
Cocycle categories J.F. Jardine

Cocycles

I will be using the injective model structure on

the category sPre(C) of simplicial presheaves on

a small Grothendieck site C. You can think in

terms of simplicial sheaves if you like — both ap-

proaches have technical advantages in particular

circumstances.

I remind you that a cofibration for this theory is a

monomorphism, and a weak equivalence is a map

f : X → Y which induces weak equivalences

Xx → Yx in all stalks (if there are stalks). Equiv-

alently, f is a weak equivalence if and only if it

induces isomorphisms

π̃0X
∼=−→ π̃0Y

in path component sheaves, and the diagrams

πnX //

��

πnY

��

X0
// Y0

induce pullback diagrams of associated sheaves for

all n ≥ 1. These are the local weak equivalences.

The injective fibrations are those maps which have

the right lifting property with respect to all trivial

cofibrations.
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The function complex hom(X, Y ) is the simplicial

set with n-simplices consisting of all maps X ×
∆n → Y .

Theorem 1. With these definitions, the cate-

gory sPre(C) has the structure of a proper closed

simplicial model category. This model structure

is cofibrantly generated, and weak equivalences

are closed under finite products.

Suppose that X, Y are simplicial presheaves.

h(X, Y ) = category whose objects are all pairs of

maps (f, g)

X
f←− Z

g−→ Y

where f is a weak equivalence. A morphism α :

(f, g)→ (f ′, g′) of h(X, Y ) is a commutative dia-

gram

Zf
wwoooooo g

''OOOOOO

α
��

X Y

Z ′f ′
ggOOOOOO

g′
77pppppp

h(X, Y ) is the category of cocycles from X to

Y .

Example 2. Suppose that k is a field and L/k

is a finite Galois extension with Galois group G.

Suppose thatH is an algebraic group over k. Then
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Sp(L)→ Sp(k) is an étale covering map and rep-

resents a sheaf epi Sp(L)→ ∗ on the étale site et|k.
There is an isomorphism of simplicial sheaves

C(L) ∼= EG×G Sp(L)

where C(L) is the Čech resolution for the covering

Sp(L) → ∗. Then the picture of simplicial sheaf

maps

∗ ∼=←− EG×G Sp(L)→ BH

is a cocycle on the Galois group G in the algebraic

group H in the traditional sense.

Example 3. Suppose that H is a sheaf of groups

an F is a sheaf with an action H×F → F . Then

F is an H-torsor if and only if the canonical map

EH ×H F → ∗ is a local weak equivalence. The

picture

∗ '←− EH ×H F → BH

is the canonical cocycle associated to the torsor

F .

Of course H is an H-torsor since

EH ×H H ∼= EH ' ∗,

and the standard map

∗ '←− EH → BH
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is the canonical cocycle associated to the trivial

H-torsor H .

π0h(X, Y ) = class of path components of h(X, Y ).

There is a function

φ : π0h(X, Y )→ [X, Y ] (f, g) 7→ g · f−1

Theorem 4. The canonical map

φ : π0h(X, Y )→ [X, Y ]

is a bijection for all simplicial presheaves X and

Y .

Cocycles can be defined for all model categories

M and the theorem holds if 1)M is right proper,

2) weak equivs. are closed under finite products in

M.

Examples: spaces, simplicial sets, presheaves of

simplicial sets, spectra, presheaves of spectra, any

good localizations including motivic homotopy the-

ories.

Remark 5. The cocycle category h(X, Y ) has

appeared before, in the context of the Dwyer-Kan

theory of “hammock localizations”, but all identifi-

cations in that theory involve the assumption that

Y is fibrant. The interesting applications of the

Theorem involve objects Y which are not fibrant.
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Lest you think that I’ve done away with the homo-

topy theory in this statement, suppose that f '
g : X → Y . Then there is a picture

X
f

$$HHHHHHHHHH
1

zzvvvvvvvvvv

d0
��

X X × Iproo h // Y

X
1

ddHHHHHHHHHH g

::vvvvvvvvvv
d1

OO

where h is the homotopy. Then

(1X , f ) ∼ (pr, h) ∼ (1X , g)

Thus f 7→ [(1X , f )] defines a function

ψ : π(X, Y )→ π0h(X, Y )

If Y is fibrant, then the function ψ is inverse to

φ. More generally, there are a couple of things to

prove.

