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Basic setup

X ⊂ Rn a finite subset (data set, or data cloud).

X is finite: {0 = s0, s1, s2, . . . , sp} = distances between points of
X , with si < sj if i < j (phase changes).

X is listed on a computer, so X ∼= {0, . . . ,N} (listing is an
orientation).

Vietoris-Rips complex Vs(X ): k-simplex σ = {x0, . . . , xk}
(ordered, or not), with d(xi , xj) ≤ s.

Vs(X ) ⊂ Vt(X ) if s < t.

V0(X ) = X . If sp ≤ R, then VR(X ) = ∆N =: ∆X , |X | = N + 1.

X = V0(X ) ⊂ · · · ⊂ Vs(X ) ⊂ · · · ⊂ Vt(X ) ⊂ · · · ⊂ VR(X ) = ∆X

s 7→ Vs(X ) defines a functor V∗(X ) : [0,R]→ Set.
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Persistent homology

Write Hp(Y ) = Hp(Y , k), k = a field, p ≥ 1.

We have a filtration

k(X ) = k(V0(X )) ⊂ · · · ⊂ k(Vs(X )) ⊂ · · · ⊂ k(VR(X )) = k(∆X )

of the chain complex k(∆X ), and induced maps

Hp(V0(X ))→ · · · → Hp(Vs(X ))→ · · · → Hp(VR(X )) = Hp(∆X ).

We care only about the phase changes and the maps

0 = Hp(V0(X ))→ Hp(Vs1(X ))→ · · · → Hp(Vsp(X )) = Hp(∆X ) = 0.

This is a fin. dim. module over k[t]. The structure theorem for
finitely generated modules over a p.i.d. breaks this “persistence
module” up into a direct sum of principal modules, which give the
bar codes ....
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Clusters

Apply the path component functor to the maps

X = V0(X ) ⊂ · · · ⊂ Vs(X ) ⊂ · · · ⊂ VR(X ) = ∆X

to produce functions

X = π0V0(X )→ · · · → π0Vs(X )→ · · · → π0VR(X ) = π0(∆X ) = ∗

All spaces Vs(X ) have the same vertices, namely X , and π0Vs(X )
is a partition of X , a clustering of the data set X .

If s ≤ t, then π0Vs(X )→ π0Vt(X ) is surjective, and the partition
given by π0Vs(X ) is a refinement of that given by π0Vt(X ).

Hierarchy graph: Γ(X ) := Γ(π0V∗(X )) with vertices (s, [x ]),
[x ] ∈ π0Vs(X ), and morphisms (s, [x ])→ (t, [x ]) for s ≤ t in R.

Γ(X ) is a tree (dendogram), a hierarchical clustering for X .
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Issues

1) Specifying a distance s between stars in the picture X
determines a Vietoris-Rips complex Vs(X ) and path components
(clusters) π0Vs(X ).

If s is small (but not too small), the clusters consist of a big
central blob and outlying groups.

2) Varying s a little does not change the path component picture.
Components that remain intact through variations of s are stable
components (also stable clusters, layers) — these are
persistence objects.

3) X is the result of setting an exposure time. A longer exposure
produces Y with more points, and X ⊂ Y : Γ(X )→ Γ(Y ).

Stability question: How well do the two trees approximate each
other?
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Practical issues

Given X ⊂ Rn, the Vs(X ) are found as follows:

1) Compute all distances d(x , y) for x , y ∈ X .

2) Consider all finite subsets σ = {x0, x1, . . . , xp} and compute
s = max{d(xi , xj)}. Then σ ∈ Vs(X ).

This algorithm has exponential complexity.

A properly equipped PC (16GB RAM, 1TB SSD) can only handle
1,000 data points at once, and then only for low dimensional
simplices of the Vs(X ). Handling 10,000 points requires more
sophisticated hardware.

Need local to global methods to handle larger data sets.

mapper only gives approximate calculations.
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Sheaves [3]

What about this functor s 7→ Vs(X )? What are its global
homotopy theoretic properties?

Restrict to functors [0,R]→ sSet, such as s 7→ Vs(X ), where
R ≥ sp, so V0(X ) = X and VR(X ) = ∆X .

Suppose that Y : [0,R]→ Set.

