Data and homotopy types

Rick Jardine

University of Western Ontario

May 13, 2019

Rick Jardine Data and homotopy types

 $X \subset \mathbb{R}^n$ a finite subset (data set, or data cloud).

X is finite: $\{0 = s_0, s_1, s_2, \dots, s_p\}$ = distances between points of X, with $s_i < s_j$ if i < j (phase changes).

X is listed on a computer, so $X \cong \{0, ..., N\}$ (listing is an orientation).

Vietoris-Rips complex $V_s(X)$: k-simplex $\sigma = \{x_0, \ldots, x_k\}$ (ordered, or not), with $d(x_i, x_j) \leq s$. $V_s(X) \subset V_t(X)$ if s < t. $V_0(X) = X$. If $s_p \leq R$, then $V_R(X) = \Delta^N =: \Delta^X$, |X| = N + 1.

$$X = V_0(X) \subset \cdots \subset V_s(X) \subset \cdots \subset V_t(X) \subset \cdots \subset V_R(X) = \Delta^X$$

 $s\mapsto V_s(X)$ defines a functor $V_*(X):[0,R] o \mathbf{Set}.$

Persistent homology

Write $H_p(Y) = H_p(Y, k)$, k = a field, $p \ge 1$. We have a filtration

 $k(X) = k(V_0(X)) \subset \cdots \subset k(V_s(X)) \subset \cdots \subset k(V_R(X)) = k(\Delta^X)$

of the chain complex $k(\Delta^X)$, and induced maps

$$H_p(V_0(X)) \to \cdots \to H_p(V_s(X)) \to \cdots \to H_p(V_R(X)) = H_p(\Delta^X).$$

We care only about the phase changes and the maps

$$0=H_{\rho}(V_0(X))\to H_{\rho}(V_{s_1}(X))\to\cdots\to H_{\rho}(V_{s_p}(X))=H_{\rho}(\Delta^X)=0.$$

This is a fin. dim. module over k[t]. The structure theorem for finitely generated modules over a p.i.d. breaks this "persistence module" up into a direct sum of principal modules, which give the bar codes

Clusters

Apply the path component functor to the maps

$$X = V_0(X) \subset \cdots \subset V_s(X) \subset \cdots \subset V_R(X) = \Delta^X$$

to produce functions

$$X = \pi_0 V_0(X) o \cdots o \pi_0 V_s(X) o \cdots o \pi_0 V_R(X) = \pi_0(\Delta^X) = *$$

All spaces $V_s(X)$ have the same vertices, namely X, and $\pi_0 V_s(X)$ is a partition of X, a **clustering** of the data set X.

If $s \leq t$, then $\pi_0 V_s(X) \to \pi_0 V_t(X)$ is surjective, and the partition given by $\pi_0 V_s(X)$ is a refinement of that given by $\pi_0 V_t(X)$.

Hierarchy graph: $\Gamma(X) := \Gamma(\pi_0 V_*(X))$ with vertices (s, [x]), $[x] \in \pi_0 V_s(X)$, and morphisms $(s, [x]) \to (t, [x])$ for $s \le t$ in \mathbb{R} . $\Gamma(X)$ is a **tree** (dendogram), a **hierarchical clustering** for X.

1) Specifying a distance *s* between stars in the picture *X* determines a Vietoris-Rips complex $V_s(X)$ and path components (clusters) $\pi_0 V_s(X)$.

If s is small (but not too small), the clusters consist of a big central blob and outlying groups.

2) Varying *s* a little does not change the path component picture. Components that remain intact through variations of *s* are **stable components** (also **stable clusters**, **layers**) — these are persistence objects.

3) X is the result of setting an exposure time. A longer exposure produces Y with more points, and $X \subset Y \colon \Gamma(X) \to \Gamma(Y)$. **Stability question**: How well do the two trees approximate each

other?

Given $X \subset \mathbb{R}^n$, the $V_s(X)$ are found as follows:

1) Compute all distances d(x, y) for $x, y \in X$.