The following result reduces the proof Theorem 4

to the case where Y is fibrant:

Lemma 6. Suppose that X → X ′, Y → Y ′ are

weak equivalences. Then the functor h(X, Y )→
h(X ′, Y ′) induces a weak equivalence

Bh(X, Y ) ∼= Bh(X ′, Y ′).
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Proof. (f, g) ∈ h(X ′, Y ′) is a map (f, g) : Z →
X ′ × Y ′ s.t. f is a weak equivalence.

There is a functorial factorization

Z
j //

(f,g) $$JJJJJJJJJJ W
(pX′ ,pY ′)��

X ′ × Y ′

s.t. j is a triv. cofibration and (pX ′, pY ′) is a fibra-

tion. pX ′ is a weak equivalence.

Form the pullback

W∗
(α×β)∗ //

(p∗X ,p
∗
Y )

��

W
(pX′ ,pY ′)��

X × Y
α×β

//X ′ × Y ′

(p∗X , p
∗
Y ) is a fibration and (α×β)∗ is a weak equiv-

alence (since α × β is a weak equivalence, and by

right properness). p∗X is also a weak equivalence.

We have found a functor

h(X ′, Y ′)→ h(X, Y )

which is inverse to the original functor h(X, Y )→
h(X ′, Y ′) up to homotopy.

Lemma 7. Suppose that Y is fibrant. Then the

canonical map

φ : π0h(X, Y )→ [X, Y ]
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is a bijection.

Proof. π(X, Y ) = naive homotopy classes.

π(X, Y )→ [X, Y ] is a bijection since Y is fibrant.

We have seen that the assignment f 7→ [(1X , f )]

defines a function

ψ : π(X, Y )→ π0h(X, Y )

and there is a diagram

π(X, Y )
ψ //

∼= ''OOOOOOOOOOO
π0h(X, Y )

φ
��

[X, Y ]

It suffices to show that ψ is surjective, or that any

object X
f←− Z

g−→ Y is in the path component of

some a pair X 1←− X k−→ Y for some map k.

Form the diagram

Zf
wwoooooo g

''NNNNNN

j
��

X Y

V
p

ggOOOOOO
θ

77

where j is a trivial cofibration and p is a fibration;

θ exists because Y is fibrant.
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X is cofibrant, so the trivial fibration p has a sec-

tion σ, and so there is a commutative diagram

X1
wwoooooo θσ

''OOOOOO

σ
��

X Y

V
p

ggOOOOOO
θ

77

The composite θσ is the required map k.

Homotopy classification of torsors:

The canonical cocycle functor

EH×H? : H − tors→ h(∗, BH)

has a left adjoint, and so it induces a weak equiv-

alence

B(H − tors)
∼=−→ Bh(∗, BH).

This implies the following:

Theorem 8. There are bijections

[∗, BH ] ∼= π0h(∗, BH) ∼= π0(H−tors) =: H1(C, H).

Remark 9. There is a smallness issue here. In

principle, the cocycle category h(X, Y ) might not

be small, but it’s possible to assume that all cocy-

cles

X '←− U → Y

involve objects U of bounded size (depending on

the size of X , Y and C). We’ll just assume this.
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Relation with the function complex

Write we/X for the category whose objects are all

weak equivalences U → X , and whose morphisms

are the commutative diagrams

U '
&&MMMMMM

��
X

U ′
'

88qqqqqq

Suppose that Y is fibrant and consider the functor

hom( , Y ) : (we/X)op → sSet

which is defined by

U '−→ X 7→ hom(U, Y ).

There is a canonical map

holim−−−→ U
'−→X

hom(U, Y )→ B(we/X)op.

Then we/X has a terminal object, namely 1X
so B(we/X)op is contractible, while the diagram

hom( , Y ) is a diagram of equivalences since Y is

fibrant. It follows (Quillen’s Theorem B) that the

canonical map

hom(X, Y )→ holim−−−→ U
'−→X

hom(U, Y )

is a weak equivalence. At the same time, the hor-

izontal simplicial set

holim−−−→ U
'−→X

hom(U, Y )n
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is the nerve of the cocycle category h(X, Y ∆n
) and

is therefore weakly equivalent to h(X, Y ), for all

n. This means that the canonical map

Bh(X, Y )→ holim−−−→ U
'−→X

hom(U, Y )

is a weak equivalence. We have proved the follow-

ing:

Theorem 10. Suppose that Y is fibrant and

that X is cofibrant. Then the canonical maps

Bh(X, Y )→ holim−−−→ U
'−→X

hom(U, Y )← hom(X, Y )

are weak equivalences.

