
J.F. Jardine: Cocycles and pro-objects

Cocycles

Suppose that X and Y are simplicial presheaves.

A cocycle from X to Y is a picture

X
g←−
'
U

f−→ Y,

where g is a local (ie. stalkwise) weak equivalence.

A morphism of cocycles is a commutative diagram

Ug
'yy

θ
��

f
%%

X Y

U ′g′
'ee

f ′
99

(1)

The corresponding cocycle category is denoted by

h(X, Y ).

This discussion is all with respect to a model struc-

ture for the category of simplicial presheaves, for

which the weak equivalences are the local weak

equivalences and the cofibrations are monomor-

phisms, just like in simplicial sets. The fibrations

for the theory are defined by a lifting property —

they are called injective fibrations, and this is

the injective model structure for simplicial

presheaves.
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I write [X, Y ] to denote morphisms from X to Y

in the associated homotopy category (one formally

inverts the local weak equivalences).

Every cocycle X
g←−
'
U

f−→ Y defines a morphism

fg−1 in [X, Y ], and if there is a morphism θ :

(g, f )→ (g′f, ) in h(X, Y ), then fg−1 = f ′(g′)−1

in [X, Y ]. We therefore have a well defined func-

tion

φ : π0h(X, Y )→ [X, Y ].

Theorem 1. The function φ is a bijection.

To prove this result, one shows that any local weak

equivalences X → X ′ and Y → Y ′ induces weak

equivalences

Bh(X ′, Y )
'←− Bh(X, Y )

'−→ Bh(X, Y ′),

and that the function

φ : π0h(X,Z)→ [X,Z]

is bijective if Z is injective fibrant. In this last

case [X,Z] is simplicial homotopy classes of maps

π(X,Z) and one constructs an inverse for φ.

Remark 2. Theorem 1 is a souped up version of

the Verdier hypercovering theorem (we’ll describe

this later). Cocycle categories are now part of the
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basic foundational structure of local homotopy the-

ory [7].

There’s another way to think about h(X, Y ):

Write we/X for the category of local weak equiv-

alences U
'−→ X . The morphisms of we/X are the

diagrams

U '
%%

��
X

U ′
'
99

Notice that we/X has a terminal object, namely

1X : X → X , and is therefore contractible in

the sense that B(we/X) (and B(we/X)op) is a

contractible simplicial set.

There is a (contravariant) functor

hom( , Y ) : (we/X)op → Set

which takes a weak equivalence U
'−→ X to the set

hom(U, Y ).

Set-valued functors have translation categories. The

translation category for the functor hom( , Y ) has

objects consisting of pairs

(X
g←−
'
U,U

f−→ Y ),
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and then a morphism

θ : (g, f )→ (g′, f ′)

is a morphism θ : U → U ′ which makes the dia-

gram (1) commute.

We’re just starting to play: there is a simplicial

set-valued functor

hom( , Y ) : (we/X)op → sSet

which takes a local weak equivalence U
'−→ X to

the function complex hom(U, Y ).

This function complex hom(U, Y ) is diagram-theoretic

animal. Its n-simplices are simplicial presheaf maps

U × ∆n → Y , or equivalently simplicial presheaf

maps U → Y ∆n
.

The game, in all that follows, is to think about the

corresponding homotopy colimit spaces

holim−−−→ U
'−→X

hom(U, Y )→ B(we/X)op ' ∗

We’re now going to use locally fibrant simplicial

presheaves repeatedly. A locally fibrant simpli-

cial presheaf Y is a simplicial presheaf which con-

sists of Kan complexes Yx in stalks. All presheaves
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of Kan complexes are locally fibrant, and every in-

jective fibrant simplicial presheaf is a presheaf of

Kan complexes ... but neither of these statements

has a converse.

Lemma 3. Suppose that α : Y → Z is a local

weak equivalence of locally fibrant objects. Then

the induced map

holim−−−→ U
'−→X

hom(U, Y )→ holim−−−→ U
'−→X

hom(U,Z)

is a weak equivalence of simplicial sets.

Proof. The simplicial set

holim−−−→ U
'−→X

hom(U, Y )n

is the nerve of the translation category for the func-

tor which takes U → X to the set hom(U, Y ∆n
),

aka. the nerve of the cocycle category h(X, Y ∆n
).

Since Y and Z are locally fibrant, all maps Y ∆n →
Z∆n

are local weak equivalences (of locally fibrant

objects).

Lemma 4. Suppose that Y is locally fibrant.

Then the map

Bh(X, Y )→ holim−−−→ U
'−→X

hom(U, Y )

is a weak equivalence.
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Proof. All spaces Y ∆n
are locally weakly equiva-

lent to Y , since Y is locally fibrant.

Lemma 5. Suppose that Z is injective fibrant.

Then the map

hom(X,Z)→ holim−−−→ U
'−→X

hom(U,Z)

is a weak equivalence.

Proof. The functor U 7→ hom(U,Z) for U
'−→ X

is a diagram of equivalences since Z is injective

fibrant, so hom(X,Z) is the homotopy fibre over

1X for the map

holim−−−→ U
'−→X

hom(U,Z)→ B(we/X)op ' ∗.