I ⊂ [0,R] is an interval:

A persistent element u on I is a string of elements us ∈ Ys ,
s ∈ I , which is compatible in the sense that us 7→ ut for s ≤ t in I .
ie. u ∈ lim←−s∈I Y (s).

If I ⊂ J are intervals in [0,R] then there is a restriction map

lim←−
t∈J

Y (t)→ lim←−
s∈I

Y (s).

We have a presheaf lim←−Y on [0,R].
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Sheaves and stalks

Y : [0,R]→ Set:

1) lim←−Y is a sheaf on [0,R]

2) (lim←−Y )t := stalk of lim←−Y at t ∈ [0,R]:

• (lim←−Y )t ∼= lim−→s<t
Y (s) if t ∈ (0,R]

• (lim←−Y )0 = Y (0).

V∗(X ) : [0,R]→ sSet determines a simp. sheaf lim←−V∗(X ).

Quillen model structure on s Pre([0,R]): a map X → Y is a weak
equivalence if and only if all maps Xt → Yt in stalks are weak
equivalences of simplicial sets

(stalkwise, or local weak equivalence).

This idea fails for data comparisons: Given X ⊂ Y ⊂ Rn,
lim←−V∗(X )→ lim←−V∗(Y ) is a weak equivalence if and only if X = Y .
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Fuzzy sets

Traditional: a fuzzy set is a function φ : X → [0, 1]

Given ψ : Y → [0, 1], a morphism

f : φ→ ψ

of fuzzy sets consists of a function f : X → Y and a relation
(homotopy) φ ≤ ψ · f of functions taking values in [0, 1].

i.e. φ(x) ≤ ψ(f (x)) for all x ∈ X .

Revision (Barr, 1986): [0, 1] is a locale (nice poset). Fuzzy sets
are functions X → L, where L is some locale.

Fuzz(L) is the category of fuzzy sets X → L with values in L.
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Locales

A locale L is a poset with infinite joins (unions) and finite meets
(intersections), in which finite meets distribute over all joins.

NB: L has a terminal object (empty meet), an initial object (empty
join), and infinite meets.

A morphism L1 → L2 of locales is a poset morphism L2 → L1

which preserves meets and joins (hence preserves initial and
terminal objects).

Note the variance ... and of course there is a category of locales.
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Examples

1) op|X = open subsets of a topological space X is a locale.

2) [0, 1] is a locale, as is any closed interval [a, b] ⊂ R (has initial
and terminal objects).

3) A finite product L1 × · · · × Lk of locales Li is a locale.

4) The opposite poset [0,R]op is a locale.

5) L a locale: L+ = {0} t L (new disjoint initial object) is a locale.

Write i for the initial object of L.

0 < i in L+.

Why anyone cares:

Every locale L has a Grothendieck topology (as a category). The
family bi ≤ a covers a if ∨i bi = a.
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Fuzzy sets and sheaves

Given a fuzzy set φ : X → L, form pullbacks

φ−1(L≥a)
⊂ //

��

X
φ��

L≥a ⊂
// L

where L≥a = {x |x ≥ a} for a ∈ L.

a 7→ φ−1(L≥a) =: T (φ)(a)

defines a sheaf on L+. T (φ)(0) = ∗. T (φ) is a sheaf of
monomorphisms on L+: Mon(L+) = sheaves of monomorphisms.

2) A sheaf F of monomorphisms on L+ has a generic fibre F (i).
Given x ∈ F (i) there is a min sx ∈ L such that x ∈ F (sx).
x 7→ sx defines φ : F (i)→ L.

Theorem (Barr, 1986 [1]) There is an equivalence of categories

Fuzz(L) 'Mon(L+).
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Vietoris-Rips sheaves

X ⊂ Rn: Let σ = {x0, . . . , xk} be a set of points in X . Set

φ(σ) = min
i ,j
{ d(xi , xj) }.

We have a function φ : ∆X
k → [0,R]op, and the corresponding

sheaf has T (φ)(s) = Vs(X ).

V∗(X ) is a simplicial sheaf on the locale [0,R]op+ , aka. a simplicial
fuzzy set.

Recall: X is finite, so there is a list

0 = s0 < s1 < · · · < sp ≤ R

of all distances between points of X — phase change numbers.
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Stalks, again

Sheaves (and simplicial sheaves) F on [0,R]op+ have stalks:

Fs = lim−→
t<s

F (t), s > 0,

(relation in [0,R]) and F0 = F (R) is the generic fibre.