Theorem 11. Suppose that Y is locally fibrant

and that j : Y → Z is an injective fibrant model

in simplicial presheaves. Then the maps

Bh(X, Y ) // holim−−−→ U
'−→X

hom(U, Y )

��

holim−−−→ U
'−→X

hom(U,Z) hom(X,Z)oo

are weak equivalences.

A local fibration is a map X → Y such that

Xx → Yx is a Kan fibration in all stalks. Alterna-

tively, the presheaf maps

hom(∆n, X)→ hom(Λn
k, X)×hom(Λn

k ,Y )hom(∆n, Y )
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are local epimorphisms.

Every presheaf of Kan complexes X (eg. BG for

presheaves of groups G) is locally fibrant but not

necessarily injective fibrant. Every injective fibrant

simplicial presheaf is locally fibrant.

The Verdier hypercovering theorem

Write hπ(X, Y ) for the full subcategory of h(X, Y )

whose objects are the cocycles

X
p←− U

f−→ Y

with p a hypercover (aka. local fibration plus local

weak equivalence). Here’s the modern version of

the Verdier hypercovering theorem:

Theorem 12. Suppose that Y is locally fibrant.

Then the inclusion hπ(X, Y ) ⊂ h(X, Y ) induces

a weak equivalence

Bhπ(X, Y ) '−→ Bh(X, Y ).

Proof. Suppose that (g, f ) : U → X × Y is a

cocycle (g is a weak equivalence), and find a (func-

torial) factorization

U
j //

(g,f) $$IIIIIIIIII Z
(p,q)

��

X × Y
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with j a trivial cofibration and (p, q) an injective

fibration. Then p, or the composite

Z
(p,q)−−→ X × Y pr−→ X

is a weak equivalence, and is a local fibration since

Y is locally fibrant. The assignment (g, f ) 7→
(p, q) defines a functor h(X, Y )→ hπ(X, Y ) which

is inverse to the inclusion hπ(X, Y ) ⊂ h(X, Y ) up

to homotopy specified by the cofibrations j.

Write π/X for the category whose objects are the

hypercovers p : U → X , and whose morphisms

are the commutative diagrams

U p
%%LLL

LLL
L

��
X

U ′ p′
99ssssss

Write π(U, Y ) for simplicial homotopy classes of

maps U → Y , and let [f ] be the simplicial homo-

topy class of a map f .

Corollary 13 (Verdier hypercovering theorem).

Suppose that Y is locally fibrant. Then the canon-

ical map

lim−→
[p]:U→X

π(U, Y )→ [X, Y ]

is a bijection.
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Proof. The displayed colimit is the set of path com-

ponents of the category hV (X, Y ) whose morphisms

have the form

U[p]
xxqqqqqq

[θ]
��

[f ]
&&MMMMMM

X Y

U ′[p′]

ffMMMMMM
[f ′]

88rrrrrr

There is an obvious functor hπ(X, Y )→ hV (V, Y )

which is surjective on objects. The composite of

the functions

π0hf(X, Y )→ π0hV (X, Y )→ [X, Y ]

is the canonical bijection.

There are variants of hV (X, Y ), and here’s one of

them:

h′V (X, Y ) : Up
xxqqqqqq

[θ]
��

[f ]
&&MMMMMM

X Y

U ′p′
ffMMMMMM

[f ′]

88rrrrrr

where [θ] denotes a fibre homotopy class of maps.

Corollary 14. The canonical function

π0h
′
V (X, Y )→ [X, Y ]

is a bijection if Y is locally fibrant.
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Remark 15. It has, up to now, been a big deal

that there is no sort of fibrancy assumption on X

in these results.

Here’s the function complex version of the Verdier

hypercovering theorem (Theorem 12):

Corollary 16. Suppose that Y is locally fibrant

and that j : Y → Z is an injective fibrant model

of Y . Then there are weak equivalences

holim−−−→ U
p−→X

hom(U, Y ) ' // holim−−−→ U
p−→X

hom(U,Z)

hom(X,Z)

'
OO

where the homotopy colimits are indexed by the

hypercovers p : U → X.

Proof. All functors

hπ(X, Y ∆n
)→ hπ(X,Z∆n

)

are weak equivalences by the hypercovering theo-

rem, and the category π/X has a terminal object

1X
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