Cocycle categories J.F. Jardine
Cocycles

[ will be using the injective model structure on
the category s Pre(C) of simplicial presheaves on
a small Grothendieck site C. You can think in
terms of simplicial sheaves if you like — both ap-
proaches have technical advantages in particular
circumstances.

I remind you that a cofibration for this theory is a
monomorphism, and a weak equivalence is a map
f X — Y which induces weak equivalences
X, — Y, in all stalks (if there are stalks). Equiv-
alently, f is a weak equivalence if and only if it
induces isomorphisms

7o X = 7Y
in path component sheaves, and the diagrams

T X — 1Y

Xo—Y0
induce pullback diagrams of associated sheaves for
all n > 1. These are the local weak equivalences.
The injective fibrations are those maps which have
the right lifting property with respect to all trivial
cofibrations.



The function complex hom( X, Y') is the simplicial

set with n-simplices consisting of all maps X X
A" =Y.

Theorem 1. With these definitions, the cate-
gory s Pre(C) has the structure of a proper closed
simplicial model category. This model structure
15 cofibrantly generated, and weak equivalences
are closed under finite products.

Suppose that X, Y are simplicial presheaves.

h(X,Y") = category whose objects are all pairs of
maps (f, g)

xLzsy
where f is a weak equivalence. A morphism « :

(f,9) — (f',¢") of h(X,Y) is a commutative dia-
gram

h(X,Y) is the category of cocycles from X to
Y.

Example 2. Suppose that k is a field and L/k
is a finite Galois extension with Galois group G.
Suppose that H is an algebraic group over k. Then

2



Sp(L) — Sp(k) is an étale covering map and rep-
resents a sheaf epi Sp(L) — * on the étale site et|.
There is an isomorphism of simplicial sheaves

O(L) = EG x¢ Sp(L)

where C(L) is the Cech resolution for the covering
Sp(L) — *. Then the picture of simplicial sheaf
maps

« — FG x¢Sp(L) — BH

is a cocycle on the Galois group G in the algebraic
group H in the traditional sense.

Example 3. Suppose that H is a sheaf of groups
an F'is a sheaf with an action H x F' — F'. Then
F'is an H-torsor if and only if the canonical map
EFH xyg F — % is a local weak equivalence. The

picture
x <« FH xyg F — BH

is the canonical cocycle associated to the torsor

F.

Of course H is an H-torsor since
FH xg H= EH ~ %,
and the standard map
x «— FH — BH
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is the canonical cocycle associated to the trivial
H-torsor H.

moh(X,Y") = class of path components of A( X, Y).

There is a function
¢:mh(X,Y) = [X,Y] (f,g)—g-f
Theorem 4. The canonical map
¢ moh(X,Y) — [X,Y]

18 a bijection for all simplicial presheaves X and

Y.

Cocycles can be defined for all model categories
M and the theorem holds if 1) M is right proper,
2) weak equivs. are closed under finite products in

M.

Examples: spaces, simplicial sets, presheaves of
simplicial sets, spectra, presheaves of spectra, any
good localizations including motivic homotopy the-
ories.

Remark 5. The cocycle category h(X,Y) has
appeared before, in the context of the Dwyer-Kan
theory of “hammock localizations”, but all identifi-
cations in that theory involve the assumption that
Y is fibrant. The interesting applications of the
Theorem involve objects Y which are not fibrant.
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Lest you think that I've done away with the homo-
topy theory in this statement, suppose that f ~
g : X — Y. Then there is a picture

X
1 f
ey

Sl

where A is the homotopy. Then

(Lx, f) ~ (pr,h) ~ (Lx, g)
Thus f +— [(1x, f)] defines a function
¢ : W(Xa Y) - ﬂ-Oh(Xa Y)

If Y is fibrant, then the function v is inverse to
¢. More generally, there are a couple of things to
prove.

The following result reduces the proof Theorem 4
to the case where Y is fibrant:

Lemma 6. Suppose that X — X', Y — Y’ are
weak equivalences. Then the functor h(X,Y) —
X", Y") induces a weak equivalence

Bh(X,Y) = Bh(X',Y").



Proof. (f,g) € h(X",Y')isamap (f,g9) : Z —
X' xY'st. fisa weak equivalence.

There is a functorial factorization
7). W
e V)
X' xY'
s.t. j is a triv. cofibration and (px, py’) is a fibra-
tion. py is a weak equivalence.
Form the pullback

W, (ax )« W

(p},piz)l l(pr,py/)
X x Y@X’ x Y’

(p%, py ) is a fibration and (ax 3), is a weak equiv-
alence (since av x (3 is a weak equivalence, and by
right properness). p% is also a weak equivalence.

We have found a functor
h(X’,Y’) — h(X,Y)

which is inverse to the original functor h(X,Y) —
h(X',Y") up to homotopy. O

Lemma 7. Suppose that'Y is fibrant. Then the
canonical map

¢ mh(X,Y) — [X,Y]
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18 a bijection.
Proof. m(X,Y’) = naive homotopy classes.
m(X,Y) — [ X, Y] is a bijection since Y is fibrant.

We have seen that the assignment f — [(1x, f)]
defines a function

Y m(X,Y) — mh(X,Y)
and there is a diagram

ﬂ-(Xa Y) Lﬂ'@h(X, Y)

|¢

X, Y]

I

[t suffices to show that v is surjective, or that any

object X L 7 %V isin the path component of
some a pair X L X 5 Y for some map k.

Form the diagram

12y
X o
Ty

where 7 is a trivial cofibration and p is a fibration;

Y

0 exists because Y is fibrant.