2) Consider all finite subsets $\sigma = \{x_0, x_1, \dots, x_p\}$ and compute $s = \max\{d(x_i, x_j)\}$. Then $\sigma \in V_s(X)$.

This algorithm has exponential complexity.

A properly equipped PC (16GB RAM, 1TB SSD) can only handle 1,000 data points at once, and then only for low dimensional simplices of the $V_s(X)$. Handling 10,000 points requires more sophisticated hardware.

Need local to global methods to handle larger data sets.

mapper only gives approximate calculations.

Sheaves [3]

What about this functor $s \mapsto V_s(X)$? What are its global homotopy theoretic properties?

Restrict to functors $[0, R] \to s$ **Set**, such as $s \mapsto V_s(X)$, where $R \ge s_p$, so $V_0(X) = X$ and $V_R(X) = \Delta^X$.

Suppose that $Y : [0, R] \rightarrow \mathbf{Set}$.

 $I \subset [0, R]$ is an interval:

A **persistent element** u on I is a string of elements $u_s \in Y_s$, $s \in I$, which is compatible in the sense that $u_s \mapsto u_t$ for $s \leq t$ in I. ie. $u \in \varprojlim_{s \in I} Y(s)$.

If $I \subset J$ are intervals in [0, R] then there is a restriction map

$$\varprojlim_{t\in J} Y(t) \to \varprojlim_{s\in I} Y(s).$$

We have a presheaf $\lim Y$ on [0, R].

Sheaves and stalks

 $Y : [0, R] \rightarrow \mathbf{Set}:$ 1) $\varprojlim Y$ is a sheaf on [0, R]2) $(\varprojlim Y)_t := \text{stalk of } \varprojlim Y \text{ at } t \in [0, R]:$ • $(\varprojlim Y)_t \cong \varinjlim_{s < t} Y(s) \text{ if } t \in (0, R]$ • $(\varprojlim Y)_0 = Y(0).$

 $V_*(X): [0,R] o s$ **Set** determines a simp. sheaf $\varprojlim V_*(X)$.

Quillen model structure on $s \operatorname{Pre}([0, R])$: a map $X \to Y$ is a weak equivalence if and only if all maps $X_t \to Y_t$ in stalks are weak equivalences of simplicial sets

(stalkwise, or local weak equivalence).

This idea **fails** for data comparisons: Given $X \subset Y \subset \mathbb{R}^n$, $\varprojlim V_*(X) \to \varprojlim V_*(Y)$ is a weak equivalence if and only if X = Y. **Traditional**: a fuzzy set is a function $\phi : X \to [0, 1]$ Given $\psi : Y \to [0, 1]$, a **morphism**

$$f:\phi \to \psi$$

of fuzzy sets consists of a function $f : X \to Y$ and a relation (homotopy) $\phi \leq \psi \cdot f$ of functions taking values in [0, 1].

i.e. $\phi(x) \leq \psi(f(x))$ for all $x \in X$.

Revision (Barr, 1986): [0,1] is a locale (nice poset). Fuzzy sets are functions $X \rightarrow L$, where L is some locale.

Fuzz(*L*) is the category of fuzzy sets $X \rightarrow L$ with values in *L*.

A **locale** L is a poset with infinite joins (unions) and finite meets (intersections), in which finite meets distribute over all joins.

NB: *L* has a terminal object (empty meet), an initial object (empty join), and infinite meets.

A morphism $L_1 \rightarrow L_2$ of locales is a poset morphism $L_2 \rightarrow L_1$ which preserves meets and joins (hence preserves initial and terminal objects).

Note the variance ... and of course there is a category of locales.

1) $op|_X = open$ subsets of a topological space X is a locale.

2) [0,1] is a locale, as is any closed interval $[a, b] \subset \mathbb{R}$ (has initial and terminal objects).

- 3) A finite product $L_1 \times \cdots \times L_k$ of locales L_i is a locale.
- 4) The opposite poset $[0, R]^{op}$ is a locale.
- 5) L a locale: $L_{+} = \{0\} \sqcup L$ (new disjoint initial object) is a locale.