V∗(X )s = Vs(X ) if s /∈ {s0, . . . , sp}.

We lose again: If X ⊂ Y ⊂ Rn then V∗(X )→ V∗(Y ) is a local
weak equivalence of simplicial sheaves on [0,R]op if and only if
X = Y .

For s 6= 0 sufficiently small (i.e. less than all non-zero phase
change numbers for Y ), there is a commutative diagram

X //

∼= ��

Y
∼=��

Vs(X ) // Vs(Y )
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General picture

Generic example: i : X ⊂ Y ⊂ Rn (inclusion of finite data sets).

Naive tools of simplicial sheaf homotopy theory do not work for
studying induced comparison i : V∗(X )→ V∗(Y ), because these
systems involve discrete spaces.

What is true: all induced maps Vs(X )→ Vs(Y ) are weak
equivalences for s sufficiently large:

If s is larger than all phase change numbers for Y (hence for X ),
then Vs(X ) = ∆X , Vs(Y ) = ∆Y , and both spaces are contractible.

Rick Jardine Data and homotopy types



r -density

X ⊂ Y ⊂ Rn. Suppose r > 0.

Say that X is r-dense in Y if for every point y ∈ Y there is an
x ∈ X such that d(x , y) < r .

Define θ : Y → X by specifying that θ(y) is a nearest neighbour of
y in x .

Remarks:

• d(y , θ(y)) < r for all y ∈ Y .

• If y ∈ X , then θ(y) = y .

• If d(y1, y2) ≤ s, then d(θ(y1), θ(y2)) ≤ s + 2r (triangle
inequality).

• X is r -dense in Y if r is sufficiently large.

• If X is r -dense in Y and r is sufficiently small, then X = Y .
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Subdivisions

θ : Y → X induces a simplicial complex map Vs(Y )→ Vs+2r (X ),
or rather a functor

θ : NVs(Y )→ NVs+2r (X )

of posets of simplices (order complexes, barycentric subdivisions)

σ = {y0, . . . , yk} 7→ θ(σ) = {θ(y0), . . . , θ(yk)}

There is a diagram

NVs(X )
α //

i
��

NVs+2r (X )

i
��

NVs(Y ) α
//

θ
88

NVs+2r (Y )

(1)

in which the upper triangle commutes, and the lower triangle
commutes up to homotopy:

{y0, . . . , yk} ⊂ {y0, . . . , yk , θ(y0), . . . , θ(yk)} ⊃ {θ(y0), . . . , θ(yk)}
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Persistence functors

The construction (1) induces “interleavings” of persistence
modules

HkVs(X )
α //

i
��

HkVs+2r (X )

i
��

HkVs(Y ) α
//

θ
77

HkVs+2r (Y )

and of clusters

π0Vs(X )
α //

i
��

π0Vs+2r (X )

i
��

π0Vs(Y ) α
//

θ
77

π0Vs+2r (Y )

Both diagrams commute on the nose, and are natural in s.
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Homotopy type stability

Given X ⊂ Y ⊂ Rn, let 0 = s0 < s1 < · · · < sp be the phase
change numbers for Y .

Lemma 1.

Suppose that 2r < sk+1 − sk .

Then i : Vt(X )→ Vt(Y ) is a weak equivalence for sk ≤ t < sk+1

Proof.

Vt(X ) = Vsk (X ) (same for Y ), so it suffices to show that i is a
weak equivalence for t = sk .

NVsk (X )
= //

i ��

NVsk+2r (X )
i��

NVsk (Y ) =
//

θ 66

NVsk+2r (Y )

homotopy commutes, so Vsk (X ) is a def. retract of Vsk (Y ).
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Remarks

Lemma: Suppose that 2r < sk+1 − sk .

Then i : Vt(X )→ Vt(Y ) is a weak equivalence for sk ≤ t < sk+1

1) If 2r < s0, then X = Y , because of the diagram

X
= //

��

V2r (X )

��
Y =

//

;;

V2r (Y )

2) The placement of 2r ≥ s0 relative to the (ordered) differences
sk+1 − sk , k ≥ 0, determines a set { sk } for which

Vsk (X )→ Vsk (Y )

are weak equivalences. This includes sufficiently large sk .
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Clusters revisited

Data set X ⊂ Rn defines sets of clusters π0Vs(X ) and the
hierarchy graph (category, tree, dendogram) Γ(X ) := Γπ0V∗(X ).