We’ve used Quillen’s Theorem B.

Corollary 6. Suppose that j : Y → Z is an

injective fibrant model for Y (ie. a local weak

equivalence with Z injective fibrant). Then there

are weak equivalences

Bh(X, Y ) ' //Bh(X,Z) ' // holim−−−→ U
'−→X

hom(U,Z)

hom(X,Z)

'
OO

so that Bh(X, Y ) is a model for the derived

function complex (Hammock localization).
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A hypercover of a simplical presheaf X is a local

trivial fibration p : U → X , meaning that the

induced maps Ux → Yx in stalks are trivial Kan

fibrations, ie. maps which are Kan fibrations and

weak equivalences.

This is a direct generalization of the old defini-

tion of Artin and Mazur (which was about maps

of simplicial schemes, with the étale topology) to

the simplicial presheaf context.

Every hypercover is a local weak equivalence. Ev-

ery trivial injective fibration is a hypercover (but

not conversely). Here’s a theorem: every map

which is both a local fibration and a local weak

equivalence is a hypercover [7].

Let’s suppose again that Y is locally fibrant. There

is a subcategory hhyp(X, Y ) ⊂ h(X, Y ) whose ob-

jects are the cocycles

X
p←−
'
U

f−→ Y

such that p is a hypercover.

Lemma 7. Suppose that Y is locally fibrant.

Then the induced map

Bhhyp(X, Y )→ Bh(X, Y )

is a homotopy equivalence.
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Proof. A cocycle is a map (g, f ) : U → X × Y

such that g is a local weak equivalence. Construct

a (natural) factorization

U
j //

(g,f) $$

V
(p1,p2)
��

X × Y
such that j is a local weak equivalence and (p1, p2)

is an injective fibration. Then the composite p1 =

prL · (p1, p1) is a local fibration since Y is locally

fibrant, and is a local weak equivalence.

Here’s another category: the objects are pairs of

naive simplicial homotopy classes of maps

X
[p]←− U

[f ]−→ Y

such that p is a hypercover. The morphisms are

commutative diagrams of simplicial homotopy classes

U[p]
yy

[θ]
��

[f ]
%%

X Y

U ′[p′]

ee

[f ′]

99

where p and p′ are hypercovers. Write hπ(X, Y )

for this category. There is an obvious function

φ′ : π0hπ(X, Y )→ [X, Y ]
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which takes the path component of ([p], [f ]) to f ·
p−1. There are functions

π0h(X, Y )
∼=−→ π0hhyp(X, Y )

ψ−→ π0hπ(X, Y )
φ′−→ [X, Y ],

where the composite is the bijection φ : π0h(X, Y ) ∼=
[X, Y ]. The simplicial homotopy class function ψ

is surjective as well as injective, so all displayed

functions are bijections. One concludes that φ′ is

a bijection.

The assertion that φ′ is a bijection is the “classical”

Verdier hypercovering theorem:

Theorem 8. Suppose that Y is locally fibrant.

Then the function

φ′ : lim−→
[p]:U→X

π(U, Y )→ [X, Y ]

is a bijection.

Etale homotopy types and pro objects

The old proof of the Verdier hypercovering theo-

rem (which assumes also that X is locally fibrant)

is a calculus of fractions argument.

That proof involves the assertion that the index

category Triv/X of simplicial homotopy classes

of hypercovers Y → X is filtered if X is locally
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fibrant (which must be proved). There is no such

assumption in the present proof — the traditional

baggage of hypercovers and filtered categories just

gets in the way.

This is indicative of the way that everything used

to be done. The étale homotopy type of a

scheme S is constructed, by Friedlander [3], by

taking a rigidified family of hypercovers U → S

for the étale topology, which family forms a pro-

object H/S in simplicial schemes over S that is

cofinal in all hypercovers. Then one uses the con-

nected component functor (for schemes) to form

a pro-object (a left filtered diagram) U 7→ π0U

in simplicial sets. This pro-object π0(H/S) is the

étale homotopy type of S.

One uses the étale homotopy type π0(H/S) for the

scheme S, within a model structure for pro-objects

in simplicial sets, to construct étale cohomology

invariants.

Suppose that A is an abelian group. There are
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isomorphisms

[π0(H/S), K(A, n)] ∼= lim−→
U→S

π(π0U,K(A, n))

∼= lim−→
U→S

π(U,K(Γ∗A, n))

∼= Hn
et(S,Γ

∗A),

since the connected components functor π0 is left

adjoint to the constant sheaf functor. This means

that the morphisms in the pro-homotopy category

for simplicial sets pick up étale cohomology with

constant coefficients (but that’s all of the sheaf co-

homology that they find).

Recall that a pro-object is a functor X : I → C
which is defined on a small left filtered index cat-

egory I , If Y : J → C is a second pro-object then

a pro-map X → Y is a natural transformation of

pro-representable functors

lim−→
j

hom(Yj, )→ lim−→
i

hom(Xi, ).

The model structure for pro-objects in simplicial

sets has been well studied by Isaksen and others

[1], [4], [2].

