
Categories, symmetric groups and spheres

So what’s a category?

A category C is a set Ob(C) of objects (or states)

tother with a set Mor(C) of morphisms (aka. ar-

rows) which define ways α : x → y of getting from

one object to another. So far that’s just a graph

— one also requires a law of composition

x α //

β·α ��?
??

??
??

? y
β

��
z

which is associative and has two-sided identities.

Examples:

1) Look at the set {0, 1, . . . , n} of counting num-

bers between 0 and n and say that there is a mor-

phism i → j if and only if i ≤ j. I write n for the

corresponding category. We’ve really taken the or-

der relation in a partially ordered set and turned

it into a category here, and you can do the same

for any poset.

2) Suppose that G is a group. Take a one-point

set {∗} and identify the elements g ∈ G with mor-

phisms ∗ g−→ ∗. In this way, you get a one-object

category in which every morphism is invertible,
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and you can characterize all groups as such. More

generally, a groupoid is a category in which every

morphism is invertible.

A functor f : C → D between categories con-

sists of functions f : Ob(C) → Ob(D) and f :

Mor(C) → Mor(D) which respect all structure:

f associates to each morphism α : x → y of C

the morphism f (α) : f (x) → f (y) in such a way

that f preserves identities and respects composi-

tion laws.

Examples:

1) Every increasing function (aka. poset morphism)

θ : m → n is a functor: θ is a function i 7→ θ(i)

such that θ(i) ≤ θ(j) if i ≤ j.

There are various forms of functor categories: the

finite posets n, n ≥ 0 and the poset morphisms

(functors) define a category, which is called the

ordinal number category and is usually denoted

by ∆.

2) There is a (giant) category Set consisting of sets

(objects) and all functions between them (mor-

phisms). Suppose that I is some small category,

and let X : I → Set be a functor. Then X con-

sists of the assignment i 7→ X(i) of a set X(i) to
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each object i ∈ Ob(I) and X associates a function

α∗ = X(α) : X(i) → X(j)

to each morphism α : i → j of I in such a way that

identities and the composition laws are preserved.

Here’s a new category EIX that you can make

out of such a functor: the objects of EIX are the

pairs (i, x) with i ∈ Ob(I) and x ∈ X(i), and a

morphism

α : (i, x) → (j, y)

is a morphism α : i → j of I such that α∗(x) =

y ∈ X(j). EIX is called either the translation

category or the category of elements for the func-

tor X , depending on what you are reading. It’s one

of the standard sources for the theory of homotopy

colimits.

3) I use the notation Mon to denote the category

of all finite sets

n = {1, 2, . . . , n}

and all injective functions (monomorphisms) m →
n between them. This category includes the empty

set ∅ which is the smallest possible object in unique

way: there’s only one function ∅ → n.
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A pointed set X is a set with a choice of distin-

guished element x ∈ X , which is usually called

a base point, and a pointed function is a func-

tion f : X → Y between pointed sets which pre-

serves base points. These things form a category,

for which I write Set∗.

Every pointed set X determines a functor

PX : Mon → Sets∗

such that

n 7→ Xn = hom(n, X).

Every monomorphism θ : m → n determines a

pointed function

θ∗ : Xm → Xn

which takes a function f : m → X and extends it

to a function θ∗(f ) : n → X which takes n−im(θ)

to the base point of X .

Notice, for example, that PX(∅) = X∅ is a one-

point set, which I shall denote by ∗, PX(1) = X

and the function ∅ → 1 is sent to the unique

pointed function ∗ → X .

This construction X 7→ PX is actually the central

object of study of this talk, after some interpre-
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tation: EMonPX can be turned into a pretty nice

space.

You have to know that every category C can be

used to construct a space, in two steps:

1) Look at the set BCn of functors n → C. Insofar

as the category n consists of all relations

0 ≤ 1 ≤ 2 ≤ · · · ≤ n

a functor σ : n → C can be identified with a string

of morphisms

a0 → a1 → a2 → · · · → an

of length n in C. If θ : m → n is a functor (aka.

ordinal number morphism and σ : n → C is a

string of arrows of length n, then the composite

functor

m θ−→ n σ−→ C

is a string of arrows of length m. In this way, pre-

composition with θ defines a function θ∗ : BCn →
BCm, and this assignment is functorial in θ. The

assignments n 7→ BCn and θ 7→ θ∗ define a “con-

travariant’ functor

BC : ∆op → Set

which is otherwise known as a simplicial set, called

the nerve of C.
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Simplicial sets X are contravariant functors X :

∆op → Set and morphisms of simplicial sets are

the natural transformations between them. The

nerve construction defines a functor

B : cat → sSet

from the category of small categories to the cate-

gory of simplicial sets.

2) The simplicial set Bn is otherwise known as

the standard n-simplex ∆n, and the n-simplices

Xn = X(n) of a simplicial set X can be identified

with simplicial set maps ∆n → X because ∆n is

defined by a representable functor.

There is a simplex category ∆/X for a simplicial

set X which consists of all simplices ∆n → X and

their incidence relations

∆m

''NNNNNN

��
X

∆n

77pppppp

There is finally, a nice collection of spaces |∆n|,
n ≥ 0, (that you have seen) with

|∆n| = {(t0, . . . , tn) ∈ Rn+1 | ti ≥ 0,
∑

ti = 1 }.
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With a little thought, you can find functorial in-

duced continuous maps θ∗ : |∆m| → |∆n| for the

ordinal number morphisms θ : m → n. These

maps and the simplex category for a simplicial set

X can then be used to define a space |X|, called

the realization of X , with

|X| = lim−→
∆n→X

|∆n|.