Γ(X ) is the graph whose objects are pairs ([x ], s) with
[x ] = [x ]s ∈ π0Vs(X ), and has edges ([x ]s , s)→ ([x ]t , t) with
s ≤ t.

Γ(X ) has a subgraph (subcategory) Γ0(X ) having the same
objects, and with edges ([x ]s , s)→ ([x ]t , t) such that s ≤ t and
[x ]s = [x ]t as subsets of X .

This is the stable component graph (“layer graph”, “stable
cluster graph”) for X . Path components of Γ0(X ) are the stable
components (layers) of X .
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Branch points

([x ]t , t) is a branch point if the preimage of ([x ]t , s) under the
map π0Vs(X )→ π0Vt(X ) has more than one element for all s < t
(so t has to be a phase change number).

([x ]s , s)→ ([x ]t , t) is in Γ0(X ) if and only if ([x ]v , v) is not a
branch point of Γ(X ) for s < v ≤ t.

All layers L ⊂ Γ0(X ) have the form

L = {([x ]s , s) | u ≤ s < v}

([x ]u, u) and ([x ]v , v) are branch points.

Observations

1) A layer L is determined by the branch point ([x ]u, u) at which it
“starts”.

2) Can identify layers with branch points, including all ({x}, 0).
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Comparison of hierarchies

i : X ⊂ Y ⊂ Rn, X r -dense in Y :

1) Every ([y ], s) lifts to ([θ(y)], s + 2r).

2) π0Vs(X )→ π0Vs(Y ) is surjective for s ≥ 2r .

3) Given ([x ], s), ([y ], s), if ([i(x)], t) = ([i(y)], t]) for some t ≥ s,
then ([x ], t + 2r) = ([y ], t + 2r).

4) If ([i(x)]s , s) is a branch point of Γ(Y ) and if s > 2r (so that
π0Vs(X )→ π0Vs(Y ) is surjective), then ([x ]t , t) is a branch point
for some s ≤ t ≤ s + 2r .

Lemma 2.

If s > 2r , every branch point ([y ], s) of Γ(Y ) has a branch point
([x ], t) of Γ(X ) that is “nearby” in sense that s ≤ t < s + 2r .

Blackboard example
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Convergence

The hierarchy Γ(X ) determines an ultrametric on X : say that

dΓ(X )(x , y) = d(x , y) = min{r | [x ]r = [y ]r}.

d(x , z) ≤ max{d(x , y), d(y , z)}

Theorem: (Carlsson-Memoli) dGH(sl(X ), sl(Y )) ≤ dGH(X ,Y ) for
single linkage clustering sl on X , Y .

X ⊂ Y ⊂ Rn, X r -dense in Y :

X and Y are finite metric spaces.

Hausdorff distance: dH(X ,Y ) = max{d(x , y) | x ∈ X , y ∈ Y } for
imbeddings X ,Y ⊂ Z .

Our setting: X ⊂ Y , X r -dense in Y : dH(X ,Y ) < r .
dGH(X ,Y ) ≤ dH(X ,Y ) < r .

Observation: dΓ(X )(x , y) is a “convergence rate”. Convergence is
faster in Γ(X ) than in sl(X ).
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Convergence comparisons

X ⊂ Y ⊂ Rn, X r -dense in Y :

x , y ∈ X : dΓ(X )(x , y) is smallest s such that [x ]s = [y ]s .

dΓ(Y )(x , y) ≤ dΓ(X )(x , y), but

dΓ(X )(x , y) ≤ dΓ(Y )(x , y) + 2r .

Extend to all vertices of Γ(X ): d(([x ]s , s), ([y ]t , t)) is the minimal
r such that [x ]r = [y ]r .

1) d(([x ]s , s), ([y ]t , t)) = u if both vertices are in the same layer
L = {([x ]p, p) | u ≤ p < v}.
2) d(([x ]s , s), ([y ]t , t)) is invariant of layer representatives in both
variables. d is defined on π0Γ0(X ).

Induced function i∗ : π0Γ0(X )→ π0Γ0(Y ): i∗([x ], s) (branch point)
is the layer containing ([i(x)], s).

d(i∗([x ], s), i∗([y ], t)) ≤ d(([x ], s), ([y ], t)).
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