F (1)
α−→ F (2)

α−→ . . .
α−→ F (k)

α−→ . . .

Graph Γ(F ): vertices (x , i), x ∈ F (i), edges (x , i)→ (α(x), i + 1).

(y , 1)
α // (y , 2)

α
))
(u, 3)

α // · · ·

(z , 1) α
// (z , 2)

α

55

A branch point is a vertex (x , i) with more than one incoming
edge (y , i − 1)→ (x , i).
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The cluster graph

Remove all edges of Γ(F ) terminating in branch points to
construct subgraph Γ0(F ) ⊂ Γ(F )

Γ0(F ) is the cluster graph for F .

Graphs have path components, and the clusters are the path
components of Γ0(F ), ie. elements of π0Γ0(F ).

Alternatively: A cluster of F is a path

(x0, i)→ (x1, i + 1)→ · · · → (xp, i + p)

of max length in Γ(F ) st no (xj , i + j) is a branch point for j > 0.

NB: (x0, i) is a branch point, or x0 has no preimage in F (i − 1).

Example: For the sequence

π0V∗(X ) : π0V1(X )→ π0V2(X )→ · · · → π0Vk(X )

the cluster graph Γ0(π0V∗(X )) has edges ([x ]i , i)→ ([x ]i+1, i + 1)
such that the inclusion [x ]i → [x ]i+1 is a bijection.
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Small clusters

The isolated groups of bright objects define “small” clusters. They
join other clusters at some parameter value, which could be large.

• •
• • • • · · ·
• • •

The small clusters are noise or anomalies.

Two ways to filter out noise:

1) Every element of xs ∈ π0Vs(X ) has a cardinality |xs | = |[y ]|,
where xs = [y ]. Score each cluster

P : (xs , s)→ (xs+1, s + 1)→ · · · → (xs+p, s + p)

by setting σ(P) = |xs | · p. Compare scores of clusters.

2) Throw away the path components of sufficiently small size
during the computation process.
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Comments

1) Components with big voids around them define clusters with
higher scores than components of same size surrounded by smaller
voids.

2) Scoring is relatively expensive. It can only be done after all
other calculations.

3) Throwing away small path components (eg. isolated points,
small groups) is brutal but computationally effective — can be
done before constructing the cluster graph.
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Higher dimensional persistence

The Rips graph Vs(X ) has subgraphs (“Lesnick graphs”)

· · · ⊂ Ls,k+1(X ) ⊂ Ls,k(X ) ⊂ . . . Ls,0(X ) = Vs(X )

defined by valence of vertices, and natural in s.

x ∈ Ls,k(X )0 if it is a member of at least k edges of Vs(X )

ie. a ball of radius s centred on x contains at least k other
members of X — a type of density measure.

For s < t, have a rectangular array of inclusions of graphs

Ls,k(X ) // Lt,k(X )

Ls,k+1(X )

OO

// Lt,k+1(X )

OO

all with potentially different vertices.
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Cluster graph

There is an induced array of path components

π0Ls,k(X ) // π0Lt,k(X )

π0Ls,k+1(X )

OO

// π0Lt,k+1(X )

OO

and a graph Γ(π0L∗,∗(X )) with vertices and edges

([x ], (s, k)), [x ] ∈ π0Ls,k(X ),

([x ], (s, k))→ ([x ], (t, k)), ([x ], (s, k + 1))→ ([x ], (s, k)).

The cluster graph Γ0(π0L∗,∗(X )) has edges which preserve the
size of path components [x ].

The clusters of L∗,∗(X ) are the path components of the cluster
graph Γ0(π0L∗,∗(X )).
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Remarks

Consider the picture

π0Vs1(X ) // π0Vs2(X ) // . . . // π0Vsr (X )

π0Ls1,k(X ) //

OO

π0Ls2,k(X ) //

OO

. . . // π0Lsr ,k(X )

OO

1) Running the “cluster algorithm” along the bottom row gives
clusters for a higher density part of the data cloud X . Can tune
the density of clusters by varying k

... except the meaning is not the same. Define the cluster graph
for the bottom row as in the full 2-dimensional case above — can’t
just define the cluster graph by throwing away edges.

2) Admission: The algorithm of the smiley face video calculates
π0Ls,k(X ) for a fixed s and k (s is whatever, and k = 4).
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Scoring

A cluster P for {Ls,k(X )} is a connected graph consisting of a set
of vertices (x , (s, k)) with suitable edges.

For each vertex (x , (s, k)), the element x is a path component (a
set of vertices) in Ls,k(X ).

The path component x has finite cardinality |x |, and this number
is the same (|x | = |y |) for all points (y , (t, i)) in the cluster, by
definition.

The score σ(P) of the cluster P is defined by

σ(P) =
∑

(x ,(s,k))∈P

|x | = |x | · |P|.

We deal with noise by throwing away clusters with low scores, or
by throwing away points (x , (s, k)) with |x | small, or both.
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Patching

We would like, for programming purposes, to have a method of
determining clusters from patches: X = X1 ∪ X2.

Not simple, because it is not true that Vs(X ) = Vs(X1)∪Vs(X2).

Example: Suppose that X1 = blue dots and X2 = red dots in the
picture below, with X = all dots. Suppose s is slightly larger than
the distance between adjacent dots.

X : • • • • • . . . •

Then π0Vs(Xi ) = Xi for i = 1, 2, but π0Vs(X ) = ∗.

But ... can make “cluster trees” with edges given by clusters, and
the cluster tree for X “is” a union of the cluster trees for X1 and
X2. Don’t know how to formalize this yet.

Rick Jardine Clusters and graphs



References

John Healy and Leland McInnes.
Accelerated heirarchical density clustering.
Preprint, arXiv: 1705.07321v2 [stat.ML], 2017.

M. Lesnick and M. Wright.
Interactive visualization of 2-d persistence modules.
Preprint, arXiv: 151.00180v1 [math.AT], 2015.

Afra Zomorodian and Gunnar Carlsson.
Computing persistent homology.
Discrete Comput. Geom., 33(2):249–274, 2005.

Rick Jardine Clusters and graphs