Write i for the initial object of L.

0 < i in L_+ .

Why anyone cares:

Every locale *L* has a Grothendieck topology (as a category). The family $b_i \leq a$ covers *a* if $\forall_i b_i = a$.

Fuzzy sets and sheaves

Given a fuzzy set $\phi: X \to L$, form pullbacks

where $L_{\geq a} = \{x \mid x \geq a\}$ for $a \in L$.

$$a \mapsto \phi^{-1}(L_{\geq a}) =: T(\phi)(a)$$

defines a sheaf on L_+ . $T(\phi)(0) = *$. $T(\phi)$ is a sheaf of monomorphisms on L_+ : **Mon** (L_+) = sheaves of monomorphisms.

2) A sheaf F of monomorphisms on L_+ has a generic fibre F(i). Given $x \in F(i)$ there is a min $s_x \in L$ such that $x \in F(s_x)$. $x \mapsto s_x$ defines $\phi : F(i) \to L$.

Theorem (Barr, 1986 [1]) There is an equivalence of categories

 $Fuzz(L) \simeq Mon(L_+).$

$$X \subset \mathbb{R}^n$$
: Let $\sigma = \{x_0, \dots, x_k\}$ be a set of points in X . Set
 $\phi(\sigma) = \min_{i,j} \{ d(x_i, x_j) \}.$

We have a function $\phi : \Delta_k^X \to [0, R]^{op}$, and the corresponding sheaf has $T(\phi)(s) = V_s(X)$.

 $V_*(X)$ is a simplicial sheaf on the locale $[0, R]^{op}_+$, aka. a simplicial fuzzy set.

Recall: X is finite, so there is a list

$$0 = s_0 < s_1 < \cdots < s_p \le R$$

of all distances between points of X — phase change numbers.

Sheaves (and simplicial sheaves) F on $[0, R]^{op}_+$ have stalks:

$$F_s = \varinjlim_{t < s} F(t), \quad s > 0,$$

(relation in [0, R]) and $F_0 = F(R)$ is the generic fibre.

$$V_*(X)_s = V_s(X)$$
 if $s \notin \{s_0, \ldots, s_p\}$.

We lose again: If $X \subset Y \subset \mathbb{R}^n$ then $V_*(X) \to V_*(Y)$ is a local weak equivalence of simplicial sheaves on $[0, R]^{op}$ if and only if X = Y.

For $s \neq 0$ sufficiently small (i.e. less than all non-zero phase change numbers for Y), there is a commutative diagram

Generic example: $i : X \subset Y \subset \mathbb{R}^n$ (inclusion of finite data sets).

Naive tools of simplicial sheaf homotopy theory do not work for studying induced comparison $i : V_*(X) \to V_*(Y)$, because these systems involve discrete spaces.

What is true: all induced maps $V_s(X) \rightarrow V_s(Y)$ are weak equivalences for s sufficiently large:

If s is larger than all phase change numbers for Y (hence for X), then $V_s(X) = \Delta^X$, $V_s(Y) = \Delta^Y$, and both spaces are contractible.

 $X \subset Y \subset \mathbb{R}^n$. Suppose r > 0.

Say that X is r-dense in Y if for every point $y \in Y$ there is an $x \in X$ such that d(x, y) < r.

Define $\theta: Y \to X$ by specifying that $\theta(y)$ is a nearest neighbour of y in x.

Remarks:

- $d(y, \theta(y)) < r$ for all $y \in Y$.
- If $y \in X$, then $\theta(y) = y$.
- If d(y₁, y₂) ≤ s, then d(θ(y₁), θ(y₂)) ≤ s + 2r (triangle inequality).
- X is r-dense in Y if r is sufficiently large.
- If X is r-dense in Y and r is sufficiently small, then X = Y.