A few years ago, I developed a series of model

structures for pro-objects in simplicial presheaves
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[5]. There are two main flavours of weak equiva-

lences:

1) the analog of the Edwards-Hastings definition,

for which a pro-mapX → Y is a weak equiv-

alence if it induces weak equivalences

holim−−−→ Jhom(Y, Z)→ holim−−−→ Ihom(X,Z)

for all injective fibrant simplicial presheaves Z,

2) a pro-map X → Y is a pro-equivalence if

map P∗X → P∗Y of Postnikov towers is an

Edwards-Hastings equivalence.

The first definition is basic, and the second local-

izes at the Postnikov tower construction.

These model structures allow one to manipulate

“étale homotopy types” directly within the simpli-

cial presheaf category for the étale site on a scheme,

or for other Grothendieck topologies. In fact, all

sheaf cohomology can be represented within the

corresponding homotopy theories of pro-objects in

simplicial presheaves.
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Generalized pro objects

Étale homotopy types use diagrams of weak equiv-

alences which are constructed from hypercovers.

These diagrams are also pro objects, and we have

seen that there are perfectly good model structures

for pro objects of simplicial presheaves, from which

one can extract traditional étale homotopy theory.

Cocycle theory uses more general small diagrams

of weak equivalences which are not pro objects in

any sense, and yet gives an efficient description of

the homotopy category of simplicial presheaves.

How far can you push it? Is there a homotopy

for small diagrams of simplicial presheaves which

engulfs the homotopy theory of pro-objects of sim-

plicial presheaves?

Suppose that

X : I → sPre and Y : J → sPre

are small diagrams of simplicial presheaves. It

is tempting, given the fact that we want to do

something homotopically correct, and (following

the Grothendieck definition of pro-map discussed

above) to say that a pro-map X → Y is a nat-
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ural tranformation

f : holim−−−→ jhom(Yj, )→ holim−−−→ ihom(Xi, )

of functors defined on simplicial presheaves by func-

tion complexes.

Homotopy colimits are much more rigid that colim-

its, and the naturality implies that any such trans-

formation f determines a functor α : J → I and

a natural transformation θ : Xα → Y so that f

is the composite

holim−−−→ jhom(Yj, )
θ∗−→ holim−−−→ jhom(Xα(j), )

α∗−→ holim−−−→ ihom(Xi, ),

which is defined over the composite

BJop
1−→ BJop

α−→ BIop.

“Explanation”: the homotopy colimit holim−−−→ ihom(Xi, Y )

is the opposite of the nerve of a simplicial category

X/Y whose objects are the morphismsXi×∆n →
Y and whose morphisms are the diagrams

Xi ×∆n

))
α×1

��
Y

Xj ×∆n

66

where α : i → j is a morphism of the index cate-

gory I .
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The pair (α, θ) is a morphism in the Grothendieck

construction for a functor cat → sCat which

takes a small category I to the category sPreI

of I-diagrams and their natural transformations.

Examples:

1) Every natural transformation f : X → Y of

I-diagrams defines a pro-map (1, f ).

2) Suppose that Y is a simplicial presheaf, identi-

fied with a diagram Y : ∗ → sPre, and that X

is an I-diagram. A pro-map (i, f ) : X → Y is a

simplicial presheaf map Xi → Y .

3) For the same objects as in 2), a pro-map Y → X

is a map θ : Y → X of I-diagrams, where Y has

been identified with a constant I-diagram.

4) Suppose that Y : J → sPre is a J -diagram and

α : I → J is a functor. Every object Yα(j) → Z

of Y α/Z defines an object of Y/Z and hence a

functor Y α/Z → Y/Z, naturally in Z and in J -

diagrams Y . We therefore have a pro-map (α, 1) :

Y α→ Y .

We now say that the map (α, θ) : X → Y is a

pro-equivalence if the horizontal maps in the
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diagram

holim−−−→ jhom(Yj, Z)
α∗·θ∗//

��

holim−−−→ ihom(Xi, Z)

��

BJop α
//BIop

are weak equivalences of simplicial sets for all in-

jective fibrant objects Z.

Examples:

1) Every sectionwise weak equivalence f : X → Y

of I-diagrams determines a pro-equivalence (1, f ) :

X → Y . In effect, the local weak equivalences

f : Xi → Yi induce weak equivalences

hom(Yi, Z)
'−→ hom(Xi, Z)

for all injective fibrant simplicial presheaves Z.

2) Say that a functor α : I → J is cofinal if all

slices j/α are contractible (ie. B(j/α) ' ∗).
If I and J are right filtered, α is cofinal in the

traditional sense if all slices j/α are right filtered.

Say that α is final if all slices α/j are contractible.

α is final if and only if αop : Iop → Jop is cofinal.

In either case, BI → BJ is a weak equivalence by

Quillen’s Theorem A.
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If α : J → I is final and X : I → sPre is an

I-diagram, then the pro-map (α, 1) : Xα → X

is a pro-equivalence, because all induced functors

Xα/Z → X/Z are also final.

Question: Is there a homotopy theory for small

diagrams of simplicial presheaves whose weak equiv-

alences are the pro-equivalences?

This is work in progress.
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