X is cofibrant, so the trivial fibration p has a sec-
tion o, and so there is a commutative diagram

X

1X00
/U\:Y

Y19\‘/'9

The composite fo is the required map k. ]
Homotopy classification of torsors:
The canonical cocycle functor

FEHxpy?: H—tors — h(x, BH)

has a left adjoint, and so it induces a weak equiv-
alence

B(H — tors) — Bh(x, BH).
This implies the following:
Theorem 8. There are bijections
(¥, BH] = moh(x, BH) = my(H—tors) = H'(C, H).

Remark 9. There is a smallness issue here. In
principle, the cocycle category h(X,Y') might not
be small, but it’s possible to assume that all cocy-
cles

X<EU—>Y

involve objects U of bounded size (depending on
the size of X, Y and C). We'll just assume this.
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Relation with the function complex

Write we/ X for the category whose objects are all
weak equivalences U — X, and whose morphisms
are the commutative diagrams

XX
R
Suppose that Y is fibrant and consider the functor
hom( ,Y) : (we/X)?” — sSet
which is defined by
U= X — hom(U)Y).
There is a canonical map
holim .~ _ hom(U,Y) — B(we/X).

—— U—X
Then we/X has a terminal object, namely 1x
so B(we/X) is contractible, while the diagram
hom( ,Y) is a diagram of equivalences since Y is

fibrant. It follows (Quillen’s Theorem B) that the
canonical map

hom(X,Y) — holim =~ hom(U,Y)

is a weak equivalence. At the same time, the hor-
izontal simplicial set

holim = . hom(U,Y),
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is the nerve of the cocycle category h(X,Y2") and
is therefore weakly equivalent to h(X,Y), for all
n. This means that the canonical map

Bh(X,Y) — holim =~ hom(U,Y)
is a weak equivalence. We have proved the follow-
ng:
Theorem 10. Suppose that Y 1is fibrant and
that X is cofibrant. Then the canonical maps

Bh(X,Y) — holim  ~ hom(U,Y) < hom(X,Y)
are weak equwalences.

Theorem 11. Suppose that Y is locally fibrant
and that 7 :' Y — Z 1is an injective fibrant model
i stmplicial presheaves. Then the maps

Bh(X,Y)—=holim =~ hom(U,Y)

|

hoth hom(U, Z)%hom(X Z)
are weak equivalences.

A local fibration is a map X — Y such that
X, — Y, is a Kan fibration in all stalks. Alterna-
tively, the presheaf maps

hom(A", X') — hom(Af, X) Xpem(ar,yyhom(A",Y)
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are local epimorphisms.

Every presheaf of Kan complexes X (eg. BG for
presheaves of groups G) is locally fibrant but not
necessarily injective fibrant. Every injective fibrant
simplicial presheaf is locally fibrant.

The Verdier hypercovering theorem
Write h, (X, Y') for the full subcategory of h(X,Y)
whose objects are the cocycles

xLuLy

with p a hypercover (aka. local fibration plus local
weak equivalence). Here’s the modern version of
the Verdier hypercovering theorem:

Theorem 12. Suppose that'Y s locally fibrant.
Then the inclusion h (X,Y) C h(X,Y) induces
a weak equivalence

Bh.(X,Y) 2 Bh(X,Y).

Proof. Suppose that (g, f) : U — X xY is a
cocycle (g is a weak equivalence), and find a (func-
torial) factorization



with j a trivial cofibration and (p, ¢) an injective
fibration. Then p, or the composite

7 W9 x vy

is a weak equivalence, and is a local fibration since
Y is locally fibrant. The assignment (g, f) +—
(p, q) defines a functor h(X,Y) — h(X,Y) which
is inverse to the inclusion A, (X,Y) C h(X,Y) up
to homotopy specified by the cofibrations j. O

Write /X for the category whose objects are the
hypercovers p : U — X, and whose morphisms
are the commutative diagrams

U\pA
X

/

u-r
Write w(U,Y) for simplicial homotopy classes of
maps U — Y, and let [f] be the simplicial homo-
topy class of a map f.

Corollary 13 (Verdier hypercovering theorem).
Suppose that'Y s locally fibrant. Then the canon-
wcal map

lim #(U,Y)— [X,Y]
—
[p:U—X

1S a bigection.
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Proof. The displayed colimit is the set of path com-
ponents of the category hy (X, Y') whose morphisms
have the form

et
0 Y
N

There is an obvious functor h.(X,Y) — hy(V,Y)
which is surjective on objects. The composite of
the functions

Wohf(X, Y) — 7T()hv<X, Y) — [X, Y]
is the canonical bijection. O

There are variants of hy (X, Y'), and here’s one of
them:

hy (X, Y) :

P [f]
X/ e]\*Y
S /,

N Vi L]

where [f] denotes a fibre homotopy class of maps.

Corollary 14. The canonical function
mwohy (X, Y) — [X,Y]

18 a bigection if Y 1s locally fibrant.
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Remark 15. It has, up to now, been a big deal
that there is no sort of fibrancy assumption on X
in these results.

Here’s the function complex version of the Verdier
hypercovering theorem (Theorem 12):

Corollary 16. Suppose thatY s locally fibrant
and that 5 1Y — Z 1is an injective fibrant model
of Y. Then there are weak equivalences

holim  », hom(U,Y') = holim 0P x hom(U, Z)
hom(X, 7)

where the homotopy colimits are indexed by the
hypercovers p : U — X.

Proof. All functors
ha(X, Y2 — ho(X, 22

are weak equivalences by the hypercovering theo-
rem, and the category /X has a terminal object
lx O
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