Subdivisions

heta: Y o X induces a simplicial complex map $V_s(Y) o V_{s+2r}(X)$, or rather a functor

$$\theta: \mathsf{NV}_{\mathsf{s}}(Y) \to \mathsf{NV}_{\mathsf{s}+2\mathsf{r}}(X)$$

of posets of simplices (order complexes, barycentric subdivisions)

$$\sigma = \{y_0, \ldots, y_k\} \mapsto \theta(\sigma) = \{\theta(y_0), \ldots, \theta(y_k)\}$$

There is a diagram

$$NV_{s}(X) \xrightarrow{\alpha} NV_{s+2r}(X)$$
(1)

$$i \bigvee_{\alpha} \theta \bigvee_{i} i$$

$$NV_{s}(Y) \xrightarrow{\alpha} NV_{s+2r}(Y)$$

in which the upper triangle commutes, and the lower triangle commutes up to homotopy:

$$\{y_0,\ldots,y_k\}\subset\{y_0,\ldots,y_k,\theta(y_0),\ldots,\theta(y_k)\}\supset\{\theta(y_0),\ldots,\theta(y_k)\}$$

The construction (1) induces "interleavings" of persistence modules

and of clusters

Both diagrams commute on the nose, and are natural in s.

Homotopy type stability

Given $X \subset Y \subset \mathbb{R}^n$, let $0 = s_0 < s_1 < \cdots < s_p$ be the phase change numbers for Y.

Lemma 1.

Suppose that $2r < s_{k+1} - s_k$. Then $i: V_t(X) \rightarrow V_t(Y)$ is a weak equivalence for $s_k \le t < s_{k+1}$

Proof.

 $V_t(X) = V_{s_k}(X)$ (same for Y), so it suffices to show that *i* is a weak equivalence for $t = s_k$.

homotopy commutes, so $V_{s_k}(X)$ is a def. retract of $V_{s_k}(Y)$.

Remarks

Lemma: Suppose that $2r < s_{k+1} - s_k$. Then $i : V_t(X) \rightarrow V_t(Y)$ is a weak equivalence for $s_k \le t < s_{k+1}$

1) If $2r < s_0$, then X = Y, because of the diagram

$$\begin{array}{c} X \stackrel{=}{\rightarrow} V_{2r}(X) \\ \downarrow \qquad \downarrow \qquad \downarrow \\ Y \stackrel{=}{\geq} V_{2r}(Y) \end{array}$$

2) The placement of $2r \ge s_0$ relative to the (ordered) differences $s_{k+1} - s_k$, $k \ge 0$, determines a set $\{s_k\}$ for which

$$V_{s_k}(X) o V_{s_k}(Y)$$

are weak equivalences. This includes sufficiently large s_k .

Data set $X \subset \mathbb{R}^n$ defines sets of clusters $\pi_0 V_s(X)$ and the hierarchy graph (category, tree, dendogram) $\Gamma(X) := \Gamma \pi_0 V_*(X)$.

 $\Gamma(X)$ is the graph whose objects are pairs ([x], s) with $[x] = [x]_s \in \pi_0 V_s(X)$, and has edges $([x]_s, s) \to ([x]_t, t)$ with $s \leq t$.

 $\Gamma(X)$ has a subgraph (subcategory) $\Gamma_0(X)$ having the same objects, and with edges $([x]_s, s) \rightarrow ([x]_t, t)$ such that $s \leq t$ and $[x]_s = [x]_t$ as subsets of X.

This is the **stable component graph** ("layer graph", "stable cluster graph") for X. Path components of $\Gamma_0(X)$ are the **stable components** (layers) of X.

Branch points

 $([x]_t, t)$ is a **branch point** if the preimage of $([x]_t, s)$ under the map $\pi_0 V_s(X) \rightarrow \pi_0 V_t(X)$ has more than one element for all s < t (so t has to be a phase change number).

 $([x]_s, s) \rightarrow ([x]_t, t)$ is in $\Gamma_0(X)$ if and only if $([x]_v, v)$ is not a branch point of $\Gamma(X)$ for $s < v \le t$.

All layers $L \subset \Gamma_0(X)$ have the form

$$L = \{ ([x]_s, s) \mid u \le s < v \}$$

 $([x]_u, u)$ and $([x]_v, v)$ are branch points.