In other words, you take a copy of |∆n| for each

simplex ∆n → X and then glue these spaces to-

gether along the incidence relations of the simplices

of X to form |X|.
We therefore have functors

cat B−→ sSet
| |−→ Top

and the space |BC| is the space that I said that

you can build from a small category C.

The space |BC| has a homotopy type that can

be analyzed with some profit, but it turns out that

you don’t have to go that far. There is an internally

defined homotopy structure on the simplicial set

category which is equivalent to ordinary homotopy

theory in a very strong sense.

The equivalences of the simplicial set homotopy

theory are those simplicial set maps X → Y such
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that the induced map |X| → |Y | is a homotopy

equivalence of CW -complexes, or equivalently in-

duces isomorphisms in all possible homotopy groups.

There is a theory of cofibrations for simplicial sets,

and these are just the simplicial set monomor-

phisms, and finally, the realization functor has a

right adjoint

S : Top → sSet

called the singular functor (this is the gadget un-

derlying singular homology and cohomology the-

ory) such that the adjoint pair

| | : sSet � Top : S

forms what’s called a Quillen equivalence between

the standard homotopy theory for topological spaces

which is defined by the usual variational principle

and the homotopy structure which I have described

very quickly for simplicial sets.

The existence of an internal (discrete, combina-

torial) homotopy theory for simplicial sets (Kan,

Quillen), and the equivalence with the classical

variational homotopy theory for spaces (Quillen,

and others) is one of the great results of twentieth

century Mathematics.
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Set

Γ+(X) = B(EMonPX).

I remind you that the objects of the category EMonPX

are the pairs (n, f) with f : n → X a function,

equivalently an element of Xn. A morphism

θ : (m, f) → (n, g)

consists of an injection θ : m → n such that

θ∗(f ) = g. In other words when you extend f

to n by adding base points you get g.

Write 1+ for the 2-element set {0, 1}, pointed by

0. In other words, 1+ has two colours, on 1 and

off 0.

Lemma: There is an equivalence

Γ+(1+) ' ⊔
n≥0

BΣn.

Here Σn is the symmetric group on n-letters and

BΣn = K(Σn, 1) is its nerve or classifying space.

Proof: The proof of the Lemma consists of an

analysis of the category EMonP1+.

There are special elements (n, 1) in the translation

category, where 1 : n → 1+ is the function which

takes all elements of n to 1. A symmetric group

element σ : n → n induces a morphism

σ∗ : (n, 1) → (n, 1)
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functorially in σ. There are therefore functors

Σn → EMonP1+ with ∗ 7→ (n, 1), and collecting

them together defines a functor
⊔

n≥0
Σn → EMonP1+.

The idea is to show that this functor is an equiva-

lence of categories.

For every object (n, f), the set of elements i ∈
n such that f (i) = 1 defines a monomorphism

α(n,f) : k → n and a corresponding morphism

α(n,f) : (k, 1) → (n, f). Pick one of these for each

object (n, f) (such that α(n,1) = 1), and observe

that each morphism γ : (n, f) → (m, g) deter-

mines a unique symmetric group element σγ ∈ Σk

such that the diagram

(k, 1)
α(n,f)

//

σγ
��

(m, f)
γ

��

(k, 1)α(m,g)
// (m, g)

commutes.

Then the assignment γ 7→ σγ defines a functor

EMonP1+ →
⊔

n≥0
Σn
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such that the composite
⊔

n≥0
Σn → EMonP1+ →

⊔
n≥0

Σn

is the identity, and such that composing in the

other direction gives a functor

EMonP1+ → EMonP1+

which has a natural transformation

EMonP1+ × 1 → EMonP1+

to the identity.

The nerve functor preserves products, so this last

natural transformation induces a simplicial homo-

topy

Γ+(1+)×∆1 → Γ+(1+),

which gives the desired homotopy equivalence.

What does it mean?

The assignment

n+ 7→ Γ∗(n+) = Γ+(n+)/BMon ' Γ+(n+)

defines a Γ-space (models a connective spectrum).

This object is a special Γ-space on account of a

multi-coloured version of the Lemma:
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Lemma: The pinch maps n+ → 1+ define an

equivalence

Γ+(n+) →
n∏

i=1
Γ+(1+).

There is a natural transformation n+ → Γ∗(n+)

which defines a map 1 → Γ∗(1) from the “identity”

Γ-space to Γ∗(1).

Lemma: The map 1 → Γ∗(1) of Γ-spaces induces

a stable equivalence

S → Γ∗(S).

Here, S is the sphere spectrum

S = S0, S1, S1 ∧ S1, . . .

with S1 = ∆1/{0, 1}, and one gets a spectrum

from a Γ-space by evaluating at the sphere spec-

trum.

Proving this last Lemma is where most of the work

is.

From what we have so far, there are equivalences

QS0 ' Ω(Γ∗(S1)) = Ω(B⊕(
⊔

n≥0
BΣn))

where QS0 = lim−→n
ΩnSn has homotopy groups

given by the stable homotopy groups of spheres.

Then the group-completion theorem implies
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Theorem: (Barratt-Priddy) The space

Ω(B(
⊔

n≥0
BΣn)

has the integral homology of the space
⊔
Z

BΣ∞.

The Barratt-Priddy Theorem (1972) has been based,

all these years, on a rather different description of

the functor X 7→ Γ+X , which was originally given

by Barratt (1970). Barratt’s description of Γ+X

was given by collapsing the space
⊔

n≥0
X×n × EΣn

by a rather strange co-end-type relation that de-

pended on an explicit Σn-equivariant map

T : EΣn+1 → EΣn.

When you look at it through a modern lens, you

get the feeling that Γ+(X) wants to be a homotopy

colimit, and that’s exactly the sort of construction

that I have displayed here. I think that it’s much

easier to understand.
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