Observations

1) A layer L is determined by the branch point $([x]_u, u)$ at which it "starts".

2) Can identify layers with branch points, including all $(\{x\}, 0)$.

Comparison of hierarchies

 $i: X \subset Y \subset \mathbb{R}^n$, X r-dense in Y:

1) Every
$$([y], s)$$
 lifts to $([\theta(y)], s + 2r)$.

2) $\pi_0 V_s(X) \rightarrow \pi_0 V_s(Y)$ is surjective for $s \ge 2r$.

3) Given ([x], s), ([y], s), if ([i(x)], t) = ([i(y)], t]) for some $t \ge s$, then ([x], t + 2r) = ([y], t + 2r).

4) If $([i(x)]_s, s)$ is a branch point of $\Gamma(Y)$ and if s > 2r (so that $\pi_0 V_s(X) \to \pi_0 V_s(Y)$ is surjective), then $([x]_t, t)$ is a branch point for some $s \le t \le s + 2r$.

Lemma 2.

If s > 2r, every branch point ([y], s) of $\Gamma(Y)$ has a branch point ([x], t) of $\Gamma(X)$ that is "nearby" in sense that $s \le t < s + 2r$.

Blackboard example

Convergence

The hierarchy $\Gamma(X)$ determines an **ultrametric** on X: say that

$$d_{\Gamma(X)}(x,y) = d(x,y) = \min\{r \mid [x]_r = [y]_r\}.$$

 $d(x,z) \leq \max\{d(x,y),d(y,z)\}$

Theorem: (Carlsson-Memoli) $d_{GH}(sl(X), sl(Y)) \le d_{GH}(X, Y)$ for single linkage clustering *sl* on *X*, *Y*.

 $X \subset Y \subset \mathbb{R}^n$, X *r*-dense in Y:

X and Y are finite metric spaces.

Hausdorff distance: $d_H(X, Y) = \max\{d(x, y) \mid x \in X, y \in Y\}$ for imbeddings $X, Y \subset Z$.

Our setting: $X \subset Y$, X *r*-dense in Y: $d_H(X, Y) < r$. $d_{GH}(X, Y) \le d_H(X, Y) < r$.

Observation: $d_{\Gamma(X)}(x, y)$ is a "convergence rate". Convergence is faster in $\Gamma(X)$ than in sl(X).

 $X \subset Y \subset \mathbb{R}^n$, X r-dense in Y:

 $x, y \in X$: $d_{\Gamma(X)}(x, y)$ is smallest s such that $[x]_s = [y]_s$. $d_{\Gamma(Y)}(x, y) \le d_{\Gamma(X)}(x, y)$, but

$$d_{\Gamma(X)}(x,y) \leq d_{\Gamma(Y)}(x,y) + 2r.$$

Extend to all vertices of $\Gamma(X)$: $d(([x]_s, s), ([y]_t, t))$ is the minimal r such that $[x]_r = [y]_r$.

1) $d(([x]_s, s), ([y]_t, t)) = u$ if both vertices are in the same layer $L = \{([x]_p, p) \mid u \le p < v\}.$

2) $d(([x]_s, s), ([y]_t, t))$ is invariant of layer representatives in both variables. *d* is defined on $\pi_0\Gamma_0(X)$.

Induced function $i_* : \pi_0 \Gamma_0(X) \to \pi_0 \Gamma_0(Y) : i_*([x], s)$ (branch point) is the layer containing ([i(x)], s).

 $d(i_*([x],s),i_*([y],t)) \leq d(([x],s),([y],t)).$

References

Michael Barr.

Fuzzy set theory and topos theory. Canad. Math. Bull., 29(4):501-508, 1986.

Andrew J. Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance. CoRR, abs/1705.01690, 2017.

I. F. Jardine.

Local persistence: homotopy theory of filtrations. Oberwolfach Reports, 5(3):1623-1625, 2008.

J.F. Jardine.

Fuzzy sets and presheaves. Preprint, 2018.

J.F. Jardine.

Stable components and layers. Preprint, 2019.